Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Practical Isolation of Polygodial from *Tasmannia lanceolata*: a Viable Scaffold for Synthesis

Jeremy Just,⁺ Timothy B. Jordan,^{+,‡} Brett Paull,^{+,§} Alex C. Bissember,^{*,†} Jason A. Smith^{*,†}

[†]School of Physical Sciences – Chemistry and [§]Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania, Australia [‡]Analytical Services Tasmania, New Town, Tasmania, Australia

Supporting Information

Table of Contents

I.	Supplementary Figures and Tables	S–2
II.	¹ H and ¹³ C NMR Spectra for Compounds 4–8, 10 and HSQC NMR Spectra for Compounds 6–8	S-4
III.	Appendix I - Crude PHWE Extract ¹ H NMR Spectra	S–21
IV.	Appendix II - Crude EtOH/H ₂ O Maceration ¹ H NMR Spectra	S–24
V.	Appendix III - CH ₂ Cl ₂ Maceration ¹ H NMR Spectra	S–26
VI.	Appendix IV - Representative Spectra from ASE200 Experiments	S–28

I. Supplementary Figures and Tables

Figure S1. PHWE extract (left) and isolated polygodial (right).

Figure S2. Maceration extract (left) and polygodial isolated after chromatography from maceration (right) (Table 1, entry 7).

 $EtOH/H_2O(\% v/v)$ Yield, $\% w/w^{[a]}$ 15 25 35 0.11 (0.12) 70 0.19(0.20)0.42 (0.45) Temp. (°C) 90 0.15 (0.17) 0.29 (0.31) 0.46 (0.49) 0.13 (0.17) 0.42 (0.46) 110 0.30(0.35)130 0.36(0.46)0.15(0.24)0.18(0.25)

Table S1. Effect of temperature and solvent composition on polygodial yield (500 psi).

[a] Value in parentheses refers to the combined yield of polygodial and epi-polygodial.

Table S2. Effect of tem	perature and solvent	composition on	polygodial vield	(1500 psi).
	peracare and sorreite	composition on	por, Sound , iere	

Yield, $\% \text{ w/w}^{[a]}$		EtOH/H ₂ O (% v/v)			
		0	15	25	35
	70	-	0.10 (0.11)	0.18 (0.19)	0.43 (0.46)
(°C)	90	-	0.14 (0.15)	0.28 (0.30)	0.46 (0.49)
ıp. (110	-	0.12 (0.15)	0.25 (0.29)	0.46 (0.51)
lem	130	-	0.15 (0.23)	0.27 (0.37)	0.21 (0.26)
L .	150	0.04 (0.08)	-	-	-

[a] Value in parentheses refers to the combined yield of polygodial and epi-polygodial.

Figure S3. Effect of temperature and solvent composition on polygodial yield. Experiments were performed using a Dionex ASE200 at 1500 psi (~35 bar). Yields were determined *via* ¹H NMR spectroscopy with the aid of an internal standard.

polygodial CDCl3

polygodial 13C

drimendiol CDCl3

ОН

 13	7	•	0

-127.1

	67	.3
	61	.2
	54	.5
	49	.5
\nearrow	42	.1
\sim	39	.4
\sim	35	6.6
$\overline{}$	33	3.3
\sim	33	8.0
~	23	6
/	2 -	•••

drimenol 1H CDC13

S--8

Polygodial Wittig derivative (6) ¹H-¹³C HSQCme NMR Spectrum

Polygodial Diels–Alder derivative (7) ¹³C NMR Spectrum

Polygodial Diels–Alder derivative (7) ¹H-¹³C HSQCme NMR Spectrum

euryfuran 13C CDCl3

