Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Mononuclear Iron(III) Complexes of Tridentate Ligands with Efficient Nuclease Activity and Studies on their Cytotoxicity

Nidhi Tyagi,^a Ajanta Chakraborty^b, Udai P. Singh,^a Partha Roy*,^b Kaushik Ghosh,^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667

Uttarakhand INDIA. E-mail: ghoshfcy@iitr.ernet.in

^bDepartment of Biochemistry, Indian Institute of Technology Roorkee, Roorkee-247667

Uttarakhand INDIA. E-mail: paroyfbt@iitr.ernet.in

S. No.		Page no.
Fig. S1:	IR and ESI-MS spectra of representative complexes	2-4
Fig. S2:	Ball-and-stick representation of the crystal structure of complex 1	4
Fig. S3:	Packing diagram of complexes 2 and 4	5
Fig. S4:	Non-covalent interaction in the complexes 5 and 6	6
Fig. S5:	Absorption titration and EB of complexes with CT-DNA	7
Fig. S6:	Gel electrophoresis separations showing cleavage of supercoiled	8
	<i>pBR322</i> DNA (60 ng) by complexes 4 , 5 and 7	
Fig. S7:	Gel electrophoresis separations showing cleavage of supercoiled	9
	<i>pBR322</i> DNA (60 ng) by complexes 1 , 2 , 3 , 5 and 6	
Fig. S8:	Gel electrophoresis separations showing cleavage of supercoiled	10
	<i>pBR322</i> DNA (60 ng) by complexes 1 , 2 , 3 and 6	
Fig. S9:	Gel electrophoresis separations showing cleavage of supercoiled	11
	<i>pBR322</i> DNA (60 ng) by complexes 1 , 2 , 3 and 6	
Fig. S10:	Gel electrophoresis separations showing cleavage of supercoiled	12
	<i>pBR322</i> DNA (60 ng) by complexes 2 , 3 and 6	
Fig. S11:	DPPH quenching assay by complex 5	12
Fig. S12:	Cytotoxicity studies on normal cell lines (HEK cells)	13
Fig. S13:	Optimized structures of complexes 1-6	14
Fig. S14:	HOMO and LUMO representation of the complexes 4 and 6	15
Table S1:	Data for IR and conductivity	16
Table S2:	Electrochemical data for the complexes	16
Table S3:	Crystallographic parameter for complex 1	17
Table S4:	Selected bond lengths (Å) and angles (deg) of complex 1	17
Table S5:	Calculated log p values for ligands	18
Table S6:	Geometrical parameters calculated by DFT calculations	18
Table S7:	Wavelength of TD-DFT absorption signals (nm) and oscillator	19
	strength (f) for the complexes	

Fig. S1 a) IR spectra of representative complexes (5 and 6) b-f) ESI-MS spectra of complexes 5, 6, 7, 1 and 3.

Fig. S2 Ball-and-stick representation of the crystal structure of complex [Fe(Phimp)(OMe)(H₂O)Cl], **1** atoms are shown as sphere of arbitrary diameter

Crystals of complex were obtained from mixture of 1 а solvent methanol:dichloromethane (1:1) by diethylether diffusion at -10 °C. Selected bond lengths, bond angles and crystallographic data for 1 is given in Table S3-S4. In 1, iron centre exhibits a distorted octahedral geometry comprising tridentate ligands (Phimp⁻), a water molecule (H₂O) at equatorial position, deprotonated methanol (-OMe) and chloride (-Cl) in axial position. Complex 1 showed two molecules in a unit cell in which one molecule has thermal error in one phenyl ring. The apical site was occupied by a chloride ion. The Fe–O_{ph} distances in 1 is 1.915(4) Å. Fe-N_{im} and Fe-N_{py} distances were approximately equal (Fe1-N7: 2.154(5) Å, Fe1-N6: 2.128(6) Å.

f)

Fig. S3 Packing diagram of complexes 2 and 4 showed the non-covalent interaction between a) $Cl-H_{py}$ and $O-H_{Ph}$ (for 2), b) $O-H_{Ph}$ and $C_{aryl}-C_{imine}$ (for 4), along *a* axis.

