Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Copper Catalyzed Oxygen Assisted C(CNOH)-C(alkyl) Bond Cleavage: A Facile Conversion of Aryl/Aralkyl/Vinyl Ketones to Aromatic Acids

Pochampalli Sathyanarayana,^a Owk Ravi,^a Prathap Reddy Muktapuram,^a and Surendar Reddy Bathula^{*a}

^aDivision of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India.

Table of contents

General information	S2
General procedure for the synthesis of acids	S2
Synthesis of starting materials	S15
¹ H and ¹³ C NMR spectra	S18
References	S60

1.0. General Information:

All reactions were carried out in oven-dried glassware. IR spectra were recorded on FT-IR spectrometer (KBr) and reported in reciprocal centimetres (cm⁻¹). ¹H NMR spectra were recorded at 300 MHz and ¹³C NMR at 75 MHz. For ¹H NMR, tetramethylsilane (TMS) was used as internal standard ($\delta = 0$) and the values are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet, dt = doublet of triplet), and the coupling constants in Hz. For ¹³C NMR, CDCl₃ ($\delta = 77.23$) was used as internal standard and spectra were obtained with complete proton decoupling. Melting points were measured on micro melting point apparatus. The precursors, (E)-4-arylbut-3-en-2-ones and 4-arylbutan-2-ones are prepared according to reported procedures. Commercially available acetophenones, hydroxylamine hydrochloride, CuI and DMSO were used without further purification.

2.0. General procedure for the synthesis of Benzoic acids and Cinnamic acids:

A mixture of ketone [(1, 4, 5, 6] (1 mmol, 1 eq.), hydroxylamine hydrochloride (4 mmol, 4 eq.) and CuI (30 mol %) in dimethyl sulfoxide (10 mL) was stirred at 100 °C under oxygen atmosphere for an appropriate time. After completion of the reaction, as indicated by TLC, the mixture was diluted with water and extracted with EtOAc (3×20 mL). The extract was

washed with brine, dried over Na_2SO_4 and evaporated, and the crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to obtain the product.

4-methoxybenzoic acid¹

144 mg of **3a** was obtained from 150 mg (1 mmol) of **1a.** 95% yield; White solid; $R_f = 0.4$ (EtOAc/hexane = 3/7); m.p. 180-182 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.05 (d, J = 8.92 Hz, 2H), 6.95 (d, J = 8.89 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃ + DMSO-d) δ : 167.5, 162.6, 131.1, 122.7, 112.9, 54.9; IR (KBr) v: 3094, 1685.8, 1215.4, 757.7, 669.1 cm⁻¹; MS (EI) *m/z* 151 [M-1]⁺.

3-methoxybenzoic acid¹

136.5 mg of **3b** was obtained from 150 mg (1 mmol) of **1b**. 90% yield; White solid; $R_f = 0.4$ (EtOAc/hexane = 3/7); m.p. 104-106 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.75-7.72 (m, 1H), 7.64-7.63 (m, 1H), 7.39 (t, J = 7.87 Hz, 1H), 7.18-7.15 (m, 1H), 3.87 (s, 3H); ¹³C NMR (75 MHz, DMSO-d) δ : 167.0, 159.2, 132.1, 129.6, 121.5, 118.8, 113.8, 55.2; IR (KBr) v: 3394.3, 3020.9, 1693.2, 1411.7, 1216.1, 760.0, 670.0 cm⁻¹; MS (EI) *m/z* 151 [M-1]⁺.

4-ethoxybenzoic acid²

154 mg of **3c** was obtained from 164 mg (1 mmol) of **1c**. 93% yield; White solid; $R_f = 0.4$ (EtOAc/hexane = 3/7); m.p. 195-197 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d) δ : 7.72-7.70 (m, 2H), 6.65-6.63 (m, 2H), 3.83 (q, J = 13.94, 6.99 Hz, 2H), 1.17 (t, J = 6.97 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃ + DMSO-d) δ : 167.2, 161.7, 130.8, 122.3, 113.1, 62.8, 13.9; IR

(KBr) v: 3402.7, 3021.0, 1603.9, 1300.0, 1216.0, 1169.6, 761.5, 669.8 cm⁻¹; MS (EI) *m*/*z* 165 [M-1]⁺.

4-hydroxybenzoic acid³

38.5 mg of **3d** was obtained from 136 mg (1 mmol) of **1d**. 28% yield; White solid; $R_f = 0.2$ (EtOAc/hexane = 9/1); m.p. 212-214 °C; ¹H NMR (300 MHz, DMSO-d) δ : 10.23 (brs, 1H), 7.78 (d, J = 8.67 Hz, 2H), 6.81 (d, J = 8.63 Hz, 2H); ¹³C NMR (75 MHz, DMSO-d) δ : 167.1, 161.5, 131.5, 121.5, 115.1; IR (KBr) v: 3399.6, 3019.4, 1654.0, 1523.2, 1215.5, 757.5, 669.1 cm⁻¹; MS (EI) *m/z* 137 [M-1]⁺.

