Supporting Information

Synthesis and Antimicrobial Activity of Binaphthyl-Based, Functionalized Oxazole and Thiazole Peptidomimetics

Steven M. Wales,^[a] Katherine A. Hammer,^[b] Kittiya Somphol,^[a] Isabell Kemker,^[a] David C. Schröder,^[a] Andrew J. Tague,^[a] Zinka Brkic,^[a] Amy M. King,^[c] Dena Lyras,^[c] Thomas V. Riley,^[b] John B. Bremner,^[a] Paul A. Keller*^[a] and Stephen G. Pyne*^[a]

- [a] School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia keller@uow.edu.au spyne@uow.edu.au
- [b] School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA 6009, Australia
- [c] Department of Microbiology, Monash University, Clayton, VIC 3800, Australia

Table of Contents

Synthesis and Characterization Methods	S2
Synthesis Materials	S 2
General Synthetic Procedures 1–4	
General Procedure 1 for Amide Bond Formation	S2
General Procedure 2 for Suzuki Coupling of Oxazole 47	S 3
General Procedure 3 for Boc Deprotection of Type B Oxa(thia)zoles	S 3
General Procedure 4 for Pbf/Boc Deprotection of Type D Peptidomimetics	S 4
Synthesis of Type B Protected Amino Oxazoles and Thiazoles	S4-S25
Synthesis of Type C Amino Oxazoles and Thiazoles	S26-S36
Synthesis of Type D Protected Peptidomimetics	S37-S60
Synthesis of Type E Final Compounds	S61-S79
Additional Reaction Schemes S1–S8	S80-S84
Additional Experimental Procedures (for Schemes S1-S8)	S84-S88
Antibacterial Testing Methods	
S. aureus, E. faecalis, S. pneumonia, E. coli, A. baumannii, VISA, VRE	S88-S89
C. difficile	S 89
Hemolysis Data	S89-S90
References	S91
NMR Spectra of Selected Type B Oxa(thia)zoles	S92-S99
NMR Spectra of Type C Amino Oxa(thia)zoles 53-84	S100-S130
NMR Spectra of Type E Final Compounds 117–148 and HPLC Traces of 144–148	S131-S166
NMR Spectra of Oxazoles S3–S7	S167-S171

Synthesis and Characterization Methods. All reactions were carried out in standard laboratory glassware with magnetic stirring. Thin layer chromatography (TLC) was performed on aluminumbacked 0.20 mm silica gel plates. Visualization was accomplished with UV light, a ninhydrin staining solution in *n*-butanol and/or an aqueous ceric ammonium molybdate solution. Flash chromatography and silica pipette plugs were performed under positive air pressure using Silica Gel 60 of 230-400 mesh (40–63 μ m). Optical Rotations were measured at 25 °C in the specified solvent with a path length of 1.0 dm on a Jasco P-2000 Digital Polarimeter ($\lambda = 589$ nm). Concentrations (c) are given in g/100 mL. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on a Varian Mercury 300 MHz spectrometer, a Varian Inova 500 MHz spectrometer or a Varian VNMRS PS54 500 MHz spectrometer. Spectra aquired in CDCl₃ are reported relative to tetramethylsilane (¹H: $\delta = 0.00$ ppm) and solvent resonance (¹³C: $\delta = 77.0$ ppm). Spectra acquired in CD₃OD are reported relative to solvent resonance (¹H: $\delta = 3.31$ ppm; ¹³C: $\delta = 49.0$ ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (abbreviations: s = singlet, bs = broadsinglet, d = doublet, bd = broad doublet, app. d = apparent doublet, dd = doublet of doublets, ddd = doubletdoublet of doublets, t = triplet, app. t = apparent triplet, q = quartet, ABq = AB quartet, quin = quintet, sex = sextet, sep = septet, m = multiplet and bm = broad multiplet), coupling constant (Hz) and integration. Infrared (IR) spectra were obtained on a Shimadzu IRAffinity-1 FTIR Spectrometer with neat samples. Low resolution mass spectrometry (MS) was performed on a Shimadzu LC-2010 Electrospray Ionization (ESI) Mass Spectrometer. High resolution mass spectrometry (HRMS) was performed on a Waters Quadrupole-Time of Flight (QTOF) Xevo Spectrometer via ESI with Leucine-Enkephalin as an internal standard. For isolated ammonium salts of basic amino compounds, "M" refers to the mass of the corresponding *neutral* molecule. High performance liquid chromatography (HPLC) was performed on a reverse-phase Phenomenex C18 column ($\varphi = 4.6 \times 150$ mm) using water/acetonitrile (both containing 0.1% TFA) as the mobile phase at a flow rate of 1.0 mL/min, with a detection wavelength (λ) of 254 nm.

Synthesis Materials. Nitrogen (N_2) was dried by passage through self-indicating silica gel (2–4 mm bead size). Unless otherwise noted, anhydrous solvents (obtained from commercial sources) were utilized. Carboxylic acid **A** was prepared according to a published procedure.^{S1} Other known reagents that were not obtained commercially were prepared according to literature procedures cited within. All other reagents were purchased reagent grade and used as received.

General Synthetic Procedures 1–4

General Procedure 1 for Amide Bond Formation: A reaction vessel was charged in air with the carboxylic acid (1.0 equiv), EDCI·HCl (1.2 equiv), HOBt (1.2 equiv) and the amine (1.0–1.3 equiv). If the latter was an ammonium salt, a slight excess of NEt(i-Pr)₂ was also added. To this was added HPLC grade MeCN to a concentration of 0.2-0.3 M in the carboxylic acid (unless otherwise specified) and the resulting mixture was stirred at rt in an air atmosphere until TLC analysis indicated complete consumption of the carboxylic acid. After removal of the solvent under reduced pressure (for reactions with less than 5 mL of MeCN this is not necessary), the residue was dissolved in EtOAc (20 mL for reactions with \leq 1 mmol of acid; or 20 mL/mmol of acid for larger scale) and washed sequentially with 1 M HCl (2×20 mL; to remove any excess amine, EDCI and the urea by-product), saturated NaHCO₃ (2×20 mL; to remove HOBt) and brine (20 mL). The organic layer was

dried (MgSO₄) and concentrated under reduced pressure. If required, purification was carried out by flash chromatography with the indicated eluent.

General Procedure 2 for Suzuki Coupling of Oxazole 47: A mixture of iodinated compound **47** (1.0 equiv), a boronic acid (1.0 equiv), aqueous K_2CO_3 (2 M, 2.0 equiv), Pd(PPh_3)_4 (10 mol %) and toluene (20 mL/mmol of **47**) was heated at 70 °C under N₂ for 7–72 h. After cooling to rt, EtOAc (20 mL) was added, followed by 1 M NaOH (20 mL). The organic layer was separated and the aqueous layer further extracted with EtOAc (20 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄) and concentrated. Flash chromatography gave the desired C–C coupling product.

General Procedure 3 for Boc Deprotection of Type B Oxa(thia)zoles: To a solution of the Bocprotected compound B (1.0 equiv) in reagent grade CH_2Cl_2 (1.0 mL/0.10 mmol of substrate) was added neat TFA (15.0 equiv) and the solution was stirred at rt in an air atmosphere until TLC analysis (ninhydrin staining solution) indicated complete consumption of the starting material (reaction times typically 2–6 h). The mixture was diluted with CH_2Cl_2 (15 mL) and 1 M NaOH (15 mL). The organic layer was separated and the aqueous layer further extracted with CH_2Cl_2 (15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure to provide the desired amine C with no further purification necessary. In cases where an aqueous work-up was not performed (noted within), at the completion of the reaction, the CH_2Cl_2 and excess TFA were removed under reduced pressure. Further drying under high vacuum for several hours provided the corresponding amine TFA salts, with a small amount of persistent residual TFA in most cases (obtained masses were $\leq 120\%$ of theoretical). This was inconsequential for analytical characterization (NMR, MS) and subsequent use in peptide coupling reactions.

General Procedure 4 for Pbf/Boc Deprotection of Type D Peptidomimetics: To a solution of the *N*-protected peptide **D** in reagent grade CH_2Cl_2 (3.3 mL/0.1 mmol of substrate) was added TFA (3.3 mL/0.1 mmol of substrate) and, where specified, H₂O (20 equiv, see the *Note* below), and the solution was stirred at rt in an air atmosphere for 16 h. The solvents were removed under reduced pressure and the residue dried under high vacuum. This was taken up in CH_2Cl_2 (~0.5 mL) and an aliquot of excess ethereal HCl (2 M in Et₂O, 1.6 mL/0.1 mmol of substrate) was added to exchange the TFA anion with chloride. The mixture was again concentrated and dried under reduced pressure. The remaining sticky solid was dissolved in minimal MeOH (\leq 10 drops from a Pasteur pipette for \leq 0.05 mmol of product) and reagent grade Et₂O (5 mL) was rapidly added, resulting in instantaneous precipitation of the product. The precipitate was collected via vacuum filtration and the original vessel (containing significant product deposited on the glass) and filter cake were washed with Et₂O (3×10 mL). The filter cake was transferred back into the original vessel (containing the remainder of the product) with MeOH (~10 mL). Concentration and drying under reduced pressure provided the desired hydrochloride salts **E** as thin films which routinely gave easily-handled powders upon scratching with a spatula.