Fig. S4 Diagram showing non-covalent interaction in the complexes $\mathbf{5}$ and $\mathbf{6}$

Fig. S5 a, b) Absorption spectra in 0.1 mM phosphate buffer (pH 7.2) in presence of increasing amounts of DNA ([DNA] ~ 0-100 μ M) for complex 2-4; c) EtBr–DNA fluorescence quenching titrations of complex 5 (0-50 μ M), Tests was performed in the conditions of 50 mM phosphate buffer (pH 7.2) at 298 K. C_{DNA} = 25 μ M, C_{EtBr} = 0.5 μ M; λ_{ex} = 250 nm, λ_{em} = 602 nm.

Fig. S6 Gel electrophoresis separations showing cleavage of supercoiled *pBR322* DNA (60 ng) by complexes **4**, **5** and **7** incubated at 37 °C for 3 h. (**A**) lane 1: DNA, lane 2: DNA + BME (200 μ M), lane 3: DNA + **4** (200 μ M) + BME (200 μ M), lane 4: DNA + H₂O₂ (200 μ M), lane 5: DNA + **4** (150 μ M) + H₂O₂ (200 μ M), lane 6: DNA + **4** (200 μ M) + BME (200 μ M). (**B**) lane 1: DNA, lane 2: DNA + **5** (150 μ M), lane 3: DNA + **5** (150 μ M) + BME (150 μ M), lane 4: DNA + **5** (150 μ M) + H₂O₂ (150 μ M), lane 5: DNA + **5** (150 μ M), lane 6: DNA + **5** (150 μ M), lane 6: DNA + H₂O₂ (150 μ M), lane 6: DNA + H₂O₂ (150 μ M), lane 5: DNA + **5** (150 μ M), lane 6: DNA + H₂O₂ (150 μ M), lane 6: DNA + **7** (100 μ M), lane 7: DNA + **7** (100 μ M) + H₂O₂ (100 μ M), lane 6: DNA + **7** (100 μ M) + H₂O₂ (100 μ M), lane 6: DNA + **7** (100 μ M) + H₂O₂ (150 μ M), lane 7: DNA + BME (150 μ M), lane 7: DNA + BME (150 μ M), lane 8: DNA + H₂O₂ (150 μ M).

Fig. S7 Gel electrophoresis separations showing cleavage of supercoiled *pBR322* DNA (60 ng) by complexes **2**, **5** and **6** in 10% dimethylformamide incubated at 37 °C for 3 h. lane 1: DNA, lane 2: DNA + **6** (25 μ M), lane 3: DNA + **6** (50 μ M), lane 4: DNA + **6** (75 μ M), lane 5: DNA + **6** (100 μ M), lane 6: DNA + **5** (25 μ M), lane 7: DNA + **5** (50 μ M), lane 8: DNA + **5** (75 μ M), lane 9: DNA + **5** (100 μ M), lane 10: DNA + **2** (25 μ M), lane 11: DNA + **2** (50 μ M), lane 12: DNA + **2** (75 μ M), lane 13: DNA + **2** (100 μ M), lane 14: DNA + Fe(III) salt (100 μ M), lane 15: DNA + 10% DMF.

Fig. S8 Gel electrophoresis separations showing cleavage of supercoiled *pBR322* DNA (60 ng) by complexes **1**, **2**, **3** and **6** in 10% dimethylformamide incubated at 37 °C for 3 h. (A) lane 1: DNA, lane 2: DNA + H_2O_2 (200 µM), lane 3: DNA + **1** (15 µM) + H_2O_2 (200 µM), lane 4: DNA + **1** (25 µM) + H_2O_2 (200 µM), lane 5: DNA + **1** (50 µM) + H_2O_2 (200 µM). (B) lane 1: DNA, lane 2: DNA + H_2O_2 (300 µM), lane 3: DNA + **2** (100 µM), lane 4: DNA + **2** (15 µM) + H_2O_2 (300 µM), lane 5: DNA + **2** (25 µM) + H_2O_2 (300 µM), lane 6: DNA + **2** (50 µM) + H_2O_2 (300 µM), lane 7: DNA + **2** (80 µM) + H_2O_2 (300 µM), lane 8: DNA + **2** (100 µM) + H_2O_2 (300 µM). (C) lane 1: DNA, lane 2: DNA + **3** (25 µM) + H_2O_2 (150 µM), lane 3: DNA + **3** (150 µM) + H_2O_2 (150 µM), lane 5: DNA + **3** (150 µM) + H_2O_2 (150 µM), lane 7: DNA + **3** (100 µM) + H_2O_2 (150 µM), lane 6: DNA + **3** (150 µM) + H_2O_2 (150 µM), lane 7: DNA + **3** (100 µM) + H_2O_2 (150 µM), lane 6: DNA + **3** (150 µM) + H_2O_2 (150 µM), lane 7: DNA + **3** (100 µM) + H_2O_2 (150 µM), lane 6: DNA + **3** (100 µM) + H_2O_2 (150 µM), lane 6: DNA + **3** (150 µM) + H_2O_2 (150 µM), lane 7: DNA + **6** (10 µM) + H_2O_2 (200 µM), lane 7: DNA + **6** (10 µM) + H_2O_2 (200 µM), lane 5: DNA + **6** (10 µM) + H_2O_2 (200 µM), lane 5: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 7: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 6: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 8: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 8: DNA + **6** (100 µM) + H_2O_2 (200 µM), lane 8: DNA + H_2O_2 (200