Benzoic acid¹

75.5 mg of **3e** was obtained from 120 mg (1 mmol) of **1e**. 62% yield; White solid; $R_f = 0.4$ (EtOAc/hexane = 3/7); m.p. 120-122 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.13 (dd, J = 8.11, 1.01 Hz, 2H), 7.64-7.61 (m, 1H), 7.49 (t, J = 7.84 Hz, 2H);¹³C NMR (75 MHz, CDCl₃) δ : 172.3, 134.0, 130.4, 128.7; IR (KBr) v: 3020.6, 1687.9, 1326.5, 1293.1, 934.8, 708.9 cm⁻¹; MS (EI) *m/z* 121 [M-1]⁺.

4-methylbenzoic acid⁴

126 mg of **3f** was obtained from 134 mg (1 mmol) of **1f**. 93% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 180-182 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.01 (d, J = 8.31 Hz, 2H), 7.27 (d, J = 7.94 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.3, 144.8, 130.4, 129.4, 125.7, 21.9; IR (KBr) v: 3019.5, 1692.6, 1215.5, 757.8, 669.1 cm⁻¹; MS (EI) *m/z* 135 [M-1]⁺.

2-methylbenzoic acid⁵

118 mg of **3g** was obtained from 134 mg (1 mmol) of **1g**. 87% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 104-105 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d) δ : 7.85-7.83 (m, 1H), 7.31-7.28 (m, 1H), 7.15-7.11 (m, 1H), 2.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃ + DMSO-d) δ : 170.4, 140.1, 131.7, 131.5, 130.8, 130.0, 125.5, 21.7; IR (KBr) v: 3019.5, 1692.6, 1215.5, 757.8, 669.1 cm⁻¹; MS (EI) *m/z* 135 [M-1]⁺.

4-(*tert*-butyl) benzoic acid⁵

162 mg of **3h** was obtained from 176 mg (1 mmol) of **1h**. 91% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 167-169 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.06 (d, J = 8.55 Hz, 2H), 7.50 (d, J = 8.58 Hz, 2H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.7, 157.8, 130.3, 126.8, 125.7, 35.4, 31.3; IR (KBr) v: 3408.8, 3019.7, 1633.1, 1215.9, 1069.3, 769.5, 669.2 cm⁻¹; MS (EI) *m/z* 177 [M-1]⁺.

4-cyclohexylbenzoic acid⁶

138.5 mg of **3i** was obtained from 202 mg (1 mmol) of **1i**. 68% yield; Light Gray solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 136-137 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.01 (d, J = 8.19 Hz, 2H), 7.28 (d, J = 8.17 Hz, 2H), 2.59-2.52 (m, 1H), 1.85-1.73 (m, 5H), 1.49-1.24 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.9, 154.6, 130.5, 127.2, 127.0, 45.0, 34.3, 26.9, 26.2; IR (KBr) v: 3407.1, 3019.2, 1654.1, 1215.9, 768.8, 668.5 cm⁻¹.

2, 4-dimethylbenzoic acid⁷

135 mg of **3j** was obtained from 148 mg (1 mmol) of **1j**. 90% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 120-122 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.98-7.97 (m, 1H), 7.09-7.08 (m, 2H), 2.63 (s, 3H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.2, 143.8, 141.7, 132.9, 132.0, 126.8, 125.6, 22.3, 21.6; IR (KBr) v: 3020.5, 1692.6, 1216.5, 757.5, 669.1 cm⁻¹; MS (EI) *m/z* 149 [M-1]⁺.

3-bromobenzoic acid⁸

155 mg of **3k** was obtained from 197 mg (1 mmol) of **1k**. 78% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 154-156 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d) δ : 7.89-7.88 (m, 1H), 7.71-7.68 (m, 1H), 7.41-7.38 (m, 1H). 7.08-7.04 (m, 1H); ¹³C NMR (75 MHz, CDCl₃ + DMSO-d) δ : 166.3, 134.9, 132.7, 132.1, 129.5, 127.8, 121.6; IR (KBr) v: 3400.7, 3019.7, 1692.5, 1308.8, 1216.5, 760.3, 669.4 cm⁻¹; MS (EI) *m/z* 198 [M-1]⁺.

3-fluorobenzoic acid⁴

91 mg of **31** was obtained from 138 mg (1 mmol) of **11**. 65% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 120-122 °C; ¹H NMR (300 MHz, CDCl₃) δ : 10.42 (brs, 1H), 7.94-7.91 (m, 1H), 7.82-7.78 (m, 1H), 7.49-7.44 (m, 1H), 7.35-7.30 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.4, 164.0, 161.5, 131.7, 131.6, 130.48, 130.41, 126.24, 126.22, 121.3, 121.1, 117.4, 117.2; IR (KBr) v: 3397.2, 3021.3, 1694.1, 1413.7, 1216.0, 759.7 cm⁻¹; MS (EI) *m/z* 139 [M-1]⁺.

