SUPPORTING INFORMATION

Design, Characterization and Cellular Uptake Studies of Fluorescence-Labeled Prototypic Cathepsin Inhibitors
Franziska Kohl, Janina Schmitz, Norbert Furtmann, Anna-Christina Schulz-Fincke, Matthias D. Mertens, Jim Küppers, Marcel Benkhoff, Edda Tobiasch, Ulrike Bartz, Jürgen Bajorath, Marit Stirnberg, and Michael Gütschow*

Table of Contents

Inhibition Assays S2
Molecular Docking S4
UV and Fluorescence Spectra S8
Cell Viability after Treatment with Probe 7. S10
Experimental HPLC Procedure for $\log D_{7.4}$ Estimation S11
References S14
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Spectra S15

Inhibition Assays

Cathepsin L inhibition assay. ${ }^{1}$ Human isolated cathepsin L (Enzo Life Sciences, Lörrach, Germany) was assayed spectrophotometrically at 405 nm and at $37^{\circ} \mathrm{C}$. The reactions were followed over 20 min . Assay buffer was 100 mM sodium phosphate buffer $\mathrm{pH} 6.0,100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ EDTA, and 0.01% Brij 35 . An enzyme stock solution of $135 \mu \mathrm{~g} / \mathrm{mL}$ in 20 mM malonate buffer $\mathrm{pH} 5.5,400 \mathrm{mM} \mathrm{NaCl}$, and 1 mM EDTA was diluted 1:100 with assay buffer containing 5 mM DTT and incubated for 30 min at $37^{\circ} \mathrm{C}$. A 10 mM stock solution of the chromogenic substrate Z-Phe-Arg-pNA was prepared in DMSO. The final concentration of DMSO was 2%, and the final concentration of the substrate was $100 \mu \mathrm{M}\left(=5.88 K_{\mathrm{m}}\right)$. The assay was performed with a final concentration of $54 \mathrm{ng} / \mathrm{mL}$ of cathepsin L. Into a cuvette containing 940 $\mu \mathrm{L}$ assay buffer, inhibitor solution and DMSO in a total volume of $10 \mu \mathrm{~L}$, and $10 \mu \mathrm{~L}$ of the substrate solution were added and thoroughly mixed. The reaction was initiated by adding $40 \mu \mathrm{~L}$ of the cathepsin L solution.

Cathepsin S inhibition assay. ${ }^{2}$ Human recombinant cathepsin S (Enzo Life Sciences, Lörrach, Germany) was assayed fluorometrically. The wavelength for excitation was 360 nm and for emission 440 nm . The reactions were followed at $25^{\circ} \mathrm{C}$ over 20 min . Assay buffer was 100 mM sodium phosphate buffer pH 6.0 , $100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ EDTA, and 0.01% Brij 35 . An enzyme stock solution of $70 \mu \mathrm{~g} / \mathrm{mL}$ in 100 mM MES buffer, $\mathrm{pH} 6.5,1 \mathrm{mM}$ EDTA, 50 mM L-cysteine, 10 mM dithiothreitol (DTT), 0.5% Triton X-100 and 30% glycerol was diluted $1: 100$ with a 50 mM sodium phosphate buffer $\mathrm{pH} 6.5,50 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ EDTA, 0.01% Triton $\mathrm{X}-100$ and 5 mM DTT and incubated for 60 min at $37^{\circ} \mathrm{C}$. A 10 mM stock solution of the fluorogenic substrate Z-Phe-Arg-AMC was prepared in DMSO. The assay was performed with a final substrate concentration of $40 \mu \mathrm{M}\left(=0.74 K_{\mathrm{m}}\right)$, a final concentration of $42 \mathrm{ng} / \mathrm{mL}$ of cathepsin S , and a final DMSO concentration of 2%. Into a cuvette containing $920 \mu \mathrm{~L}$ assay buffer, inhibitor solution and DMSO in a total volume of $16 \mu \mathrm{~L}$, and $4 \mu \mathrm{~L}$ of the substrate solution were added and thoroughly mixed. The reaction was initiated by adding $60 \mu \mathrm{~L}$ of the cathepsin S solution.

