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X-Ray Crystal Structure Refinement Details

Crystal Structure of 19-3HBr

A specimen of CigH4Br;Ng, approximate dimensions 0.100 mm x 0.100 mm x 0.150 mm, was
used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The X-
ray intensity data were measured at 100(2)K using an Oxford Cryosystems Cobra low
temperature device using a MiTeGen micromount.

Atotal of 1119 frames were collected. The total exposure time was 4.66 hours. The integration
of the data using a trigonal unit cell yielded a total of 25098 reflections to a maximum 6 angle
of 27.50° (0.77 A resolution), of which 3863 were independent (average redundancy 6.497,
completeness = 100.0%, Rint = 2.81%, Rsig = 1.87%) and 3298 (85.37%) were greater than
20(F?).The final cell constants of a = 19.6192(13) A, b = 19.6192(13) A, ¢ = 22.6973(15) A,
volume = 7566.0(11) A3, are based upon the refinement of the XYZ-centroids of reflections
above 20 o(l).The calculated minimum and maximum transmission coefficients (based on
crystal size) are 0.5744 and 0.7457.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the
space group R -3, with Z = 9 for the formula unit, CisH44BrsNs.The final anisotropic full-matrix
least-squares refinement on F? with 135 variables converged at R1 = 3.24%, for the observed
data and wR2 = 7.56% for all data. The goodness-of-fit was 1.045. The largest peak in the final
difference electron density synthesis was 2.749 e /A3 and the largest hole was -2.861 e’ /A3
with an RMS deviation of 0.110 e /A%. On the basis of the final model, the calculated density
was 1.738 g/cm? and F(000), 3843 e

Refinement Notes: The formula reflects the charge balance requirement of one HBr per 2
(CsH22Ns3) (Brs) unit. This hydrogen was not located on the difference map.

The unit cell contains an unknown solvent molecule(s) which has been treated as a diffuse
contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.
This consists of 321 electrons in a solvent accessible volume of 1126.5A3.

Crystal Structure of 16b

A specimen of C22H29Bro.68Clo.32N204S2, approximate dimensions 0.100 mm x 0.150 mm x 0.220
mm, was used for the X-ray crystallographic analysis. Bruker APEX software was used to
correct for Lorentz and polarization effects.

A total of 2368 frames were collected. The total exposure time was 6.58 hours. The frames
were integrated with the Bruker SAINT software package using a wide-frame algorithm. The
integration of the data using a monoclinic unit cell yielded a total of 31099 reflections to a
maximum 8 angle of 68.37° (0.83 A resolution), of which 4316 were independent

(average redundancy 7.206, completeness = 99.9%, Rint = 4.10%, Rsig = 2.39%) and 4110
(95.23%) were greater than 20(F2).The final cell constants of a = 10.9261(5) A, b = 12.7024(5)
A, c=17.0382(7) A, B =96.0531(13)°, volume = 2351.51(17) A3, are based upon the refinement
of the XYZ-centroids of 9937 reflections above 20 o(l) with 8.137° < 26 < 136.5°.Data were
corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum
to maximum apparent transmission was 0.832. The calculated minimum and maximum
transmission coefficients (based on crystal size) are 0.6414 and 0.7531.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the
space group P21/c, with Z = 4 for the formula unit, C22H29Bro.6sClo.32N204S2.The final anisotropic
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full-matrix least-squares refinement on F> with 303 variables converged at R1 = 4.88%, for the
observed data and wR2 = 11.24% for all data. The goodness-of-fit was 1.098. The largest peak
in the final difference electron density synthesis was 0.582 e/A3and the largest hole was -
0.386 e /A3 with an RMS deviation of 0.066 e/A3. On the basis of the final model, the
calculated density was 1.455 g/cm3and F(000), 1073 e-.

Refinement Note: Halide positions were modelled as half occupied with contraints (EADP) and
restraints (DFIX) used to allow the model to converge. Each halide position was modelled as
split between Br and Cl with refined occupancies of 0.35/0.15 Brla/Clla and 0.33/0.17
Brlb/Cllb.

Crystal Structure of [1b-H](PFs)

A specimen of CssHasaFsNsP, approximate dimensions 0.170 mm x 0.170 mm x 0.330 mm, was
used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 100(2)K
using an Oxford Cryosystems Cobra low temperature device using a MiTeGen micromount.
Bruker APEX software was used to correct for Lorentz and polarization effects.

A total of 4475 frames were collected. The total exposure time was 18.65 hours. The frames
were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The
integration of the data using a monoclinic unit cell yielded a total of 122896 reflections to a
maximum 6 angle of 26.40° (0.80 A resolution), of which 6919 were independent (average
redundancy 17.762, completeness = 99.9%, Rint=2.12%, Rsig= 0.72%) and 6244 (90.24%) were
greater than 20(F2).The final cell constants of a=10.9164(3) A, b = 16.2651(4) A, c = 19.0039(5)
A, B = 93.2134(9)°, volume = 3368.96(15) A3, are based upon the refinement of the XYz-
centroids of 9805 reflections above 20 o(l) with 4.893° < 26 < 52.75°.Data were corrected for
absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum
apparent transmission was 0.964. The calculated minimum and maximum transmission
coefficients (based on crystal size) are 0.7183 and 0.7454.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the
space group P21/c, with Z = 4 for the formula unit, CasH4aFeN3P.The final anisotropic full-matrix
least-squares refinement on F?with 451 variables converged at R1 = 4.82%, for the observed
data and wR2 = 12.52% for all data. The goodness-of-fit was 1.059. The largest peak in the
final difference electron density synthesis was 0.609 e-/A3and the largest hole was -0.425 e-
/A3 with an RMS deviation of 0.047 e/A3. On the basis of the final model, the calculated
density was 1.309 g/cm3and F(000), 1400 e".