4-fluorobenzoic acid⁴

99.5 mg of **3m** was obtained from 138 mg (1 mmol) of **1m**. 71% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 182-184 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.16-8.13 (m, 2H), 7.17-7.14 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.3, 168.2, 164.9, 133.1, 133.0, 125.7, 116.1, 115.8; IR (KBr) v: 3408.3, 3019.5, 2400.1, 1601.6, 1420.2, 1215.4, 1069.0, 758.0, 669.0 cm⁻¹; MS (EI) *m/z* 139 [M-]⁺.

2, 4-dichlorobenzoic acid9

144 mg of **3n** was obtained from 188 mg (1 mmol) of **1n**. 60% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 155-157 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO-d) δ : 9.05 (brs, 1H), 7.81-7.78 (m, 1H), 7.389-7.381 (m, 1H), 7.25-7.20 (m, 1H); ¹³C NMR (75 MHz, CDCl₃ + DMSO-d) δ : 166.1, 137.3, 134.3, 132.3, 130.3, 128.8, 126.5; IR (KBr) v: 3399.4, 1698.7, 1588.1, 1384.2, 1216.3, 1051.9, 771.0, 668.5 cm⁻¹; MS (EI) *m/z* 189 [M-1]⁺.

2-nitrobenzoic acid¹⁰

113.5 mg of **30** was obtained from 165 mg (1 mmol) of **10**. 68% yield; Light yellow solid; R_f = 0.45 (EtOAc/hexane = 3/7); m.p. 145-147 °C; ¹H NMR (300 MHz, DMSO-d) δ : 13.85 (brs, 1H), 7.98-7.96 (m, 1H), 7.87-7.85 (m, 1H), 7.81-7.74 (m, 2H); ¹³C NMR (75 MHz, DMSO-d) δ : 165.9, 148.4, 133.1, 132.4, 129.8, 127.2, 123.7; IR (KBr) v: 3021.2, 1676.4, 1382.1, 1216.1, 765.5 cm⁻¹; MS (EI) *m/z* 166 [M-1]⁺.

3-nitrobenzoic acid⁵

117 mg of **3p** was obtained from 165 mg (1 mmol) of **1p**. 70% yield; Lightyellow solid; $R_f = 0.45$ (EtOAc/hexane = 3/7); m.p. 138-140 °C; ¹H NMR (300 MHz, DMSO-d) δ : 8.59 (brs, 1H), 8.46-8.43 (m, 1H), 8.34-8.29 (m, 1H), 7.79 (t, J = 7.89 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 165.5, 147.8, 135.3, 130.5, 127.3, 123.6; IR (KBr) v: 3021.7, 1705.9, 1352.1, 1288.4, 1215.7, 759.9, 669.5 cm⁻¹; MS (EI) *m/z* 166 [M-1]⁺.

4-nitrobenzoic acid⁴

120 mg of **3q** was obtained from 165 mg (1 mmol) of **1q**. 72% yield; Light yellow solid; R_f = 0.45 (EtOAc/hexane = 3/7); m.p. 232-234 °C; ¹H NMR (300 MHz, DMSO-d) δ : 8.72 (d, J = 8.80 Hz, 2H), 8.57 (d, J = 8.80 Hz, 2H); ¹³C NMR (75 MHz, DMSO-d) δ : 165.8, 150.0, 136.3, 130.6, 123.7; IR (KBr) v: 3019.6, 1654.5, 1384.6, 1215.5, 1069.8, 757.3, 669.1 cm⁻¹; MS (EI) *m/z* 166 [M-1]⁺.

Nicotinic acid¹¹

83.5 mg of **3r** was obtained from 121 mg (1 mmol) of **1r**. 68% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 1/1); m.p. 230-234 °C; ¹H NMR (300 MHz, DMSO-d) δ : 13.41 (brs, 1H), 9.08-9.07 (m, 1H), 8.785 (dd, J = 4.80, 1.56 Hz, 1H), 8.265 (dt, J = 7.93, 1.97 Hz, 1H), 7.56-7.52 (m, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 166.2, 153.2, 150.2, 136.9, 126.5, 123.7; IR (KBr) v: 3401.3, 3019.3, 2400.0, 1654.1, 1215.4, 757.2, 669.0 cm⁻¹; MS (EI) *m/z* 122 [M-1]⁺.

Thiophene-2-carboxylic acid¹

115 mg of **3s** was obtained from 126 mg (1 mmol) of **1s**. 90% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 122-125 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.87 (dd, J = 3.75, 1.23 Hz, 1H), 7.63 (dd, J = 4.95, 1.22 Hz, 1H), 7.13-7.12 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 167.7, 135.2, 134.2, 133.0, 128.2; IR (KBr) v: 3019.6, 1654.5, 1384.6, 1215.5, 1069.8, 757.3, 669.1 cm⁻¹; MS (EI) *m/z* 128 [M⁺].