Cathepsin K inhibition assay. ${ }^{1}$ Human recombinant cathepsin K (Enzo Life Sciences, Lörrach, Germany) was assayed fluorometrically. The wavelength for excitation was 360 nm and for emission 440 nm . The reactions were followed at $25^{\circ} \mathrm{C}$ over 20 min . An enzyme stock solution of $23 \mu \mathrm{~g} / \mathrm{mL}$ in 50 mM sodium acetate $\mathrm{pH} 5.5,50 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}$ EDTA, 5 mM DTT was diluted $1: 100$ with assay buffer (100 mM sodium citrate $\mathrm{pH} 5.0,100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 0.01% CHAPS) containing 5 mM DTT and incubated for 30 min at $37^{\circ} \mathrm{C}$. A 10 mM stock solution of the fluorogenic substrate Z-Leu-Arg-AMC was prepared in DMSO. The final concentration of DMSO was 2%, and the final concentration of the substrate was 40 $\mu \mathrm{M}\left(=13.3 K_{\mathrm{m}}\right)$. The assay was performed with a final concentration of $5 \mathrm{ng} / \mathrm{mL}$ of cathepsin K . Into a cuvette containing $960 \mu \mathrm{~L}$ assay buffer, inhibitor solution and DMSO in a total volume of $16 \mu \mathrm{~L}$, and $4 \mu \mathrm{~L}$ of the substrate solution were added and thoroughly mixed. The reaction was initiated by adding $20 \mu \mathrm{~L}$ of the cathepsin K solution.

Cathepsin B inhibition assay. ${ }^{1}$ Human isolated cathepsin B (Calbiochem, Darmstadt, Germany) was assayed spectrophotometrically at 405 nm and at $37^{\circ} \mathrm{C}$. The reactions were followed over 20 min . Assay buffer was 100 mM sodium phosphate buffer $\mathrm{pH} 6.0,100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ EDTA, 0.01% Brij 35 . An enzyme stock solution of $1.81 \mathrm{mg} / \mathrm{mL}$ in 20 mM sodium acetate buffer $\mathrm{pH} 5.0,1 \mathrm{mM}$ EDTA was diluted 1:500 with assay buffer containing 5 mM DTT and incubated for 30 min at $37{ }^{\circ} \mathrm{C}$. A 100 mM stock solution of the chromogenic substrate Z-Arg-Arg-pNA was prepared in DMSO. The final concentration of DMSO was 2% and the final concentration of the substrate was $500 \mu \mathrm{M}\left(=0.45 K_{\mathrm{m}}\right)$. The assay was performed with a final concentration of $72 \mathrm{ng} / \mathrm{mL}$ of cathepsin B. Into a cuvette containing $960 \mu \mathrm{~L}$ assay buffer, inhibitor solution and DMSO in a total volume of $15 \mu \mathrm{~L}$, and $5 \mu \mathrm{~L}$ of the substrate solution were added and thoroughly mixed. The reaction was initiated by adding $20 \mu \mathrm{~L}$ of the cathepsin B solution.

Molecular Docking

Figure S1. Overlay cathepsin S. Shown is an overlay of the predicted binding mode of probe 6 (cyan) and the co-crystallized nitrile inhibitor (orange) within the active site of cathepsin S (PDB ID 2FQ9) ${ }^{3}$ in grey surface representation.

Figure S2. Overlay cathepsin K. An overlay of the predicted binding mode of probe $\mathbf{6}$ (cyan) and the crystallographic cyanamide inhibitor (green) within the active site of cathepsin K (PDB ID 1YK7) ${ }^{4}$ in grey surface representation is depicted.

Figure S3. Active site comparison. An overlay of the active site residues of cathepsin S (cyan) and cathepsin K (orange) is depicted. Residues responsible for the different size of the S 3 pockets are circled in red.

Figure S4. Active site comparison with inhibitor. An overlay of the active site residues of cathepsin S (cyan) and cathepsin K (orange) is depicted. Putative binding modes of probe $\mathbf{6}$ within the active sites of cathepsin S and K are shown in magenta and green, respectively.