Refinement Note: PFs anion was disordered with the equatorial F atoms modelled in three
positions with occupancies of 50:42:8%. The lowest occupancy moiety was held isotropic.
Constraints were applied to occupancies (EADP) of the minor moieties.

Crystal Structure of [1b-2H](OTf) 2

A specimen of CssHasFeN3OsS2, approximate dimensions 0.220 mm x 0.240 mm x 0.260 mm,
was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at
100(2)K using an Oxford Cryosystems Cobra low temperature device using a MiTeGen
micromount. Bruker APEX software was used to correct for Lorentz and polarization effects.

A total of 2292 frames were collected. The total exposure time was 12.73 hours. The
integration of the data using a monoclinic unit cell yielded a total of 185743 reflections to a
maximum 6 angle of 30.60° (0.70 A resolution), of which 11856 were independent (average
redundancy 15.667, completeness = 99.8%, Rint= 3.81%, Rsig= 1.73%) and 9748 (82.22%) were
greater than 20(F?). The final cell constants of a = 11.1337(5) A, b = 24.2066(10) A, ¢ =
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15.0351(6) A, B = 107.5700(10)°, volume = 3863.1(3) A3, are based upon the refinement of the
XYZ-centroids of reflections above 20 o(l). Data were corrected for absorption effects using
the multi-scan method (SADABS). The calculated minimum and maximum transmission
coefficients (based on crystal size) are 0.6953 and 0.7461.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the
space group P21/c, with Z = 4 for the formula unit, C3sHasFsN30sS2. The final anisotropic full-
matrix least-squares refinement on F2 with 505 variables converged at R1 = 3.72%, for the
observed data and wR2 = 9.89% for all data. The goodness-of-fit was 1.039. The largest peak
in the final difference electron density synthesis was 0.502 e-/A3and the largest hole was -
0.377 e/A3 with an RMS deviation of 0.051 e/A3. On the basis of the final model, the
calculated density was 1.406 g/cm3and F(000), 1712 e".

Refinement Note: Hydrogen atoms H8 and H11 were located and refined.

References:

Bruker APEX v2014.11-0, Bruker AXS Inc., Madison, Wisconsin, USA.

SADABS (2014/5) Bruker AXS Inc., Madison, Wisconsin, USA; Sheldrick, G. M. University of
Gottingen, Germany.

SHELXL-2014, (2014), Bruker AXS Inc., Madison, Wisconsin, USA; Sheldrick, G. M. University of
Gottingen, Germany.
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Table S1 - Crystal data and refinement parameters for the reported crystal structures.

19¢3HBr 16b [1b*H]PFs [1b*2H]OTf,
Empirical Ci6HasBr7Ne C22H29Bro.68Clo.32N204S2 CssHasFeN3P C3sHasFsN306S2
formula
fw 879.94 515.05 663.71 817.89
Crystal System Trigonal Monoclinic Monoclinic Monoclinic
SG R-3 P21/c P21/c P2i/c
a(A) 19.6192(13) 10.9261(5) 10.9164(3) 11.1337(5)
b (A) 19.6192(13) 12.7024(5) 16.2651(4) 24.2066(10)
c (A) 22.6973(15) 17.0382(7) 19.0039(5) 15.0351(6)
a(°) 90 90 90 90
8(°) 90 96.0531(13) 93.2134(9) 107.5700(10)
y(°) 120 90 90 90
Vv (A3) 7566.0(11) 2351.51(17) 3368.96(15) 3863.1(3)
T (K) 100(2) 100(2) 100(2) 100(2)
V4 9 4 4 4
p (g/cm?3) 1.738 1.455 1.309 1.406
u (mm) 8.366 3.996 0.145 0.217
Total reflns 25098 31099 122896 185743
Indep. reflns 3863 4316 6919 11856
R(int) 0.0281 0.0410 0.0212 0.0381
R:2[1>20(1)] 0.0324 0.0488 0.0482 0.0372
wWR2 [1>20(1)] 0.0777 0.1115 0.1204 0.0899

*Ru=3||Fol - |Fel /2] Fol, WRa = £ [W(Fo? - F)/sw(Fa2] 2
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Figure S26—HSQC NMR Spectrum of 1b, CDCl;, 400 MHz.
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Figure S27—HSQC NMR Spectrum of 1b, CD3CN, 600 MHz. The HSQC of 1b in CDsCN is shown for comparative purposes with the NMR data provided for [1b-H](PFs)] and
[1b-2H](OTf),.
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Figure $33—2d 'H NOSEY NMR (CDCls, 400 MHz) Spectrum (Blue/Green) of [1b-H](PFs) showing through space coupling overlaid with the *H -'H COSY of [1b-H]
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Figure S38—HSQC NMR Spectrum of 22 CDCl;, 400 MHz
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