Note: For larger scale deprotection reactions (>0.1 mmol) and certain substrates (e.g., alcohol **90**), it was *necessary* to add H_2O (20 equiv) from the outset to avoid side reactions resulting from sulfonation of the substrate (net addition of SO₃H at nucleophilic sites). For larger scale reactions, the same work-up and isolation procedure was utilized as described above, except that a second precipitation of the HCl salt from MeOH/Et₂O was required to completely remove the non-volatile by-product: 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran.

Synthesis of Type B Protected Amino Oxazoles and Thiazoles

(S)-Methyl 2-((S)-2-(1,3-dioxoisoindolin-2-yl)-4-methylpentanamido)-3-hydroxypropanoate (5)

This compound was prepared according to *General Procedure 1* using carboxylic acid 4^{S2} (1.568 g, 6.00 mmol), HCl·H-Ser(L)-OMe (933 mg, 6.00 mmol) and MeCN (60 mL), with added NEt(i-Pr)₂ (1.25 mL, 7.20 mmol). Flash chromatography (100% CH₂Cl₂ to 2% MeOH/CH₂Cl₂) gave **5** (1.793 g, 82%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.48$. This compound was used directly in the next step without further analysis.

(S)-2-(1,3-Dioxoisoindolin-2-yl)-N-((S)-1-hydroxy-3-phenylpropan-2-yl)-4-methylpentanamide (6)

This compound was prepared according to *General Procedure 1* using carboxylic acid 4^{S2} (1.00 g, 3.825 mmol) and (*S*)-2-amino-3-phenylpropan-1-ol^{S3} (580 mg, 3.825 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **6** (1.10 g, 73%) as a solid. ¹H NMR (500 MHz, CDCl₃) δ 0.87-0.89 (m, 6H), 1.35-1.40 (m, 1H), 1.70-1.75 (m, 1H), 2.17-2.23 (m, 1H), 2.81-2.91 (m, 3H), 3.57-3.59 (m, 1H), 3.65-3.58 (m, 1H), 4.12-4.16 (m, 1H), 4.83 (dd, $J_1 = 5.5$ Hz, $J_2 = 11.0$ Hz, 1H), 6.46-6.48 (m, 1H, NH), 7.08-7.17 (m, 5H), 7.73-7.75 (m, 2H), 7.81-7.84 (m, 2H).

(S)-2-(1,3-Dioxoisoindolin-2-yl)-N-(2-hydroxy-1-phenylethyl)-4-methylpentanamide (7)

This compound was prepared according to *General Procedure 1* using carboxylic acid 4^{S2} (1.00g, 3.825 mmol) and (±)-2-amino-2-phenylethan-1-ol^{S3} (520 mg, 3.825 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **7** (1.00 g, 69%) as a solid. ¹H NMR (300 MHz, CDCl₃) δ 0.91-0.95 (m, 6H), 1.39-1.52 (m, 1H), 1.85-1.94 (m, 1H), 2.33-2.45 (m, 1H), 2.54 (br s, 1H, OH), 3.77-3.91 (m, 2H), 4.93-5.00 (m, 1H), 5.03-5.09 (m, 1H, NH), 7.26-7.28 (m, 5H), 7.72-7.77 (m, 2H), 7.82-7.87 (m, 2H).

(S)-2-(1,3-Dioxoisoindolin-2-yl)-N-(2-hydroxyethyl)-4-methylpentanamide (8)

This compound was prepared according to *General Procedure 1* using carboxylic acid 4^{S2} (159.0 mg, 0.61 mmol) and ethanolamine (37.2 mg, 0.61 mmol) to yield **8** (159.0 mg, 86%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.34$; ¹H NMR (300 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.78 – 7.72 (m, 2H), 6.89 (t, J = 5.6 Hz, 1H), 4.89 (dd, J = 11.6, 4.6 Hz, 1H), 3.64 (t, J = 5.0 Hz, 2H), 3.36 (q, J = 5.3 Hz, 2H), 3.31 (bs, 1H), 2.35 (ddd, J = 14.9, 11.6, 4.1 Hz, 1H), 1.83 (ddd, J = 14.2, 9.9, 4.7 Hz, 1H), 1.53 – 1.34 (m, 1H), 0.91 (d, J = 6.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 168.2, 134.2, 131.5, 123.5, 61.4, 52.6, 42.4, 37.3, 25.1, 23.1, 21.0. MS (ES⁺) m/z 327 (100%, M+Na); HRMS (ES⁺) Calcd. for C₁₆H₂₀N₂NaO₄: 327.1321 (M+Na), Found: 327.1318.

(S)-Methyl 2-(1-(1,3-dioxoisoindolin-2-yl)-3-methylbutyl)oxazole-4-carboxylate (9)

To a solution of 5 (1.793 g, 4.95 mmol) in CH₂Cl₂ (50 mL) at -10 °C (ice/salt bath) under N₂ was added Deoxo-Fluor[®] (0.91 mL, 4.95 mmol) dropwise and the mixture was allowed to warm to rt with stirring over 27 h. After re-cooling to -10 °C, a second aliquot of Deoxo-Fluor[®] (0.10 mL, 0.49 mmol) was added and the mixture was stirred at 0 °C for a further 4 h, before quenching with saturated NaHCO₃ (20 mL). The organic phase was separated and washed with brine (20 mL), then dried (MgSO₄) and concentrated under reduced pressure to give the intermediate dihydrooxazole (1.813 g) as a pale yellow gum. TLC (25% EtOAc/pet. ether) $R_{\rm F} = 0.22$. This was dissolved in MeCN (20 mL) and the solution was cooled to -10 °C under N₂, then CCl₄ (0.96 mL, 9.90 mmol) and DBU (1.48 mL, 9.90 mmol) were added and the solution was allowed to warm to rt and stirred for 4 h. After removing the solvent under reduced pressure, the residue was dissolved in CH₂Cl₂ (50 mL) and washed sequentially with 1 M HCl (30 mL) and saturated NaHCO₃ (25 mL), before being dried (MgSO₄) and concentrated. Flash chromatography (5% EtOAc/pet. ether to 20% EtOAc/pet. ether) gave 9 (1.025 g, 61% over two steps) as a white solid. TLC (25% EtOAc/pet. ether) $R_{\rm F} = 0.53$; $[\alpha]_{\rm D}^{25}$ -26.5 (c 1.53, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 7.88 - 7.86 (m, 2H), 7.78 - 7.75 (m, 2H), 5.59 (dd, J = 11.1, 4.6 Hz, 1H), 3.90 (s, 3H), 2.55 (ddd, J = 14.9, 11.1, 4.2 Hz, 1H), 2.25 (ddd, J = 14.4, 9.9, 4.6 Hz, 1H), 1.65 - 1.54 (m, 1H), 1.02 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H); 13 C NMR (125 MHz, CDCl₃) δ 167.3, 162.5, 161.4, 144.2, 134.3, 133.5, 131.6, 123.6, 52.1, 46.2, 38.1, 24.7, 23.0, 21.2; MS (ES⁺) m/z 365 (26%, M+Na), 343 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₈H₁₈N₂NaO₅: 365.1113 (M+Na), Found: 365.1115.

(S)-2-(1,3-Dioxoisoindolin-2-yl)-4-methyl-N-((S)-1-oxo-3-phenylpropan-2-yl)pentanamide (10)

To a solution of **6** (500 mg, 1.27 mmol) in CH₂Cl₂ (30 mL) at 0 °C was added Dess-Martin periodinane (600 mg, 1.41 mmol) and the mixture was allowed to warm to rt over 2 h. A solution of 1 M NaOH (20 mL) was added and after continued stirring for 15 min the layers were separated. The aqeous phase was extracted with CH₂Cl₂ (3×20 mL) and the combined organic layers were washed with water (30 mL), dried (MgSO₄) and concentrated to give the aldehyde **10** (450 mg, 91%). ¹H NMR (300 MHz, CDCl₃) δ 0.92-0.93 (m, 6H), 1.39-1.49 (m, 1H), 1.76-1.86 (m, 1H), 2.25-2.35 (m, 1H), 3.16 (d, *J* = 6.9 Hz, 2H), 4.67 (ABq, *J* = 6.6 Hz, 1H), 4.92 (dd, *J*₁ = 5.1 Hz, *J*₂ = 11.1 Hz, 1H), 6.71 (d, J = 6.3 Hz, 1H, NH), 7.11-7.21 (m, 5H), 7.76-7.83 (m, 2H), 7.85-7.89 (m, 2H), 9.62 (s, 1H). This compound was used in the next step without further purification.