Fig. S9 Gel electrophoresis separations showing cleavage of supercoiled *pBR322* DNA (60 ng) by complexes **1**, **2**, **3** and **6** in 10% dimethylformamide incubated at 37 °C for 3 h. (A) lane 1: DNA, lane 2: DNA + **1** + BME (25 μ M), lane 3: DNA + **1** (25 μ M) + BME (50 μ M), lane 4: DNA + **1** (25 μ M) + BME (100 μ M), lane 5: DNA + **1** (25 μ M) + BME (200 μ M), lane 6: DNA + **1** (50 μ M) + BME (200 μ M), lane 7: DNA + **1** (75 μ M) + BME (200 μ M), lane 8: DNA + BME (200 μ M). (B) lane 1: DNA, lane 2: DNA + **2** (10 μ M) + BME (200 μ M), lane 3: DNA + **2** (15 μ M) + BME (200 μ M), lane 4: DNA + **2** (25 μ M) + BME (200 μ M), lane 5: DNA + **2** (30 μ M) + BME (200 μ M), lane 6: DNA + **2** (50 μ M) + BME (200 μ M), lane 6: DNA + **2** (50 μ M) + BME (200 μ M), lane 7: DNA + **2** (50 μ M) + BME (200 μ M), lane 6: DNA + **2** (50 μ M) + BME (200 μ M), lane 7: DNA + **2** (50 μ M) + BME (200 μ M), lane 7: DNA + **3** (25 μ M) + BME (200 μ M), lane 5: DNA + **3** (25 μ M) + BME (200 μ M), lane 5: DNA + **3** (25 μ M) + BME (200 μ M), lane 6: DNA + **3** (50 μ M) + BME (200 μ M), lane 7: DNA + **3** (75 μ M) + BME (200 μ M).

Fig. S10 Gel electrophoresis separations showing cleavage of supercoiled *pBR322* DNA (60 ng) by complexes **3** and **2** in 10% dimethylformamide incubated at 37 °C for 3 h. A) lane 1: DNA, lane 2: DNA + **3** (50 μ M) + BME (200 μ M), lane 3: DNA + **3** (50 μ M) + BME (200 μ M) + KI (20 mM), lane 4: DNA + **3** (50 μ M) + BME (200 μ M) + DMSO (20 mM), lane 5: DNA + **3** (50 μ M) + BME (200 μ M) + **NaN**₃ (50 mM), lane 6: DNA + **3** (50 μ M) + BME (200 μ M) + L-his (20 mM), lane 7: DNA + **3** (50 μ M) + BME (200 μ M) + D₂O (20 mM). B) lane 1: DNA, lane 2: DNA + **2** (75 μ M), lane 3: DNA + **2** (75 μ M) + NaN₃ (50 mM), lane 7: DNA + **2** (75 μ M) + NaN₃ (50 mM), lane 7: DNA + **2** (75 μ M) + MaN₃ (50 mM), lane 7: DNA + **2** (75 μ M) + NaN₃ (50 mM), lane 7: DNA + **2** (75 μ M) + HO₂O (20 mM), lane 7: DNA + **2** (75 μ M) + KI (20 mM).

Fig. S11 UV-vis spectra of DPPH (*a*, 60 μ M) quenching at 520 nm with increasing concentration of **5** and H₂O₂ (*b*-*d*, 0-150 μ M).

Fig. S12 % viability of complexes (1-6) in HEK cell lines.

Fig. S13 Optimized structures of complexes 1-6.

Fig. S14 Diagram showing the relative energies of the highest occupied and lowest unoccupied MOs of complex **4** and **6** transitions responsible for the LMCT absorption in the absorption spectra.