4-cyanobenzoic acid¹²

70 mg of **3t** was obtained from 148 mg (1 mmol) of **1t**. 48% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 215-127 °C; ¹H NMR (300 MHz, DMSO-d) δ : 8.09-8.07 (m, 2H), 7.99-7.96 (m, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 166.0, 134.8, 132.6, 129.9, 118.1, 115.0; IR (KBr) v: 3401.1, 1711.1, 1423.3, 1215.8, 769.6, 670.0 cm⁻¹; MS (EI) *m/z* 148 [M⁺].

4-chlorobenzoic acid¹

112 mg of **3u** was obtained from 154 mg (1 mmol) of **4d**. 72% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 235-237 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.75-7.72 (m, 2H), 7.42-7.39 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.4, 138.5, 131.9, 129.1, 129.0; IR (KBr) v: 3400.5, 3019.5, 1647.0, 1215.4, 757.9, 669.1 cm⁻¹; MS (EI) *m/z* 155 [M-1]⁺.

4-bromobenzoic acid¹

159 mg of **3v** was obtained from 197 mg (1 mmol) of **4e**. 80% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 248-250 °C; ¹H NMR (300 MHz, DMSO-d) δ : 13.17 (brs, 1H), 7.87-7.85 (m, 2H), 7.71-7.69 (m, 2H); ¹³C NMR (75 MHz, DMSO-d) δ : 166.5, 131.6, 131.2, 130.0, 126.8; IR (KBr) v: 3395.8, 3021.1, 1676.2, 1425.1, 1296.8, 1215.6, 761.7 cm⁻¹; MS (EI) *m/z* 198 [M-1]⁺.

2-methoxybenzoic acid¹

136.5 mg of **3w** was obtained from 150 mg (1 mmol) of **5b**. 90% yield; White solid; $R_f = 0.4$ (EtOAc/hexane = 3/7); m.p. 100-102 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.74-7.72 (m, 1H), 7.64-7.63 (m, 1H), 7.39 (t, J = 7.83 Hz, 1H), 7.18-7.15 (m, 1H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.5, 159.8, 130.8, 129.7, 122.9, 120.7, 114.6, 55.6; IR (KBr) v: 3020.6, 1692.9, 1287.9, 1216.5, 759.7, 670.0 cm⁻¹; MS (EI) *m/z* 151 [M-1]⁺.

2-naphthoic acid⁵

85.5 mg of **3x** was obtained from 198 mg (1 mmol) of **5f**. 49.7% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 183-185 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.72 (s, 1H), 8.12 (dd, J = 8.64, 1.60 Hz, 1H), 8.00 (d, J = 8.09 Hz, 1H), 7.92 (t, J = 8.64 Hz, 2H), 7.65-7.62 (m,1H), 7.59-7.56 (m,1H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.5, 136.1, 132.6, 132.3, 129.7, 128.8, 128.5, 128.0, 127.0, 125.6; IR (KBr) v: 3066.3, 1686.2, 1216.4, 769.6, 669.6 cm⁻¹; MS (EI) *m/z* 171 [M-1]⁺.

cinnamic acid¹

7a was obtained from 146 mg (1 mmol) of **6a**. 58% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 129-130 °C; ¹H NMR (300 MHz, DMSO-d) δ : 7.70-7.66 (m, 2H), 7.59 (d, J = 16.06 Hz, 1H), 7.42 - 7.40 (m, 3H), 6.53 (d, J = 15.93 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.7, 147.3, 134.2, 130.9, 129.1, 128.5, 117.5; IR (KBr) v: 3396.7, 3022.0, 1684.6, 1216.4, 765.3, 672.7 cm⁻¹; MS (EI) *m/z* 147 [M-1]⁺.

(E)-3-(2-methoxyphenyl) acrylic acid¹³

85 mg of **7b** was obtained from 176 mg (1 mmol) of **6b**. 48% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 3/7); m.p. 178-180 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.11 (d, J = 16.10 Hz, 1H), 7.55-7.53 (m, 1H), 7.41-7.35 (m, 1H), 7.01-6.92 (m, 2H), 6.56 (d, J = 16.18 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 167.9, 157.4, 138.7, 131.0, 127.9, 120.2, 118.8, 110.8, 55.07; IR (KBr) v: 3388.0, 1620.9, 1400.9, 1249.3, 1218.6, 1069.0, 771.5 cm⁻¹; MS (EI) *m/z* 177 [M-1]⁺.

(E)-3-(2, 3-dimethoxyphenyl) acrylic acid¹⁴

106 mg of **7c** was obtained from 206 mg (1 mmol) of **6c**. 51% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 178-180 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.11 (d, J = 15.88 Hz, 1H), 7.20-7.18 (dd, J = 7.91, 1.19 Hz, 1H), 7.08 (t, J = 8.09 Hz, 1H),6.98-6.96 (dd, J = 8.11, 1.24 Hz, 1H), 6.51 (d, J = 16.10 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.2, 153.3, 148.9, 141.9, 128.4, 124.4, 118.7, 114.6, 61.6, 56.1; IR (KBr) v: 3400.0, 1626.3, 1410.6, 1253.3, 1216.9, 1069.9, 776.5 cm⁻¹; MS (EI) *m/z* 207 [M-1]⁺.