(S)-2-(1,3-Dioxoisoindolin-2-yl)-4-methyl-N-(2-oxo-1-phenylethyl)pentanamide (11)

To a solution of **7** (500 mg, 1.31 mmol) in CH₂Cl₂ (30 mL) at 0 °C was added Dess-Martin periodinane (600 mg, 1.41 mmol) and the mixture was allowed to warm to rt over 2 h. A solution of 1 M NaOH (20 mL) was added and after continued stirring for 15 min the layers were separated. The aqeous phase was extracted with CH₂Cl₂ (3×20 mL) and the combined organic layers were washed with water (30 mL), dried (MgSO₄) and concentrated to give the aldehyde **11** (400 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δ 0.90-0.98 (m, 6H), 1.41-1.54 (m, 1H), 1.82-1.96 (m, 1H), 2.39-2.49 (m, 1H), 4.96-5.03 (m, 1H), 5.20-5.45 (m, 1H), 7.27-7.42 (m, 5H), 7.71-7.77 (m, 2H), 7.83-7.88 (m, 2H), 9.25 (s, 1H). This compound was used in the next step without further purification.

(S)-2-(1,3-Dioxoisoindolin-2-yl)-4-methyl-N-(2-oxoethyl)pentanamide (12)

To a solution of **8** (46.0 mg, 0.15 mmol) in CH₂Cl₂ (0.75 mL) at 0 °C was added Dess-Martin periodinane (66.0 mg, 0.16 mmol) and the mixture was allowed to warm to rt over 1 h. The mixture was diluted with EtOAc (15 mL) and washed with saturated NaHCO₃ (2×15 mL) and brine (15 mL), then dried (Na₂SO₄) and concentrated to give the aldehyde **12** (48.4 mg, quant.) as a white foam. TLC (50% EtOAc/pet. ether) $R_{\rm F} = 0.36$; ¹H NMR (300 MHz, CDCl₃) δ 9.66 (s, 1H), 7.98 – 7.67 (m, 4H), 6.90 (bs, 1H), 5.04 – 4.93 (m, 1H), 4.27 – 4.18 (m, 2H), 2.40 (t, *J* = 12.7 Hz, 1H), 1.94 – 1.81 (m, 1H), 1.56 – 1.41 (m, 1H), 0.95 (d, *J* = 5.4 Hz, 6H). This compound was used in the next step without further purification.

(S)-2-(1-(4-Benzyloxazol-2-yl)-3-methylbutyl)isoindoline-1,3-dione (13)

Hexachloroethane (625 mg, 2.64 mmol) and PPh₃ (700 mg, 2.67 mmol) were stirred in THF (5 mL) for 10 min, then a solution of aldehyde **10** (380 mg, 0.97 mmol) in THF (5 mL) was added. The reaction mixture was stirred at rt for 10 min, then pyridine (500 µL, 6.21 mmol) was added dropwise by syringe during 15 min. After heating at reflux for 2.5 d the reaction mixture was concentrated and purified by column chromatography (5% EtOAc/pet. ether to 20% EtOAc/pet. ether) yielded oxazole **13** (140 mg, 34%). ¹H NMR (300 MHz, CDCl₃) δ 1.00 (d, *J* = 6.0 Hz, 3H), 1.03 (d, *J* = 6.0 Hz, 3H), 1.58-1.67 (m, 1H), 2.16-2.26 (m, 1H), 2.53-2.63 (m, 1H), 3.89 (s, 2H), 5.57 (dd, *J*₁ = 4.8 Hz, *J*₂ = 11.1 Hz, 1H), 7.13-7.14 (m, 1H), 7.24-7.35 (m, 5H), 7.75-7.88 (m, 2H), 7.86-7.90 (m, 2H).

(S)-2-(3-Methyl-1-(4-phenyloxazol-2-yl)butyl)isoindoline-1,3-dione (14)

Hexachloroethane (600 mg, 2.53 mmol) and PPh₃ (700 mg, 2.67 mmol) were stirred in THF (5 mL) for 10 min, then a solution of aldehyde **11** (380 mg, 1.00 mmol) in THF (5 mL) was added. The reaction mixture was stirred at rt for 10 min, then pyridine (500 μ L, 6.21 mmol) was added dropwise by syringe during 15 min. After heating at reflux for 2.5 d the reaction mixture was concentrated and purified by column chromatography (5% EtOAc/pet. ether to 20% EtOAc/pet. ether) yielded oxazole **14** (180 mg, 50%). ¹H NMR (300 MHz, CDCl₃) δ 1.03 (d, *J* = 6.3 Hz, 3H), 1.07 (d, *J* = 6.3 Hz, 3H), 1.60-1.78 (m, 1H), 2.27-2.36 (m, 1H), 2.56-2.66 (m, 1H), 5.65 (dd, *J*₁ = 4.8, *J*₂ = 10.5 Hz, 1H), 7.29-7.41 (m, 3H), 7.71-7.79 (m, 4H), 7.85 (s, 1H), 7.89 (d, *J* = 5.4 Hz, 1H), 7.90 (d, *J* = 5.4 Hz, 1H).

(S)-2-(3-Methyl-1-(oxazol-2-yl)butyl)isoindoline-1,3-dione (15)

To a solution of PPh₃O (78.1 mg, 0.28 mmol) in CH₂Cl₂ (3.0 mL) at 0 °C under N₂ was added dropwise a solution of Tf₂O (39.5 mg, 0.14 mmol) in CH₂Cl₂ (1.0 mL). After 5 min at 0 °C, the mixture was cooled to -78 °C (EtOAc/liquid N₂ slush bath) and a solution of **12** (42.4 mg, 0.14 mmol) in CH₂Cl₂ (1.6 mL) was added. The mixture was allowed to warm to rt and stirred for 19 h. Saturated NaHCO₃ (5 mL) and CH₂Cl₂ (5 mL) were added, and the organic layer was dried (MgSO₄) and concentrated. Flash chromatography (5% EtOAc/pet. ether) to 15% EtOAc/pet. ether) gave **15** (17.8 mg, 45%) as a colorless gum. TLC (20% EtOAc/pet. ether) $R_{\rm F} = 0.36$; $[\alpha]_{\rm D}^{25}$ -37.4 (*c* 0.89, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.76 – 7.72 (m, 2H), 7.58 (s, 1H), 7.08 (s, 1H), 5.57 (dd, *J* = 10.8, 5.0 Hz, 1H), 2.54 (ddd, *J* = 14.9, 10.9, 4.5 Hz, 1H), 2.20 (ddd, *J* = 14.4, 9.7, 5.0 Hz, 1H), 1.68 – 1.58 (m, 1H), 1.02 (d, *J* = 6.6 Hz, 3H), 0.98 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 161.7, 139.0, 134.2, 131.7, 127.3, 123.5, 46.4, 38.2, 24.9, 23.1, 21.4; MS (ES⁺) *m*/z 285 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₆H₁₆N₂NaO₃: 307.1059 (M+Na), Found: 307.1069.

(S)-tert-Butyl (1-(4-(hydroxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (17)

OH

To a solution of the known oxazole ester 16^{S4} (1.08 g, 3.46 mmol) in THF (10 mL) at 0 °C under N₂ was added a solution of LiBH₄ (2.0 M in THF, 5.2 mL, 10.4 mmol) followed by dropwise addition of absolute EtOH (1.0 mL, 17.1 mmol). The mixture was allowed to warm to rt with stirring over 3 h, then EtOAc (5 mL) was added. After an additional 30 min, the reaction mixture was re-cooled to 0 °C and quenched by the dropwise addition of 1 M HCl (10 mL) until the evolution of H₂ had ceased. The mixture was poured into water (20 mL) and the product extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄) and concentrated to give **17** (870 mg, 88%) as a pale yellow gum. TLC (50% EtOAc/pet. ether) $R_F = 0.49$; TLC (5%

MeOH/CH₂Cl₂) $R_{\rm F} = 0.48$; $[\alpha]_{\rm D}^{25} -57.9$ (*c* 1.94, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.52 (s, 1H), 5.09 (bm, 1H), 4.98 – 4.89 (m, 1H), 4.58 (d, *J* = 5.8 Hz, 2H), 2.48 (t, *J* = 6.1 Hz, 1H), 1.78 – 1.59 (m, 3H), 1.44 (s, 9H), 0.95 (d, *J* = 5.8 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 155.1, 140.2, 134.9, 79.9, 56.1, 47.3, 43.5, 28.3, 24.6, 22.5, 22.1; MS (ES⁺) *m*/*z* 307 (100%, M+Na), 285 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₄H₂₅N₂O₄: 285.1814 (M+H), Found: 285.1811.