Complex		IR data (c	Conductivity data	
	$v_{C=N}$	VC104	v_{C-C} or	$(\Lambda_{\rm M}/\Omega^{-1}{\rm cm}^2{\rm mol}^{-1})^{\rm b}$
		/v _{NO3} -	V C-Naromatic	
1	1637	-	1524-1439	17 (neutral)
2	1637	-	1526-1440	18 (neutral)
3	1615	-	1530-1441	30 (neutral)
4	1609	-	1563-1436	18 (neutral)
5	1605	1090, 622	1563-1445	63 (1:1)
6∙H ₂ O	1601	1383	1558-1434	75 (1:1)
7	1608	1089, 622	1563-1446	65 (1:1)

Table S1 Data for IR and conductivity

^a Using KBr pellets, ^bSolvent: dimethylformamide

Table S2. Electrochemical data for Fe(III)/Fe(II) redox couple at 298 K^a vs Ag/AgCl

S. No.	Fe(III)/Fe(II)			^d n=i _{Pa} /i _{Pc}
	E _{pa} /V	E_{pc}/V	$E_{1/2}^{b}$, V, (ΔE_{p}^{c} , mV)	-
Complexe 2	0.133	-0.027	0.053 (160)	0.7
Complexe 3	0.140	-0.006	0.067 (140)	1.0
Complexe 4	0.089	-0.130	0.021 (219)	1.6
Complexe 5	-0.054	-0.174	-0.114 (120)	1.0
Complexe 6	-0.234	-0.371	-0.302 (137)	1.0
Complexe 7	0.063	-0.165	-0.051 (228)	1.0

^aMeasured in dimethylformamide for complexes **4**, **7** and in dichloromethane for complexes **2**, **3**, **5**, **6** with 0.1 M tetrabutylammonium perchlorate (TBAP).^bData from cyclic voltammetric measurements; $E_{1/2}$ is calculated as average of anodic (E_{pa}) and cathodic (E_{pc}) peak potentials $E_{1/2} = 1/2(E_{pa}+E_{pc})$; and ^c $\Delta E_p = E_{pa} - E_{pc}$ at scan rate 0.1 V/s. ^dConstant-potential coulometric data n = i_{pa}/i_{pc} calculated for 1e⁻ transfer.

2		1	
Empirical formulas		$C_{38}H_{36}Cl_2N_6O_6Fe_2$	1
Colour	Black	Z	4
Formula weight [g mol ⁻¹]	855.33	ρcalc [gcm ⁻³]	1.427
Temperature [K]	273(2)	F(000)	1760
λ [Å] (Mo-Kα)	0.71073	θ range for data Collection	1.37-29.99
Crystal system	monoclinic	Index ranges	-21 <h<21, -18<k<18,="" -28="" <l<28<="" th=""></h<21,>
Space group	P 21/c	Refinement method	Full matrix least squares on F ²
a [Å]	15.3175(7)	Data/restraints/parameters	11571/0/489
b [Å]	13.2070(6)	GOF on F ²	2.002
c [Å]	20.3269(9)	$\mathbf{R_1^b}[\mathbf{I} > 2\sigma(\mathbf{I})]$	0.1125
α [°]	90.00	R ₁ [all data]	0.1563
β [°]	104.539(3)	$wR_2^c[I > 2\sigma(I)]$	0.3339
γ [°]	90.00	wR ₂ [all data]	0.3524
Crystal size[mm]	0.28 x 0.18 x 0.14	V [Å ³]	3980.4(3)

 Table S3. Crystallographic parameter for complex 1

Table S4. Selected bond lengths (Å) and angles (deg) of complex 1

Complex 1					
Bond d	listances (Å)	Bond angles (°)			
Fe1-06	1.927(5)	O6-Fe1-N6	157.3(2)		
Fe1-N7	2.154(5)	O6-Fe1-N7	85.66(19)		
Fe1-N6	2.128(6)	N6-Fe1-N7	74.5(2)		
Fe1-Cl4	2.301(2)	O6-Fe1-O2	83.57(19)		
Fe1-O4	2.268(2)	N7-Fe1-O2	81.74(19)		
Fe1-O2	2.208(5)	O6-Fe1-O4	101.10(15)		
		N6-Fe1-O4	96.85(16)		
		N7-Fe1-O4	168.44(16)		
		O2-Fe1-O4	89.66(14)		
		O6-Fe1-Cl4	97.05(16)		
		N6-Fe1-Cl4	93.94(16)		
		N7-Fe1-Cl4	89.96(15)		
		O2-Fe1-Cl4	171.61(14)		
		O4-Fe1-Cl4	98.40(8)		

Compound	Calculated ligand log P	Calculated ligand log P
	(ALOGPS 2.1)	(ACD/ChemSketch)
PhimpH	3.67	3.11±0.56
Me-PhimpH	4.00	3.28±0.58
N-PhimpH	4.72	4.34±0.56
N-PhimpH	4.72	4.34±0.56

Table S5. Computed ligand lipophilicity (log p) values by ALOGPS 2.1 andACD/ChemSketch software program.