(E)-3-(3, 4, 5-trimethoxyphenyl) acrylic acid¹⁵

154.5 mg of **7d** was obtained from 236 mg (1 mmol) of **6d**. 65% yield; Light yellow solid; R_f = 0.3 (EtOAc/hexane = 3/7); m.p. 168-170 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.71 (d, J = 15.70 Hz, 1H), 6.79 (s, 2H), 6.37 (d, J = 15.74 Hz, 1H), 3.91 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.4, 153.6, 147.2, 140.7, 129.6, 116.6, 105.7, 61.1, 56.3; IR (KBr) v: 3401.5, 3019.3, 1631.3, 1283.0, 1216.2, 1068.9, 770.4, 669.1 cm⁻¹; MS (EI) *m/z* 239 [M+].

(E)-3-(p-tolyl) acrylic acid¹⁶

98.5 mg of **7e** was obtained from 160 mg (1 mmol) of **6e**. 61% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 192-194 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.77 (d, J = 15.94 Hz, 1H), 7.45 (d, J = 7.97 Hz, 2H), 7.21 (d, J = 7.97 Hz, 2H), 6.41 (d, J = 16.00 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ :172.6, 147.3, 141.5, 131.5, 129.9, 128.6, 116.3, 21.7; IR (KBr) v: 3387.5, 2920.1, 1628.7, 1286.6, 1217.6, 771.6, 670.0 cm⁻¹; MS (EI) *m/z* 161 [M-1]⁺.

(E)-3-(4-isopropylphenyl) acrylic acid¹⁷

115.5 mg of **7f** was obtained from 188 mg (1 mmol) of **6f**. 61% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 162-164 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.78 (d, J = 16.00 Hz, 1H), 7.49 (d, J = 8.09 Hz, 2H), 7.30 (d, J = 8.01 Hz, 2H),6.42 (d, J = 16.05 Hz, 1H), 2.98-2.89 (m, 1H), 1.28 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ :172.4, 152.4, 147.4, 131.8, 128.7, 127.3, 116.3, 34.3, 23.9; IR (KBr) v: 3390.3, 2926.2, 1628.3, 1273.6, 1216.6, 776.6, 669.6 cm⁻¹.

(E)-3-(4-fluorophenyl) acrylic acid¹⁶

89.5 mg of **7g** was obtained from 164 mg (1 mmol) of **6g**. 54% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 200-202 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.78-7.73 (dd, J = 15.97, 2.37 Hz, 1H), 7.56-7.54 (m, 2H), 7.10 (t, J = 8.54 Hz, 2H), 6.38 (d, J = 16.12 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃ +DMSO-d) δ : 167.5, 164.7, 161.4, 142.4, 130.4, 129.6, 129.5, 118.5, 115.6, 115.3; IR (KBr) v: 3405.9, 3019.5, 1638.0, 1402.8, 1216.1, 770.7, 669.2 cm⁻¹; MS (EI) *m/z* 165 [M-1]⁺.

(E)-3-(4-chlorophenyl) acrylic acid¹⁶

92.5 mg of **7h** was obtained from 180 mg (1 mmol) of **6h**. 51% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 240-242 °C; ¹H NMR (300 MHz, DMSO-d) δ : 7.72 (d, J = 8.51 Hz, 2H), 7.58 (d, J = 16.04 Hz, 1H), 7.47 (d, J = 8.48 Hz, 2H), 6.55 (d, J = 16.00 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 167.3, 142.4, 134.6, 133.1, 129.8, 128.8, 120.0; IR (KBr) v: 3405.5, 3019.3, 1629.8, 1399.1, 1216.6, 1156.0, 1069.2, 771.1, 669.6 cm⁻¹; MS (EI) *m/z* 181 [M-1]⁺.

(E)-3-(3-chlorophenyl) acrylic acid¹⁶

76.5 mg of **7i** was obtained from 180 mg (1 mmol) of **6i**. 42% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 156-158 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.72 (d, J = 16.03 Hz, 1H), 7.54 (t, J = 1.59 Hz, 1H), 7.44-7.42 (m, 1H), 7.40-7.38 (m, 1H), 7.37-7.33 (m, 1H), 6.46 (d, J = 15.91 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 167.3, 142.3, 136.5, 133.7,

130.6, 129.8, 127.8, 126.8, 120.9; IR (KBr) v: 3389.1, 1631.3, 1402.8, 1217.8, 1068.3, 771.6, 668.9 cm⁻¹; MS (EI) *m/z* 181 [M-1]⁺.

(E)-3-(thiophen-2-yl) acrylic acid¹⁸

89 mg of **7j** was obtained from 152 mg (1 mmol) of **6j**. 58% yield; White solid; $R_f = 0.3$ (EtOAc/hexane = 3/7); m.p. 141-143 °C; ¹H NMR (300 MHz, DMSO-d) δ : 12.40 (brs, 1H), 7.71 (d, J = 15.76 Hz, 1H), 7.69 (d, J = 5.06 Hz, 1H), 7.50 (d, J = 3.45 Hz, 1H), 7.14 (dd, J = 4.95, 3.73 Hz, 1H), 6.17 (d, J = 15.68 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 167.2, 138.8, 136.7, 131.6, 129.4, 128.4, 117.4; IR (KBr) v: 3414.2, 2987.4, 2253.6, 1644.8, 1218.9, 1027.2, 756.3, 664.0 cm⁻¹; MS (EI) *m/z* 153 [M-1]⁺.

