Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

for P.N. Solyev, M.V. Jasko, M.K. Kukhanova, A.A. Kleymenova, S.N. Kochetkov. Versatile synthesis of oximecontaining acyclic nucleoside phosphonates – synthetic solutions and antiviral activity.

¹ H & ³¹ P NMR spectra of 1	S1
¹³ C NMR spectrum of 1	S2
¹ H & ³¹ P NMR spectra of 3	S3
¹³ C NMR spectrum of 3	S4
¹ H & ³¹ P NMR spectra of 4	S5
¹⁵ N & ³¹ P NMR spectra of 5	S6
¹ H NMR spectrum of 6a	S7
¹³ C NMR spectrum of 6a	S8
¹ H NMR spectrum of 6b	S9
¹³ C NMR spectrum of 6b	S10
¹ H- ¹⁵ N NMR spectrum of 6b	S11
¹ H NMR spectrum of N ⁷ isomer of 6b	S12
¹³ C NMR spectrum of N ⁷ isomer of 6b	S13
¹ H NMR spectrum of 6c	S14
¹³ C NMR spectrum of 6c	S15
¹ H & ³¹ P NMR spectra of anti- 8a	S16
¹³ C NMR spectrum of anti- 8a	S17
¹ H & ³¹ P NMR spectra of syn- 8a	S18
¹³ C NMR spectrum of syn- 8a	S19
¹ H & ³¹ P NMR spectra of 8b	S20
¹³ C NMR spectrum of 8b	S21
¹ H & ³¹ P NMR spectra of 8c	S22
¹³ C NMR spectrum of 8c	S23
¹ H NMR spectrum of 9	S24
¹ H NMR spectrum of 10	S25
¹ H & ³¹ P NMR spectra of 11	S26
¹³ C NMR spectrum of 11	S27
TLC development of 5 in ninhydrin and Dragendorff reagent	S28

1H NMR spectrum of 11

TLC development of diethyl aminooxymethylphosphonate 5 in ninhydrin and Dragendorff reagent

Product **5** appeared to be invisible under typical 254 nm or blacklight (365 nm) lamps, and iodine treatment doesn't develop it either. On the other hand, ninhydrin is used as a TLC staining reagent of amino group due to the formation of the bright purple Ruhemann colouring. It is known that ninhydrin reveals hydrazine through yellow colour while hydroxylamine gives no colour [J.M. Bremner. *Analyst*, 1954, **79**: 198-201]. However, the situation is different for aminooxy derivatives; besides, it is neither described in previous articles nor in the patents that could be found on this topic [M. Joullié, T. R. Thompson and N. H. Nemeroff. Tetrahedron, 1991, **47**, 8791]. We have observed that aminooxy group of **5** reacting with a nynhidrin solution results in a white to pale yellow colouring that we attribute to the nynhidrin oxime formation. Herein, a convenient procedure to observe **5** is proposed: after eluting in a chamber dip the TLC plate into aq. ammonia solution (25 %), allow it to nearly evaporate and then, after spraying ninhydrin solution over the plate while heating, the white spot of aminooxy product will develop on the pink background.

In addition, we also tried the Dragendorff reagent, which forms RONH₃⁺[Bil₄]⁻ complex salt, developing red-brown spots on the orange background on a TLC plate [Z. Jia and C. Tian. *Desalination*, 2009, **247**, 423]. It can also develop the final product of this synthesis – oximes of aminooxymethylphosphonate – but the layout of red-brown spots depends on heating and may not be that bright on the orange background.