Table S6. Geometrical parameters calculated by DFT calculations

Complex 2		Complex 4		Complex 5		Complex 6			
	Bond distances (Å)								
Fe1-O1	1.	88	Fe1-O1	1.89	Fe1-O3	1.90	Fe1-O1	1.	90
Fe1-N2	2.	143	Fe1-N3	2.16	Fe1-O11	1.90	Fe1-O2 1.90		90
Fe1-N1	2.	186	Fe1-N1	2.132	Fe1-N11	2.188	Fe1-N4 2.14		144
Fe1-Cl1	2.	317	Fe1-Cl1	2.315	Fe1-N15	2.188	Fe1-N3	2.	145
Fe1-Cl2	2.	313	Fe1-Cl2	2.312	Fe1-N8	2.154	Fe1-N1	2.	167
					Fe1-N13	2.151	Fe1-N6	2.	167
				Bond an	ngles (°)				
O1-Fe1-N2		146.3	O1-Fe1-N3	81.9	O11-Fe1-O3	100.18	01-Fe1-O2		105.8
O1-Fe1-N1		82.9	O1-Fe1-N1	147.4	O11-Fe1-N11	84.34	O1-Fe1-N4		83.5
N2-Fe1-N1		74.04	N3-Fe1-N1	74.7	O11-Fe1-N8	89.8	O1-Fe1-N3		96.02
O1-Fe1-Cl2	2	97.6	O1-Fe1-Cl2	107.7	O11-Fe1-N15	98.5	O1-Fe1-N6		88.7
N2-Fe1-Cl2	2	93.2	N3-Fe1-Cl2	95.4	O11-Fe1-N13	157.6	O1-Fe1-N1		154.4
N1-Fe1-Cl2	2	154.7	N1-Fe1-Cl2	96.9	O3-Fe1-N15	84.3	O2-Fe1-N4		96.1
O1-Fe1-Cl1		108.4	O1-Fe1-Cl1	97.09	O3-Fe1-N11	98.7	O2-Fe1-N3		83.5
N2-Fe1-Cl1		97.1	N3-Fe1-Cl1	151.9	O3-Fe1-N13	89.7	O2-Fe1-N1		88.7
N1-Fe1-Cl1		92.8	N1-Fe1-Cl1	93.2	O3-Fe1-N8	157.6	O2-Fe1-N6		154.3
Cl2-Fe1-Cl	1	110.8	Cl2-Fe1-Cl1	111.3	N11-Fe1-N15	175.4	N4-Fe1-N3		179.3
					N13-Fe1-N15	102.3	N3-Fe1-N6		106.18

Table S7. Calculated TD-DFT absorption signals (nm), oscillator strength (f) and nature of transitions in the complex **2**, **4**, **5** and **6**

Complex	Wavelength (nm)	Osilator strength (f)	Major orbital contribution
2	241	0.0016	HOMO-4→LUMO+2 (77%)
	323	0.0358	HOMO →LUMO+6 (43%)
	509	0.0054	HOMO-3→LUMO+1 (38%)
4	331	0.0848	HOMO-11→LUMO+3 (16%)
	383	0.0068	HOMO→LUMO+1 (29%)
	412	0.0042	HOMO-7→LUMO (49%)
	550	0.0027	HOMO-2→LUMO (38%)
	683	0.0251	HOMO→LUMO+2 (36%),
			HOMO→LUMO+3 (42%)
5	312	0.0002	HOMO -1→LUMO+7 (31%)
	380	0.0181	HOMO -11→LUMO+1(B) (27%)
	550	0.10	HOMO -2→LUMO+1(B) (91%)
6	310	0.145	HOMO -2→LUMO+5 (51%)
	375	0.0093	HOMO→LUMO+2 (11%),
			HOMO-4→LUMO (32%)
	514	0.0021	HOMO-3→LUMO+1 (85%),
			HOMO-1→LUMO+1 (7%)