(E)-3-(furan-2-yl) acrylic acid¹⁸

84 mg of **7k** was obtained from 136 mg (1 mmol) of **6k**. 61% yield; White solid, $R_f = 0.3$ (EtOAc/hexane = 7/3); m.p. 130-132 °C; ¹H NMR (300 MHz, DMSO-d) δ : 7.83 (brs, 1H), 7.39 (d, J = 16.14 Hz, 1H), 6.92 (d, J = 3.26 Hz, 1H), 6.63-6.61 (m, 1H), 6.51 (d, J = 15.95 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d) δ : 167.2, 150.2, 145.6, 130.7, 115.9, 115.3, 112.6; IR (KBr) v: 3412.2, 2998.2, 1637.7, 1216.0, 1053.5, 1028.4, 757.2, 667.5 cm⁻¹; MS (EI) *m/z* 137 [M-1]⁺.

3.0 Procedure for the synthesis of oxime 2a:

(E)-1-(4-methoxyphenyl) ethan-1-one oxime¹⁹

A mixture of acetophenone **1a** Hydroxylamine hydrochloride (2 mmol, 2 eq.) and CuI (30 mol%) in dimethyl sulfoxide (10 mL) was stirred at 50 °C under oxygen atmosphere for 2 h.

After completion of the reaction, as indicated by TLC, the mixture was diluted with water, filtered and extracted with EtOAc (3×20mL). The extract was washed with brine, drying over Na₂SO₄ and evaporation, the crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the product **2a**. 99% yield; White solid , $R_f = 0.6$ (EtOAc/hexane = 3/7); ¹H NMR (300 MHz, CDCl₃) δ : 8.69 (brs, 1H), 7.59-7.56 (m, 2H), 6.92-6.89 (m, 2H), 3.83 (s, 3H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 160.6, 155.7, 129.2, 127.5, 114.0, 55.5,12.3; IR (KBr) v: 3208.1, 3077.5, 2976.8, 1621.1, 1516.2, 1298, 1025.4, 920, 752cm⁻¹; MS (EI) *m/z* 166 [M ⁺].

5.0. Synthesis of starting materials:

5.1. synthesis of (E)-4-arylbut-3-en-2-ones (6) was done following the procedure given in the ref. *Chem. Med. Chem.* 2009, 4, 963-966.²⁰

5.2. General procedure for the synthesis of 4-arylbutan-2-ones:

The substituted 4-arylbutan-2-ones were prepared by hydrogenation of the corresponding enones at room temperature at 50 psi in methanol utilizing a catalyst 5% Pd on carbon. The catalyst was filtered off and the resulting ketone was purified by column chromatography.

4-phenylbutan-2-one²¹

145 mg of **5a** was obtained from 146 mg (1 mmol) of **6a**. 98% yield; Colourless liquid; $R_f = 0.5$ (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.27-7.25 (m, 2H), 7.20-7.16 (m,

3H), 2.89 (t, *J* = 7.28 Hz, 2H), 2.75 (t, *J* = 7.48 Hz, 2H), 2.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 207.9, 141.1, 128.6, 128.4, 126.2, 45.2, 30.1, 29.9.

4-(2-methoxyphenyl) butan-2-one²²

174 mg of **5b** was obtained from 176 mg (1 mmol) of **6b**. 98% yield; Colourless liquid; $R_f = 0.5$ (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.20-7.17 (m, 1H), 7.12 (dd, J = 7.34, 1.49 Hz, 1H), 6.88-6.83 (m, 2H), 3.81 (s, 3H), 2.88 (t, J = 8.02 Hz, 2H), 2.72 (t, J = 8.06 Hz, 2H), 2.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 208.8, 157.8, 130.1, 129.4, 127.6, 120.6, 110.3, 55.3, 43.8, 30.0, 25.1.

4-(p-tolyl) butan-2-one²³

158.5 mg of **5c** was obtained from 160 mg (1 mmol) of **6e**. 98% yield; Colourless liquid, $R_f = 0.5$ (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.08-7.04 (m, 4H), 2.84 (t, J = 7.55 Hz, 2H), 2.71 (t, J = 7.55 Hz, 2H), 2.29 (s, 3H), 2.11 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 208.0, 138.0, 135.6, 129.2, 128.2, 45.4, 30.1, 29.4, 21.0.

4-(4-chlorophenyl) butan-2-one²³

178 mg of **5d** was obtained from 180 mg (1 mmol) of **6h**. 98% yield; Colourless liquid; $R_f = 0.5$ (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.29-7.26 (m, 2H), 7.20-7.17 (m, 2H), 2.89 (t, J = 7.74 Hz, 2H), 2.75 (t, J = 7.91 Hz, 2H), 2.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 2.8.0, 141.1, 128.6, 128.4, 126.2, 45.2, 30.1, 29.8.