UV and Fluorescence Spectra

The UV- and fluorescence spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, (1% DMSO) and PBS (5\% DMSO). A 10 mM stock solution of compound $\mathbf{6}$ in DMSO was diluted accordingly. The UV spectra were recorded at a final compound concentration of $10 \mu \mathrm{M}$ on a Varian Cary 50 Bio apparatus. Fluorescence spectra were recorded on a flx-Xenius, Safas Monaco, spectrofluorometer at a final compound concentration of $1 \mu \mathrm{M}$.

Figure S5. UV spectra of compound $6(10 \mu \mathrm{M})$.

Figure S6. Fluorescence spectra of compound $6\left(1 \mu \mathrm{M}, \lambda_{\text {ex }} 450 \mathrm{~nm}\right)$. A PMT value of 343 V was adjusted.

Figure S7. UV spectra of compound $7(10 \mu \mathrm{M})$.

Figure S8. Fluorescence spectra of compound $7\left(1 \mu \mathrm{M}, \lambda_{\text {ex }} 450 \mathrm{~nm}\right)$. A PMT value of 343 V was adjusted.

Cell Viability after Treatment with Probe 7

Figure S9. Results of the MTT assay for probe 7. HEK 293 cells were incubated for 3 h with compound 7 at different concentrations. Data of five independent experiments are presented as means \pm SD. ANOVA revealed significant differences of the means between untreated cells and cells treated with 4, 8, 10 and 15 $\mu \mathrm{M}$. The p values were calculated by using post-hoc analysis (Tukey's test; ' $\mathrm{n} . \mathrm{s}$.' means 'not significant'). Only statistically significant differences are indicated except for compound concentrations of $1 \mu \mathrm{M}$ and 10 $\mu \mathrm{M}$, which have been used in cell-based uptake experiments.

Experimental HPLC Procedure for $\log D_{7.4}$ Estimation

Figure S10. HPLC chromatogram of a mixture of five calibration compounds (atenolol $1.5 \mathrm{mg} / \mathrm{mL}$, metoprolol tartrate $4.0 \mathrm{mg} / \mathrm{mL}$, labetalol hydrochloride $0.12 \mathrm{mg} / \mathrm{mL}$, diltiazem hydrochloride 0.075 $\mathrm{mg} / \mathrm{mL}$ and triphenylene $0.01 \mathrm{mg} / \mathrm{mL}$).

Table S1. Obtained t_{R} values of the calibration compounds and $\log D_{7.4}$ values

compound	$\begin{gathered} \text { run a } \\ t_{\mathrm{R}}(\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { run b } \\ t_{\mathrm{R}}(\min) \end{gathered}$	$\begin{gathered} \text { run } \mathrm{c} \\ t_{\mathrm{R}}(\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { mean } \\ t_{\mathrm{R}}(\mathrm{~min}) \end{gathered}$	lit. ${ }^{5} \log D_{7.4}$	$\log D_{7.4}\left(\right.$ from $\left.t_{\mathrm{R}}\right)$
atenolol	1.858	1.842	1.850	1.850	-1.38	-1.03
metoprolol	2.183	2.175	2.175	2.178	-0.06	0.11
labetalol	2.342	2.333	2.333	2.336	1.07	0.66
diltiazem	2.817	2.808	2.808	2.811	2.70	2.32
triphenylene	3.800	3.792	3.792	3.795	5.49	5.75

Figure S11. Calibration line using the standards listed in Table S 1 for calculating $\log D_{7 \text {.4. }}$. Linear regression gave the equation $\log D_{7.4}=3.485 t_{\mathrm{R}}-7.476$ and $\mathrm{R}^{2}=0.981$.

Figure S12. HPLC chromatogram of a mixture of five calibration compounds spiked with probe $\mathbf{6}$ (top: UV detection, bottom: fluorescence detection). Concentrations of the calibration compounds were as in Figure S10. The concentration of $\mathbf{6}$ was $0.014 \mathrm{mg} / \mathrm{mL}(25 \mu \mathrm{M})$. Probe $\mathbf{6}$ was detected by means of fluorescence detection (bottom). The mean retention time t_{R} was 2.906 min (three separate runs). According to the equation $\log D_{7.4}=3.485 t_{\mathrm{R}}-7.476$, a $\log D_{7.4}$ value of 2.65 was calculated.