(S)-tert-Butyl (3-methyl-1-(4-methyloxazol-2-yl)butyl)carbamate (18)

A reaction vessel was charged with PPh₃ (1.5 equiv, 55.3 mg, 0.21 mmol), I₂ (1.5 equiv, 53.3 mg, 0.21 mmol) and imidazole (1.5 equiv, 14.3 mg, 0.21 mmol) and a solution of the alcohol 17 (1 equiv, 40.0 mg, 0.14 mmol) in CH₂Cl₂ (3 mL) was added dropwise. The mixture was stirred for 1.5 h at rt. Additional poritions of I₂ (1 equiv, 35.5 mg, 0.14 mmol), PPh₃ (1 equiv, 36.7 mg, 0.14 mmol) and imidazole (1 equiv, 9.5 mg, 0.14 mmol) was then added and the mixture was stirred for a further 1 h. The solvents were removed under reduced pressure. To the residue, containing the iodinated intermediate, was added Mg powder (20 equiv, 68.0 mg, 2.80 mmol) and MeOH (3 mL) and the suspension was sonicated for 20 min. The mixture was diluted with EtOAc (10 mL) and brine (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were dried (MgSO₄) and the solvent removed under reduced pressure. Flash chromatography (100 mL of 5% EtOAc/pet. ether, then 100 mL of 7.5% EtOAc/pet. ether) yielding the methyl-oxazole derivative 18 as a colorless oil (21.7 mg, 58 %). TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.59$. ¹H NMR (500 MHz, CDCl₃) δ 0.94 (6H, d, J = 6.1 Hz, H4 and H3-CH₃), 1.44 (9H, s, (CH₃)₃), 1.58 - 1.77 (1H, m, H3), 1.89 - 1.93 (2H, m, H2), 2.15 (3H, s, H4'-CH₃), 4.56 (1H, bd, J = 7.2 Hz, H1), 4.90 - 5.04 (2H, m, NH), 7.28 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 11.6 (C4'-CH₃), 21.9 (C4/C3-CH₃), 22.3 (C4/C3-CH₃), 22.7 (C3), 28.4 C(CH₃)₃), 43.8 (C2), 47.5 (C1), 79.9 (C(CH₃)₃), 134.1 (C4'), 136.4 (C5'), 155.4 (CO), 164.6 (C2'). MS (ESI⁺) $m/z = 269 (100 \%, [M+H]^+), 291 (15 \%, [M+Na]^+).$ HRMS (ESI⁺) $[M+Na]^+$ Calcd. for C₁₄H₂₄N₂NaO₃: 291.1685, Found: 291.1685.

(S)-(2-(1-((*tert*-Butoxycarbonyl)amino)-3-methylbutyl)oxazol-4-yl)methyl methanesulfonate (S1)

The following is a general procedure used for the preparation of mesylate S1 as an intermediate in the synthesis of compounds 19, 27 and 29–32. Note that this compound is relatively unstable, and thus was always prepared freshly before use.

To a solution of alcohol **17** (1.0 equiv) and NEt₃ (1.3–1.6 equiv) in reagent grade CH₂Cl₂ ([**17**] = 0.1 M) at 0 °C in an air atmosphere was added MsCl (1.3–1.6 equiv) and the mixture was allowed to warm to rt with stirring over 45 min. The mixture was diluted with CH₂Cl₂ (20 mL) and washed with saturated NaHCO₃ (20 mL) and brine (20 mL), then dried (MgSO₄). The solvent was removed under reduced pressure to give **S1** as a yellow gum (essentially quantitative yield) which could be used without further purification. In one case, the product was further purified for analytical purposes by flash column chromatography (15% EtOAc/pet. ether) to yield **S1** (99 mg, 96%) as a colorless oil. TLC (5% MeOH/CH₂Cl₂) $R_F = 0.63$; TLC (25% EtOAc/pet. ether) $R_F = 0.18$; ¹H NMR (500 MHz,

CDCl₃): δ 0.95 (2 x d, *J* = 6.5 Hz, 6H, 2 x CH₃), 1.43 (s, 9H, ^{*i*}Bu), 1.63-1.74 (m, 3H, CH and CH₂), 3.04 (s, 3H, OMs), 4.89-4.98 (m, 1H, CH), 4.99-5.08 (m, 1H, NH), 5.16 (s, 2H, CH₂O), 7.71 (s, 1H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.3 (CH₃), 22.8 (CH₃), 24.9 (CH), 28.5 (C(<u>C</u>H₃)₃), 43.5 (CH₂), 47.7 (CH), 63.2 (CH₂O), 80.3 (<u>C</u>(CH₃)₃), 134.3, 166.1 (ArC), 138.4(ArCH), 155.3 (C=O). MS (ESI, +ve) *m/z* 363 (100%) [M+H]⁺.

(S)-tert-Butyl (1-(4-(fluoromethyl)oxazol-2-yl)-3-methylbutyl)carbamate (19)

To the neat mesylate **S1** (36.2 mg, 0.10 mmol, prepared from **17** as described above) cooled to 0 °C was added a solution of TBAF (1.0 M in THF, 1.0 mL, 1.0 mmol) and the solution was allowed to warm to rt over 2 h. The mixture was diluted with Et₂O (15 mL) and washed sequentially with 1 M HCl (20 mL), saturated NaHCO₃ (20 mL) and brine (20 mL), then dried (MgSO₄) and concentrated. Flash chromatography (6% EtOAc/pet. ether) gave **19** (18.1 mg, 63%) as a pale yellow gum. TLC (20% EtOAc/pet. ether) $R_{\rm F} = 0.55$; $[\alpha]_{\rm D}^{25}$ -45.6 (*c* 0.74, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, $J_{\rm C-F} = 4.7$ Hz, 1H), 5.28 (d, $J_{\rm C-F} = 47.9$ Hz, 2H), 5.07 – 4.89 (m, 2H), 1.81 – 1.61 (m, 3H), 1.44 (s, 9H), 0.95 (d, J = 6.3 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 155.1, 137.3 (d, $J_{\rm C-F} = 8.2$ Hz), 136.2 (d, $J_{\rm C-F} = 19.8$ Hz), 80.0, 76.1 (d, $J_{\rm C-F} = 164.8$ Hz), 47.4, 43.4, 28.3, 24.6, 22.6, 22.1; MS (ES⁺) m/z 309 (100%, M+Na), 231 (78%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₄H₂₃FN₂NaO₃: 309.1590 (M+Na), Found: 309.1598.

(S)-Methyl 2-((S)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanethioamido)-3-((*tert*-butyldimethylsilyl)oxy)propanoate (21)

A suspension of TBS-protected dipeptide **20**^{S5} (2.18 g, 4.88 mmol) and Lawesson's reagent (98.8 mg, 2.44 mmol) in toluene (49.0 mL) was heated to 80 °C and stirred at this temperature for 20 min. Analysis by mass spectrometry showed full conversion. After evaporation of the solvent, flash column chromatography (d = 3.5 cm, h = 20 cm, 10% EtOAc/pet. ether) provided **21** (1.89 g, 84%) as a colourless oil. TLC (10% EtOAc/pet. ether) $R_F = 0.43$. [$\alpha |_D^{25} = +40.9$ (c 1.6, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.02 (3H, s, Si(CH_{a3})₂), 0.03 (3H, s, Si(CH_{b3})₂), 0.86 (9H, s, SiC(CH₃)₃), 0.95 (3H, d, J = 2.3 Hz, H5' or 4'-CH₃), 1.65 - 1.84 (2H, m, H3_b', H4'), 3.76 (3H, s, OCH₃), 4.03 (1H, dd, J = 10.3, 2.8 Hz, H3_a), 4.11 (1H, dd, J = 10.7, 2.2 Hz, H3_b), 4.37 - 4.48 (1H, m, H2'), 5.08 - 5.24 (2H, m, H2a, 2'-NH), 8.36 (1H, bd, J = 6.0 Hz, 2-NH). ¹³C NMR (126 MHz, CDCl₃) δ -5.6 (Si(C_aH₃)₂), -5.4 (Si(C_bH₃)₂), 28.4 (OC(CH₃)₃), 45.3 (C3'), 52.7 (OCH₃), 59.5 (C2), 60.5 (C2'), 62.4 (C3), 80.2 (OC(CH₃)₃), 155.3 (C=O(OC(CH₃)₃)), 169.7 (C1), 205.9 (C1'). IR (neat) v [cm⁻¹] = 3315 (w), 2956 (m), 2930 (m), 2858 (w), 2358 (w), 2327(w), 1705 (s), 1506 (s), 1367 (s), 1251 (s), 1163 (s), 1112 (s), 1044 (m), 834 (s), 777 (s). MS (ESI⁺) m/z = 363 (62%, [M-Boc]⁺), 407 (100%, [M-

Boc+HCO₂H]⁺), 463 (10%, $[M+H]^+$), 485 (66%, $[M+Na]^+$). HRMS (ESI⁺) $[M+Na]^+$ Calcd. for C₂₁H₄₂N₂O₅SiSNa: 485.2481, Found: 485.2493.