4-(4-bromophenyl) butan-2-one²³

220.5 mg of **5e** was obtained from 223 mg (1 mmol) of **6l**. 98% yield; Colourless liquid; $R_f =$ 0.5 (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.29-7.26 (m, 2H), 7.19-7.17 (m, 2H), 2.89 (t, J = 7.85 Hz, 2H), 2.76 (t, J = 7.96 Hz, 2H), 2.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 208.1, 141.1, 128.6, 128.4, 126.3, 45.3, 30.2, 29.9.

4-(naphthalen-2-yl) butan-2-one²¹

188 mg of **5f** was obtained from 196 mg (1 mmol) of **6m**. 95% yield; White solid; $R_f = 0.5$ (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.81-7.75 (m, 3H), 7.62 (s, 1H), 7.48-7.39 (m, 2H), 7.31(dd, J = 8.41, 1.45 Hz, 1H), 3.06 (t, J = 7.33 Hz, 2H), 2.84 (t, J = 7.76 Hz, 2H), 2.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 208.0, 138.7, 132.2, 128.3, 127.8, 127.6, 127.2, 126.5, 126.2, 125.5, 45.2, 30.3, 30.1.

1-(4-methoxyphenyl) pentan-3-one²⁴

188 mg of **5g** was obtained from 190 mg (1 mmol) of **6n**. 98% yield; Colourless liquid, $R_f = 0.5$ (EtOAc/hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ : 7.10 (d, J = 8.53 Hz, 2H), 6.82 (d, J = 8.53 Hz, 2H), 3.78 (s, 3H), 2.84 (t, J = 7.44 Hz, 2H), 2.70 (t, J = 7.77 Hz, 2H), 2.39 (q, J = 14.62, 7.35 Hz, 2H), 1.04 (t, J = 7.35 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 211.0, 158.0, 133.3, 129.3, 114.0, 55.3, 44.3, 36.3, 29.1, 7.9.

¹H-NMR spectrum of **3b** (300 MHz,CDCl₃)

¹³C-NMR spectrum of **3b** (75 MHz, DMSO)

¹H-NMR spectrum of 3c (300 MHz, CDCl_{3 +} DMSO)

¹³C-NMR spectrum of **3c** (75 MHz, $CDCl_{3+}DMSO$)

¹H-NMR spectrum of **3d** (300 MHz, DMSO)

¹³C-NMR spectrum of **3d** (75 MHz, DMSO)

¹H-NMR spectrum of **3e** (300 MHz, CDCl3)

¹³C-NMR spectrum of **3e** (75 MHz, CDCl₃)

¹³C-NMR spectrum of **3f** (75 MHz, CDCl₃)

¹H-NMR spectrum of **3g** (300 MHz, CDCl₃)

¹H-NMR spectrum of **3h** (300 MHz, CDCl₃)

¹³C-NMR spectrum of **3h** (75 MHz, CDCl₃)

¹³C-NMR spectrum of **3i** (75 MHz, CDCl₃)

¹³C-NMR spectrum of **3j** (75 MHz, CDCl₃)

¹H-NMR spectrum of **3k** (300 MHz, DMSO)

 ^{13}C -NMR spectrum of 3k (300 MHz, CDCl_{3+}DMSO)

¹H-NMR spectrum of **3l** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **3l** (300 MHz, CDCl₃)

¹H-NMR spectrum of **3m** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **3m** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **3n** (300 MHz, CDCl₃₊ DMSO)

¹³C -NMR spectrum of **3o** (300 MHz, DMSO)

¹H-NMR spectrum of **3q** (300 MHz, DMSO)

¹³C -NMR spectrum of **3q** (300 MHz, DMSO)

¹H-NMR spectrum of **3r** (300 MHz, DMSO)

¹³C -NMR spectrum of **3r** (300 MHz, DMSO)

¹³C -NMR spectrum of **3s** (300 MHz, CDCl₃)

¹H-NMR spectrum of **3t** (300 MHz, DMSO)

¹³C -NMR spectrum of **3t** (300 MHz, DMSO)

¹³C -NMR spectrum of **3v** (300 MHz, DMSO)

¹H-NMR spectrum of **3w** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **3w** (300 MHz, CDCl₃)

¹H-NMR spectrum of **3x** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **3x** (300 MHz, CDCl₃)

¹³C -NMR spectrum of 7a (300 MHz, CDCl₃)

 ^{13}C -NMR spectrum of **7b** (300 MHz, CDCl₃₊DMSO)

¹H-NMR spectrum of **7c** (300 MHz, CDCl₃)

¹³C -NMR spectrum of 7c (300 MHz, CDCl₃)

¹H-NMR spectrum of 7e (300 MHz, CDCl₃)

¹³C -NMR spectrum of **7e** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **7f** (300 MHz, CDCl₃)