Figure S13. HPLC chromatogram of a mixture of five calibration compounds spiked with probe 7 (top: UV detection, bottom: fluorescence detection). Concentrations of the calibration compounds were as in Figure S10. The concentration of 7 was $0.0017 \mathrm{mg} / \mathrm{mL}(2.5 \mu \mathrm{M})$. Probe 7 was detected by means of fluorescence detection (bottom). The mean retention time t_{R} was 2.805 min (three separate runs). According to the equation $\log D_{7.4}=3.485 t_{\mathrm{R}}-7.476$, a $\log D_{7.4}$ value of 2.30 was calculated.

References

(1) Frizler, M.; Lohr, F.; Furtmann, N.; Kläs, J.; Gütschow, M. Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. J. Med. Chem. 2011, 54, 396-400.
(2) Mertens, M. D.; Schmitz, J.; Horn, M.; Furtmann, N.; Bajorath, J.; Mareš, M.; Gütschow, M. A coumarin-labeled vinyl sulfone as tripeptidomimetic activity-based probe for cysteine cathepsins. ChemBioChem 2014, 15, 955-959.
(3) Somoza, J. R. Cathepsin S with nitrile inhibitor. Unpublished, RCSB Protein Data Bank release March 21, 2006; PDB-ID 2FQ9.
(4) Deaton, D. N.; Hassell, A. M.; McFadyen, R. B.; Miller, A. B.; Miller, L. R.; Shewchuck, L. M.; Tavares, F. X.; Willard, D. H.; Wrigt, L. L. Novel and potent cyclic cyanamide-based cathepsin K inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 1815-1819.
(5) Kerns, E. H.; Di, L.; Petusky, S.; Kleintop, T.; Huryn, D.; McConnell, O.; Carter, G. Pharmaceutical profiling method for lipophilicity and integrity using liquid chromatography-mass spectrometry. J. Chromatogr. B, Analyt. Technol. Biomed. Life Sci. 2003, 791, 381-388.

${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Spectra

(R)- N-(tert-Butyloxycarbonyl)-S-(isobutyl)cysteinylsulfone-1-aminocyclopropanecarbonitrile (11)

(R)-S-(Isobutyl)cysteinylsulfone-1-aminocyclopropanecarbonitrile methanesulfonate (12)

2,3,6,7-Tetrahydro-11-oxo-1H,5H,11H-[1]benzopyrano-[6,7,8-ij]quinolizine-10-carboxylic acid (14)

(R)- N-[(2,3,6,7-Tetrahydro-11-oxo-1H,5H,11H-[1]benzopyrano-[6,7,8-ij]quinolizin-10-yl)carbonyl]-

 S-(isobutyl)cysteinylsulfone-1-aminocyclopropanecarbonitrile (6)

Benzyl 2-(2-hydroxyethoxy)ethylcarbamate (16)

N-(Benzyloxycarbonyl)-2-(2-(2-aminoethoxy)ethoxy)acetate tert-butyl ester (17)

tert-Butyl 2-(2-(2-aminoethoxy)ethoxy)acetate (18)

tert-Butyl
$N-[(2,3,6,7$-tetrahydro-11-oxo- $1 H, 5 H, 11 H-[1] b e n z o p y r a n o-[6,7,8-i j] q u i n o l i z i n-10-$ yl)carbonyl]-2-(2-(2-aminoethoxy)ethoxy)acetate tert-butyl ester (19)

(R)- N-[N-[(2,3,6,7-Tetrahydro-11-oxo-1H,5H,11H-[1]benzopyrano-[6,7,8-ij]quinolizin-10-yl)carbonyl]-2-(2-(2-aminoethoxy)ethoxy)acetyl]-S-(isobutyl)cysteinylsulfone-1aminocyclopropanecarbonitrile (7)