(S)-Methyl 2-((S)-2-((*tert*-butoxycarbonyl)amino)-4-methylpentanethioamido)-3hydroxypropanoate (22)

To a solution of TBS-protected peptide 21 (1.79 g, 3.87 mmol) in THF (31.0 mL) TBAF (1 M in THF, 7.75 mL, 7.75 mmol) was added and the mixture stirred at rt for 30 min. TLC analysis (5:95 MeOH/CH₂Cl₂, ninhydrin stain) indicated the reaction being finished after 20 min. After concentration the resulting yellow oil was re-dissolved in EtOAc (40 mL) and the organic layer washed with H₂O (3 x 40 mL), brine (2 x 40 mL), dried (MgSO₄) and the solvent evaporated. The product was purified by flash chromatography (d = 3.5 cm, h = 12 cm, 10% EtOAc/pet. ether to 40% EtOAc/pet. ether) to yield compound 22 (1.05 g, 78%) as a highly viscous pale yellow oil. TLC (50% EtOAc/pet. ether) $R_{\rm F} = 0.57$. $[\alpha]_{\rm D}^{25} = +14.8$ (c 1.6, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.94 (3H, d, J = 4.1 Hz, H5' or 4'-CH₃), 0.96 (3H, d, J = 4.2 Hz, H5' or 4'-CH₃), 1.41 (9H, s, (CH₃)₃), 1.56 -1.66 (1H, m, H3a'), 1.65 - 1.80 (2H, m, H3b', H4'), 3.47 (1H, bs, OH), 3.80 (3H, s, OCH3), 3.96 - 4.05 (1H, m, H3_a), 4.07 - 4.18 (1H, m, H3_b), 4.34 - 4.44 (1H, m, H2'), 5.17 - 5.33 (2H, m, H2, 2'-NH), 8.75 (1H, bd, J = 5.8 Hz, 2-NH). ¹³C NMR (126 MHz, CDCl₃) δ 22.3 (C5' or 4'-CH₃), 22.9 (C5' or 4'-CH₃), 24.9 (C4'), 28.4 ((CH₃)₃), 44.2 (C3'), 53.0 (OCH₃), 59.8 (C2), 60.0 (C2'), 61.4 (C3), 80.8 $(\underline{C}(CH_3)_3)$, 156.3 $(\underline{C}=O(OC(CH_3)_3))$, 170.2 (C1), 206.5 (C1'). IR (neat) v [cm⁻¹] = 3311 (w), 2958 (m), 2360 (w), 1734 (m), 1684 (s), 1507 (s), 1436 (m), 1368 (s), 1247 (m), 1161 (s), 1066 (m), 1046 (m), 1023 (m), 911 (m), 731 (s). MS (ESI⁺) m/z = 249 (16%, [M-Boc+H]⁺), 293 (37%, [M-Boc+HCO₂H]), 349 (3%, $[M+H]^+$), 371 (100%, $[M+Na]^+$) HRMS (ESI⁺) $[M+Na]^+$ Calcd. for C₁₅H₂₈N₂O₅SNa: 371.1617, Found: 371,1624.

Methyl 2-((S)-1-((tert-butoxycarbonyl)amino)-3-methylbutyl)-thiazole-4-carboxylate (23)

<u>Step I:</u> To a solution of peptide **22** (1.00 g, 2.87 mmol) in CH_2Cl_2 (29.0 mL) at -15 °C under nitrogen atmosphere, was added dropwise Deoxo-Fluor[®] (0.64 mL, 3.47 mmol) over 2 min. TLC analysis (5:95 MeOH/CH₂Cl₂, ninhydrin stain) showed the reaction to be finished after *ca*. 40 min. Saturated NaHCO₃ (30 mL) was added before the organic layer was separated, dried (MgSO₄) and the solvent evaporated. The dihydrothiazole intermediate (0.67 g) was obtained as an amber solid and used for the next step without further purification.

<u>Step II:</u> To a solution of the dihydrothiazole (0.67 g, 2.02 mmol) and CCl₄ (0.40 mL, 4.11 mmol) in MeCN (8.1 mL) under nitrogen atmosphere at -10 °C, DBU (0.61 mL, 4.09 mmol) was added dropwise over 1 min. The reaction mixture was then stirred for further 20 min at 0 °C. TLC analysis (25% EtOAc/pet. ether, ninhydrin stain) showed the reaction to be finished after 10 min. After the solvent was evaporated, EtOAc (40 mL) and 1M HCl (40 mL) were added and the seperated organic phase washed with 1M HCl (40 mL), saturated NaHCO₃ (2 x 40 mL), brine (2 x 40 mL) and dried (MgSO₄). Evaporation of the solvent provided the thiazole ester **23** (0.58 g, 78% over two steps) as a pale yellow oil. NMR data for **23** was in good agreement with that reported previously for the *R*-

enantiomer prepared by an alternative route (*ent*-23).^{S6} TLC (25% EtOAc/pet. ether) $R_{\rm F} = 0.63$. $[\alpha]_D^{25}$

= -46.5 (*c* 1.68, CH₂Cl₂). Lit. (*R*-enantiomer)^{S6a} $[\alpha]_{p}^{20}$ = +50.4 (*c* 1.46, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 0.96 – 0.99 (6H, m), 1.42 (9H, s, (CH₃)₃), 1.63 - 1.82 (2H, m, H2_a', H3'), 1.85 - 1.99 (1H, m, H2_b'), 3.93 (3H, s, OCH₃), 4.97 - 5.09 (1H, m, H1'), 5.09 - 5.19 (1H, m, NH), 8.08 (1H, s, H5). ¹³C NMR (126 MHz, CDCl₃) δ 21.8 (C4' or 3'-CH₃), 23.1 (C4' or 3'-CH₃), 25.1 (C3'), 28.4 ((CH₃)), 44.5 (C2'), 51.5 (C1'), 52.6 (OCH₃), 80.3 (<u>C</u>(CH₃)₃), 127.3 (C5), 147.1 (C4), 155.2 (<u>C</u>=O(C(CH₃)₃)), 162.0 (<u>C</u>=O(OCH₃)), 174.9 (C2). IR (neat) ν [cm⁻¹] = 3346 (w), 2958 (m), 2358 (w), 1700 (s), 1506 (m), 1367 (m), 1243 (s), 1212 (s), 1164 (s), 1094 (m), 1045 (m), 1024 (m), 990 (m), 916 (m), 867 (m), 779 (m), 752 (m), 732 (m). MS (ESI⁺) m/z = 273 (44%, [M-Boc+HCO₂H]⁺), 329 (32%, [M+H]⁺), 351 (100%, [M+Na]⁺). HRMS (ESI⁺) [M+Na]⁺ Calcd. for C₁₅H₂₄N₂O₄SNa: 351.1354, Found: 351.1361.

2-((S)-1'-((tert-Butoxycarbonyl)amino)-3-methylbutyl)-thiazole-4-carboxylic acid (24)

A suspension of thiazole ester 23 (0.63 g, 2.00 mmol) and LiOHH₂O (0.85 g, 20.14 mmol) in THF (20.0 mL) and H₂O (20.0 mL) was stirred at rt for 1 h, after which time TLC analysis (25:75 EtOAc/pet. ether, ninhydrin) showed no remaining starting material. The reaction mixture was diluted with CH₂Cl₂ (40 mL), acidified to pH 1-2 with 1 M HCl (40 mL) and the phases separated. The aqueous layer was further extracted with CH₂Cl₂ (40 mL), the combined organic phases washed with brine (2 x 40 mL), dried (MgSO₄) and the solvent evaporated. The known thiazole carboxylic acid 24 (0.58 g, 92%) was obtained as a pale yellow solid. NMR data was in good agreement with that reported previously for 24 prepared by an alternative route.^{S7} mp 120–122 °C. $[\alpha]_D^{25} =$ -41.2 (c 1.4, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.91 - 1.01 (6H, m, H4' and 4'-CH₃), 1.43 (9H, s, (CH₃)₃), 1.63 - 1.83 (2H, m, H2_a' and H3'), 1.84 - 1.97 (1H, m, H2_b'), 4.97 (0H, bs, H1' rotamer), 5.06 (1H, bs, H1'), 5.22 (1H, bs, NH), 6.32 (0H, bs, NH rotamer), 8.18 (1H, s, H5). ¹³C NMR (126 MHz, CDCl₃) δ [ppm] = 21.9 (C4' or 3'-CH₃), 23.1 (C4' or 3'-CH₃), 25.0 (C3'), 28.4 ((CH₃)₃), 44.5 (C2'), 51.4 (C1'), 80.5 ($\underline{C}(CH_3)_3$), 128.3 (C5), 146.7 (C4), 155.3 ($\underline{C}=O(OC(CH_3)_3)$), 164.1(C=O(OH)), 175.1(C2). IR (neat) $v [cm^{-1}] = 3110$ (w), 2956 (w), 1706 (s), 1684 (s), 1653 (m), 1506 (m), 1489 (m), 1404 (m), 1367 (m), 1216 (s), 1168 (s), 1099 (m), 1020 (m), 917 (m), 777 (m), 735 (m). MS (ESI⁻) m/z = 313 (100%, [M-H]⁻). HRMS (ESI⁻) [M-H]⁻ Calcd. for C₁₄H₂₁N₂O₄S: 313.1222, Found: 313.1220.