¹H-NMR spectrum of **7g** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **7g** (300 MHz, CDCl₃₊DMSO)

¹H-NMR spectrum of **7h** (300 MHz, DMSO)

¹³C -NMR spectrum of **7h** (300 MHz, DMSO)

¹H-NMR spectrum of 7i (300 MHz, CDCl₃)

¹³C -NMR spectrum of 7i (300 MHz, DMSO)

¹³C -NMR spectrum of **7j** (300 MHz, DMSO)

¹H-NMR spectrum of **7k** (300 MHz, DMSO)

¹³C -NMR spectrum of **7k** (300 MHz, DMSO)

¹³C -NMR spectrum of **2a** (300 MHz, CDCl₃)

¹H-NMR spectrum of **5a** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5a** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5b** (300 MHz, CDCl₃)

¹H-NMR spectrum of **5c** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5c** (300 MHz, CDCl₃)

¹H-NMR spectrum of **5d** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5d** (300 MHz, CDCl₃)

¹H-NMR spectrum of **5e** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5e** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5f** (300 MHz, CDCl₃)

¹³C -NMR spectrum of **5g** (300 MHz, CDCl₃)

References:

- [1] L. Han, P. Xing and B. Jiang, Org. Lett., 2014, 16, 3428-3431.
- [2] H. He, B. –J. Pei and A. W. Lee, Green Chem., 2009, 11, 1857-1861.
- [3] H. -J. Xu, Y. -F. Liang, Z. -Y. Cai, H. -X. Qi, C. -Y. Yang and Y. -S. Feng, J. Org. Chem., 2011, 76, 2296-2300.
- [4] L. Tang, X. Guo, Y. Li, S. Zhang, Z. Zha, and Z. Wang, Chem. Commun., 2013, 49, 5213-5215.
- [5] T. M. Shaikh and F. E. Hong, Adv. Synth. Catal., 2011, 353, 1491-1496.
- [6] H. Wang, J. Liu, Y. Deng, T. Min, G. Yu, X. Wu, Z. Yang and A. Lei, *Chem. Eur. J.*, 2009, 15, 1499-1507.
- [7] K. Nemoto, H. Yoshida, N. Egusa, N. Morohashi and T. Hattori, *J. Org. Chem.*, 2010, 75, 7855-7862.
- [8] K. Moriyama, M. Takemura and H. Togo, Org. Lett., 2012, 14, 2414-2417.
- [9] C. Heiss, E. Marzi and M. Schlosser, Eur. J. Org. Chem., 2003, 4625-4629.
- [10] J. R. Sedelmeier, S. V. Ley, I. R. Baxendale and M. Baumann, Org. Lett., 2010, 12, 3618-3621.
- [11] S. Korsager, R. H. Taaning, and T. Skrydstrup, J. Am. Chem. Soc., 2013, 135, 2891-2894.
- [12] S. D. Friis, T. L. Andersen and T. skrydstrup, Org. Lett., 2013, 15, 1378-1381.
- [13] C. Pardin, J. N. Pelletier, W. D. Lubell and J. W. Keillor, J. Org. Chem., 2008, 73, 5766-5775.
- [14] J. P. Day, B. Lindsay, T. Riddell, Z. Jiang, R. W. Allcock, A. Abraham, S. Sookup, F. Christian, J. Bogum, and E. K. Martin, *J. Med. Chem.*, 2011, 54, 3331-3347.
- [15] V. R. Rao, P. Muthenna, G. Shankaraiah, C. Akileshwari, K. H. Babu, G. Suresh,
 K. S. Babu, R. S. C. Kumar, K. R. Prasad and P. A. Yadav, *Eur. J. Med. Chem.*,
 2012, 57, 344-361.
- [16] S. M. Kim, Y. S. Kim, D. W. Kim and J. W. Yang, *Green Chem.*, 2012, 14, 2996-2998.
- [17] D. Basavaiah and A. J. Rao, Synth. Commun., 2002, 32, 195-201.
- [18] A. R. Mohite and R. G. Bhat, Org. Lett., 2013, 15, 4564-4567.
- [18] S. Ngwerume and J. E. Camp, J. Org. Chem., 2010, 75, 6271-6274.
- [19]J. J. Barker, O. Barker, R. Boggio, V. Chauhan, R. K. Cheng, V. Corden, S. M.
- Courtney, N. Edwards, V. M. Falque and F. Fusar, ChemMedChem., 2009, 4, 963-966.

[20]L. Huang, J. Qi, X. Wu, W. Wu and H. Jiang, Chem. Eur. J., 2013, 19, 15462-15466.

[21]J. You, C. Ye, Y. Weng, X. Mo and Y. Wang, Arkivoc., 2008, 17, 1-11.

[22]J. J. Cao, F. Zhou and J. Zhou, Angew. Chem. Int. Ed., 2010, 49, 4976-4980.

[23]M. J. Climent, A. Corma, S. Iborra, M. Mifsud and A. Velty, *Green Chem.*, 2010, **12**, 99-107.