tert-Butyl (S)-(1-(4-(hydroxymethyl)thiazol-2-yl)-3-methylbutyl)carbamate (25)

To a solution of acid **24** (57.4 mg, 0.18 mmol) and NEt₃ (27.7 mg, 0.27 mmol) in THF (1.80 mL) at 0 °C was added isobutyl chloroformate (0.036 mL, 0.27 mmol) and the resulting suspension was stirred in a capped vial (air atmosphere) on ice for 45 min. The suspension (filtration not required) was then added dropwise to an ice cold solution of NaBH₄ (69.1 mg, 1.83 mmol) in water (1.8 mL) in the air (open vessel to vent CO₂ and H₂). After stirring for 1.5 h on ice, the excess NaBH₄ was quenched by the dropwise addition of 1 M HCl. After H₂ evolution had ceased, the mixture was futher diluted with 1 M HCl (20 mL) and EtOAc (30 mL). The organic layer was washed with

saturated NaHCO₃ (20 mL) and brine (20 mL), then dried (MgSO₄) and concentrated. Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave **25** (49.5 mg, 90%) as a colorless gum. TLC (50% EtOAc/pet. ether) $R_{\rm F} = 0.49$, or TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.44$. $[\alpha]_D^{25} = -44.7$ (c 1.7, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.95 (6H, d, J = 5.7 Hz, H4 and 3-CH₃), 1.43 (9H, s, (CH₃)₃), 1.58 - 1.75 (2H, m, H2_a, H3), 1.75 - 1.96 (1H, m, H2_b), 3.10 (1H, bs, OH), 4.71 (2H, s, CH₂OH), 4.82 - 5.11 (1H, m, H1), 5.18 (1H, bd, J = 8.2 Hz, NH), 7.07 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 22.1 (C4 or 3-CH₃), 23.0 (C4 or 3-CH₃), 25.0 (C3), 28.5 ((CH₃)₃), 45.2 (C2), 51.3 (C1), 60.9 (CH₂OH), 80.1 (<u>C</u>(CH₃)₃), 114.3 (C5'), 155.2 (C=O), 156.4 (C4'), 174.3 (C2'). IR (neat) ν [cm⁻¹] = 3314 (w), 2958 (m), 2870 (w), 1688 (s), 1521 (m), 1470 (m), 1391 (m), 1367 (s), 1251 (s), 1165 (s), 1045 (s), 1024 (s). MS (ESI⁺) m/z = 245 (24%, [M-Boc+HCO₂H]⁺), 301 (75%, [M+H]⁺), 323 (100%, [M+Na]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₁₄H₂₅N₂O₃S: 301.1586, Found: 301.1575.

(S)-tert-Butyl (1-(4-(methoxymethyl)thiazol-2-yl)-3-methylbutyl)carbamate (26)

<u>Step I:</u> To a solution of thiazole alcohol **25** (75.8 mg, 0.25 mmol) in CH₂Cl₂ (1.3 mL) at 0 °C, NEt₃ (46 μ L, 0.33 mmol) was added followed by dropwise addition of MsCl (30 μ L, 0.39 mmol). TLC analysis (25% EtOAc/pet. ether, ninhydrin stain) showed the reaction to be finished after 15 min. The reaction mixture was then diluted with EtOAc (30 mL), the organic layer washed with 1 M HCl (2 x 30 mL), saturated NaHCO₃ (2 x 30 mL), brine (2 x 30 mL), dried (MgSO₄) and the solvent evaporated. The resulting mesylate was used without further purification.

Step II: To a solution of MeOH (0.21 mL, 5.18 mmol) in THF (0.63 mL) in an oven dried vial under nitrogen atmosphere at -78 °C, NaHMDS (1 M in THF, 1.55 mL, 1.55 mmol) was added. After 20 min, a solution of the mesylate (from Step I) and NBu₄I (13.8 mg, 0.04 mmol) in THF (2.5 mL) was added dropwise over 2 min. The reaction mixture was stirred overnight at rt. A TLC analysis (25% EtOAc/pet. ether) showed no remaining starting material after 12 h and analysis by mass spectrometry indicated the formation of the desired product. The reaction mixture was diluted with EtOAc (30 mL), the organic layer washed with 1 M HCl (2 x 30 mL), H₂O (2 x 30 mL), saturated NaHCO₃ (2 x 30 mL), brine (2 x 30 mL), dried (MgSO₄) and the solvent evaporated. Re-evaporation from CH₂Cl₂ yielded the methyl ether derivative 26 (58.3 mg, 73% over two steps) as a viscous yellow oil. TLC (25% EtOAc/pet. ether) $R_{\rm F} = 0.51$. $[\alpha]_D^{25} = -14.8$ (c 2.9, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.94 (3H, d, *J* = 4.0 Hz, H4 or 3-CH₃), 0.95 (3H, d, *J* = 4.2 Hz, H4 or 3-CH₃), 1.42 (9H, s, (CH₃)₃), 1.60 - 1.77 (2H, m, H2_a and H3), 1.77 - 1.95 (1H, m, H2_b), 3.43 (3H, s, OCH₃), 4.52 (2H, s, CH₂OCH₃), 4.88 (0H, bs, H1 rotamer), 5.01 (1H, bs, H1), 5.10 (1H, bs, NH), 5.33 (0H, bs, NH rotamer), 7.09 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 22.0 (C4 or 3-CH₃), 23.0 (C4 or 3-CH₃), 25.0 (C3), 28.5 ((CH₃)₃), 45.1 (C2), 51.3 (C1), 58.7 (OCH₃), 70.5 (CH₂OCH₃), 80.0 (C(CH₃)₃), 115.4 (C5'), 153.9 (C4'), 155.2 (C=O), 173.8 (C2'). IR (neat) $v [cm^{-1}] = 3322$ (w), 2957 (m), 1699 (s), 1518 (m), 1470 (m), 1391(m), 1367 (s), 1250 (s), 1166 (s), 1098 (s), 1045 (m), 1024 (m), 978 (w), 952 (w), 911 (w), 876 (w), 733 (s). MS (ESI⁺) m/z = 259 (23%, [M-Boc+HCO₂H]⁺), 315 (93%, $[M+H]^+$, 337 (100%, $[M+Na]^+$). HRMS (ESI⁺) $[M+Na]^+$ Calcd. for C₁₅H₂₆N₂O₃NaS: 337.1562, Found: 337.1578.

(S)-tert-Butyl (1-(4-(isopropoxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (27)

To an ice cold solution of dry i-PrOH (0.1 mL, excess) in dry THF (1.0 mL) was added NaHMDS (1 M in THF, 0.5 mL), and then the mixture was stirred in the ice bath for 15 min. A solution of mesylate **S1** (30 mg, 0.083 mmol, prepared from **17** as described above) in dry THF (0.5 mL) was added, followed by TBAI, and then the mixture was warmed up to rt and stirred overnight. Upon the completion, brine was added, and then the mixture was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine (3 x 5 mL), dried over MgSO₄ and concentrated. The crude residue was purified by flash column chromatography (13% EtOAc/pet. ether) to give **27** (22 mg, 81%) as a colorless oil. $[\alpha]_D^{25}$ –41.95 (*c* 1.1, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.94 (d, J = 5.5 Hz, 6H, 2 x CH₃ (Leu)), 1.21 (d, J = 6.5 Hz, 6H, 2 x CH₃), 1.44 (s, 9H, ¹Bu), 1.63-1.72 (m, 3H, CH and CH₂), 3.72 (septet J = 6.0 Hz, 1H, OCH), 4.41 (s, 2H, CH₂O), 4.83-4.99 (m, 1H, CH), 4.99-5.10 (m, 1H, NH), 7.51 (s, 1H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.3 (OCH(<u>CH₃</u>)₂) 22.4 (CH₃), 22.9 (CH₃), 24.9 (CH), 28.6 (C(<u>CH₃</u>)₃), 43.9 (CH₂), 47.6 (CH), 62.5 (CH₂O), 71.9 (OCH), 80.0 (<u>C</u>(CH₃)₃), 135.9 (ArCH), 138.9, 165.2 (ArC), 155.3 (C=O). MS (ESI, +ve) m/z 327 (30%) [M+H]⁺; 349 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₁₇H₃₁N₂O₄ 327.2284, found 327.2269.

(S)-tert-Butyl (1-(4-(isopropoxymethyl)thiazol-2-yl)-3-methylbutyl)carbamate (28)

A solution of dry THF (1 mL) and i-PrOH (20 equiv, 0.27 mL, 3.8 mmol) under N₂ was cooled to -78° C and NaHDMS (6 equiv, 0.21 mL, 1.1 mmol) was added. A solution of the mesylate ester derivative of alcohol 25 (1 equiv, 72.1 mg, 0.19 mmol, prepared as in Step I for compound 26) and TBAI (0.1 equiv, 7 mg, 0.02 mmol) in dry THF (1 mL) was added at once to the mixture. This was stirred overnight at rt. The mixture was diluted with EtOAc (20 mL) and washed with HCl (1 M, 2×10 mL), saturated NaHCO₃ (2×10 mL) and brine (2×10 mL). The organic layer was dried $(MgSO_4)$ and concentrated under reduced pressure. The crude product was purified with pipette flash chromatography (10 % EtOAc/pet. ether) yielding 28 (31.2 mg, 48 %) as a yellow oil. TLC (10% EtOAc/pet. ether) $R_{\rm F} = 0.85$. $[\alpha]_D^{25} = -24.3$ (c 1.77, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 0.95 (6H, d, J = 6.0 Hz, H4 and H3-CH₃), 1.20 - 1.26 (6H, m, OCH(CH₃)₂), 1.41 (9H, s, (CH₃)₃), 1.64 - 1.70(2H, m, H3), 1.79 - 1.84 (1H, m, H2), 3.68 - 3.77 (1H, m, OCH(CH₃)₂), 4.11 (1H, dd, J = 7.1 Hz, H1), 4.59 (2H, s, CH₂OCH(CH₃)₂), 4.69 (bs, 1H, rotamer), 5.01 - 5.10 (1H, bd, NH), 5.28 (1H, bs, NH rotamer), 7.09 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 21.9 (C4 or C3-CH₃), 22.1 (C4 or C3-CH₃), 22.8 (CH₂OCH(CH₃)₂), 24.8 (C3), 28.3 ((CH₃)₃), 45.0 (C2), 51.1 (C1), 52.1 (C1, rotamer), 66.3 (<u>CH₂OCH(CH₃)₂)</u>, 71.6 (CH₂O<u>C</u>H(CH₃)₂), 79.8 (<u>C</u>(CH₃)₃), 116.4 (C5'), 153.2 (C=O), 157.2 (C4'), 173.3 (C2'). MS (ESI⁺) m/z = 343 (100 %, [M+H]⁺), 365 (30 %, [M+Na]⁺). HRMS (ESI⁺) $[M+Na]^+$ Calcd. for C₁₇H₃₀N₂O₃NaS: 365.1875, Found: 365.1875.

(S)-tert-Butyl (1-(4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (29)

To a solution of i-BuOH (0.37 mL, 4.00 mmol) in THF (0.5 mL) under N₂ at -78 °C was added a solution of NaHMDS (1.0 M in THF, 1.2 mL, 1.2 mmol) and the solution was stirred at -78 °C for 15 min to generate the sodium alkoxide. To this was added a solution of mesylate **S1** (72.5 mg, 0.20 mmol, prepared from **17** as described above) and TBAI (7.4 mg, 0.020 mmol) in THF (2.0 mL) and the mixture was allowed to warm to rt with stirring for 24 h. The mixture was diluted with Et₂O (20 mL) and washed with 1 M HCl (20 mL) and saturated NaHCO₃ (20 mL), then dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (6% EtOAc/pet. ether) gave **29** (54.4 mg, 80%) as a colorless gum. TLC (10% EtOAc/pet. ether) $R_{\rm F} = 0.23$; $[\alpha]_{\rm D}^{25} -43.9$ (*c* 0.15, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 5.07 (bm, 1H), 4.98 – 4.88 (bm, 1H), 4.40 (s, 2H), 3.27 (d, *J* = 6.7 Hz, 2H), 1.89 (sep, *J* = 6.7 Hz, 1H), 1.77 – 1.60 (m, 3H), 1.43 (s, 9H), 0.94 (d, *J* = 6.4 Hz, 6H), 0.91 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 155.0, 138.2, 135.7, 79.7, 77.7, 64.9, 47.4, 43.6, 28.33, 28.26, 24.6, 22.6, 22.1, 19.3; MS (ES⁺) *m/z* 379 (18%, M+K), 363 (100%, M+Na), 341 (49%, M+H), 285 (58%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₈H₃₂N₂NaO₄: 363.2260 (M+Na), Found: 363.2256.

(S)-tert-Butyl (1-(4-(isopentoxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (30)

To a solution of i-PentylOH (0.44 mL, 4.00 mmol) in THF (0.5 mL) under N₂ at -78 °C was added a solution of NaHMDS (1.0 M in THF, 1.2 mL, 1.2 mmol) and the solution was stirred at -78 °C for 15 min to generate the sodium alkoxide. To this was added a solution of mesylate **S1** (72.5 mg, 0.20 mmol, prepared from **17** as described above) and TBAI (7.4 mg, 0.020 mmol) in THF (2.0 mL) and the mixture was allowed to warm to rt with stirring for 14 h. The mixture was diluted with Et₂O (20 mL) and washed with 1 M HCl (20 mL) and saturated NaHCO₃ (20 mL), then dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (5% EtOAc/pet. ether) gave **30** (49.9 mg, 70%) as a pale yellow gum. TLC (10% EtOAc/pet. ether) $R_{\rm F} = 0.25$; $[\alpha]_{\rm D}^{25}$ -44.1 (*c* 2.14, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.52 (s, 1H), 5.07 (bm, 1H), 5.00 – 4.88 (m, 1H), 4.40 (s, 2H), 3.54 (t, *J* = 6.9 Hz, 2H), 1.79 – 1.61 (m, 4H), 1.50 (q, *J* = 6.9 Hz, 2H), 1.43 (s, 9H), 0.94 (d, *J* = 6.4 Hz, 6H), 0.90 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 155.0, 138.1, 135.8, 79.8, 69.4, 64.7, 47.4, 43.6, 38.4, 28.3, 25.0, 24.6, 22.6, 22.1; MS (ES⁺) *m/z* 377 (45%, M+Na), 355 (100%, M+H), 299 (52%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₉H₃₄N₂NaO₄: 377.2416 (M+Na), Found: 377.2418.

(S)-tert-Butyl (1-(4-((4-pyridylmethoxy)methyl)oxazol-2-yl)-3-methylbutyl)carbamate (31)

To an ice cold solution of 4-pyridine carbinol (9 mg, 0.082 mmol) in dry THF (0.5 mL) was added NaHMDS (1 M in THF, 0.123 mL), and then the mixture was stirred in the ice bath for 15 min. A solution of mesylate **S1** (29 mg, 0.080 mmol, prepared from **17** as described above) in dry THF (0.5 mL) was added, and then the mixture was warmed up to rt and stirred overnight. Upon the completion, brine was added, and then the mixture was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine (3 x 5 mL), dried over MgSO₄ and concentrated. The crude residue was purified by flash column chromatography (2% MeOH/CH₂Cl₂) to give **31** (15 mg, 50%) as a colorless oil. $[\alpha]_D^{25}$ –43.8 (*c* 0.7, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.95 (d, *J* = 6.5 Hz, 6H, 2 x CH₃), 1.44 (s, 9H, ^{*t*}Bu), 1.64-1.75 (m, 3H, CH and CH₂), 4.50 (s, 2H, CH₂O), 4.62 (s, 2H, CH₂Py), 4.94-4.95 (m, 1H, CH), 5.03 (br s, 1H, NH), 7.29 (s, 2H, ArH), 7.57 (s, 1H, ArH (oxazole)), 8.60 (s, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.4 (CH₃), 22.9 (CH₃), 24.9 (CH), 28.5 (C(CH₃)₃), 43.8 (CH₂), 47.7 (CH), 63.7 (CH₂O), 71.0 (CH₂Py), 80.2 (C(CH₃)₃), 122.2, 150.1 (ArCH), 136.5 (ArCH (oxazole)), 137.6, 147.3, 165.6 (ArC), 155.4 (C=O). MS (ESI, +ve) *m/z* 376 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₂₀H₃₀N₃O₄ 376.2236, found 376.2241.

(S)-tert-Butyl (3-methyl-1-(4-(phenoxymethyl)oxazol-2-yl)butyl)carbamate (32)

A mixture of mesylate **S1** (30 mg, 0.083 mmol, prepared from **17** as described above), phenol (9 mg, 0.091 mmol), caesium carbonate (68 mg, 0.21 mmol) and dry acetone (4 mL) was stirred under nitrogen atmosphere at rt for 15 h. The solvent was evaporated, then the residue was taken up in CH₂Cl₂ and washed with brine, before being dried over MgSO₄ and concentrated. The crude was purified by flash column chromatography (1% MeOH/CH₂Cl₂) to yield **32** (27 mg, 90%) as a colorless oil. $[\alpha]_D^{25}$ -47.5 (*c* 1.4, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.95 (d, *J* = 6.0 Hz, 6H, 2 x CH₃), 1.44 (s, 9H, ^{*t*}Bu), 1.64-1.78 (m, 3H, CH and CH₂), 4.90-5.02 (m, 1H, CH), 4.98 (s, 2H, CH₂O), 4.99-5.10 (m, 1H, NH), 6.96-6.97 (m, 3H, ArH), 7.29 (t, *J* = 8.0 Hz, 2H, ArH), 7.60 (s, 1H, ArH (oxazole)); ¹³C NMR (126 MHz, CDCl₃): δ 22.4 (CH₃), 22.9 (CH₃), 24.9 (CH), 28.5 (C(<u>CH₃</u>)₃), 43.8 (CH₂), 47.7 (CH), 62.7 (CH₂O), 80.1 (<u>C</u>(CH₃)₃), 115.0, 121.5, 129.7 (ArCH), 136.4 (ArCH (oxazole)), 137.2, 158.5, 165.5 (ArC), 155.3 (C=O). MS (ESI, +ve) *m/z* 361 (40%) [M+H]⁺; 383 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₂₀H₂₉N₂O₄ 361.2127, found 361.2123.

(S)-tert-Butyl (1-(4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (33)

To a solution of **17** (78 mg, 0.27 mmol) in dry THF (2 mL) at -78 °C was slowly added NaHMDS (1.0 M in THF, 0.54 mL, 2.0 equiv), and then the mixture was stirred at this temperature for 30 min. Methyl iodide (15 μ L, 0.24 mmol) and TBAI (10.0 mg, 0.027 mmol) were added and the resulting

mixture was then slowly warmed up to rt and stirred for 15 h. Upon completion, brine (5 mL) was added, and the mixture was extracted with EtOAC (3 x 5 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The residue was subjected to flash chromatography (14% EtOAc/pet. ether to 16% EtOAc/pet. ether). The first compound eluted was the *N*,*O*-dimethylated product **45** (8 mg, 10%, see below for an optimized synthesis of this compound and characterization data).

The second compound eluted from the column was the desired *O*-methylated product **33** (47 mg, 59%). $[\alpha]_D^{25}$ –51.81 (*c* 2.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.94 (d, *J* = 6.0 Hz, 6H, 2 x CH₃), 1.43 (s, 9H, ^{*t*}Bu), 1.63-1.75 (m, 3H, CH and CH₂), 3.42 (s, 3H, OCH₃), 4.36 (s, 2H, CH₂O), 4.94 (d, *J* = 6.5 Hz, 1H, CH), 5.07 (d, *J* = 14.0 Hz, 1H, NH), 7.53 (s, 1H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.2 (CH₃), 22.6 (CH₃), 24.7 (CH), 28.3 (C(<u>CH₃)₃</u>), 43.6 (CH₂), 47.4 (CH), 58.5 (OCH₃), 66.3 (CH₂O), 79.9 (<u>C</u>(CH₃)₃), 136.0 (ArCH), 137.7, 165.3 (ArC), 155.1 (C=O). MS (ESI, +ve) *m/z* 299 (75%) [M+H]⁺; 321 (100%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₁₅H₂₇N₂O₄ 299.1971, found 299.1956.

(S)-*tert*-Butyl benzyl(1-(4-((benzyloxy)methyl)oxazol-2-yl)-3-methylbutyl)carbamate (S2) and (S)-*tert*-butyl (1-(4-((benzyloxy)methyl)oxazol-2-yl)-3-methylbutyl)carbamate (34)

These compounds were synthesized using the synthetic procedure described for **33** from **17** (57 mg, 0.20 mmol), benzyl bromide (24 μ L, 0.20 mmol), NaHMDS (1 M in THF, 0.40 mL, 2.0 equiv), TBAI (catalytic) and THF (1.5 mL). The first compound collected from the chromatography column was the *N*,*O*-dibenzylated product **S2** (45 mg, 48%). ¹H NMR (500 MHz, CDCl₃): δ 0.70-1.00 (m, 6H, 2 x CH₃), 1.29-1.60 (m, 10H, CH and ^{*t*}Bu), 1.72-1.97 (m, 2H, CH₂), 4.25-4.45 (m, 2H, NC<u>H₂Ph), 4.34 (s, 2H, CH₂O), 4.51 (s, 2H, OC<u>H₂Ph), 5.15-5.30 (m, 0.5H, CH), 5.58-5.71 (m, 0.5H, CH), 6.99-7.45 (m, 10H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.4 (CH₃), 22.7 (CH₃), 24.6 (CH), 28.3 (C(CH₃)₃), 39.2 (CH₂), rotamers 47.1/47.5 (N<u>C</u>H₂Ph), rotamers 50.9/52.2 (CH), 63.9 (CH₂O), 73.4 (O<u>C</u>H₂Ph), 80.5 (<u>C</u>(CH₃)₃), 126.6, 127.7, 127.8, 128.0, 128.3, 128.5 (ArCH), 136.1 (ArCH (oxazole)), 137.7, 137.8, 139.1, 163.4 (ArC), 155.8 (C=O). MS (ESI, +ve) *m/z* 465 (100%) [M+H]⁺; 487 (80) [M+Na]⁺.</u></u>

The second compound collected from the column chromatography was the *O*-benzylated product **34** (19 mg, 25%). ¹H NMR (500 MHz, CDCl₃): δ 0.94 (d, *J* = 6.0 Hz, 6H, 2 x CH₃), 1.43 (s, 9H, ¹Bu), 1.63-1.74 (m, 3H, CH and CH₂), 4.45 (s, 2H, CH₂O), 4.60 (s, 2H, CH₂Ph), 4.93-4.95 (m, 1H, CH), 5.08-5.09 (m, 1H, NH), 7.29-7.53 (m, 5H, ArH), 7.53 (s, 1H, ArH (oxazole)); ¹³C NMR (126 MHz, CDCl₃): δ 22.1 (CH₃), 22.6 (CH₃), 24.6 (CH), 28.3 (C(<u>C</u>H₃)₃), 43.6 (CH₂), 47.4 (CH), 63.9 (CH₂O), 72.7 (OCH₂Ph), 79.8 (<u>C</u>(CH₃)₃), 127.7, 127.9, 128.4 (ArCH), 136.0 (ArCH (oxazole)), 137.8, 165.2 (ArC), 155.1 (C=O). MS (ESI, +ve) *m/z* 375 (100%) [M+H]⁺.

(S)-tert-Butyl (1-(4-(((4-chlorobenzyl)oxy)methyl)oxazol-2-yl)-3-methylbutyl)carbamate (35)

This was synthesised using the synthetic procedure described for **33** from **17** (61 mg, 0.21 mmol), *p*-chlorobenzyl bromide (44 mg, 0.21 mmol), NaHMDS (1 M in THF, 0.42 mL) and THF (2 mL) to yield **35** (37 mg, 43%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ 0.94 (d, *J* = 6.6 Hz, 6H, 2 x CH₃), 1.43 (s, 9H, ¹Bu), 1.62-1.75 (m, 3H, CH and CH₂), 4.44 (s, 2H, CH₂O), 4.56 (s, 2H, C<u>H</u>₂ArCl), 4.93-4.95 (m, 1H, CH), 5.04-5.07 (m, 1H, NH), 7.29-7.33 (m, 4H, ArH), 7.53 (s, 1H, ArH (oxazole)); ¹³C NMR (75 MHz, CDCl₃): δ 22.1 (CH₃), 22.6 (CH₃), 24.6 (CH), 28.3 (C(<u>C</u>H₃)₃), 43.5 (CH₂), 47.3 (CH), 63.9 (CH₂O), 71.8 (<u>C</u>H₂ArCl), 79.9 (<u>C</u>(CH₃)₃), 128.5, 129.1 (ArCH), 136.1 (ArCH (oxazole)), 133.5, 136.2, 137.5, 165.2 (ArC), 155.1 (C=O). MS (ESI, +ve) *m/z* 409 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₂₁H₃₀N₂O₄Cl 409.1894, found 409.1885.

(S)-tert-Butyl (1-(4-(((4-fluorobenzyl)oxy)methyl)oxazol-2-yl)-3-methylbutyl)carbamate (36)

To a solution of 17 (56.9 mg, 0.20 mmol) in THF (2.0 mL) under N₂ at -78 °C was added a solution of NaHMDS (1.0 M in THF, 0.22 mL, 0.22 mmol) and the solution was stirred at -78 °C for 25 min. To this was added a solution of 4-fluorobenzyl chloride (31.8 mg, 0.22 mmol) and TBAI (3.7 mg, 0.010 mmol) in THF (1.0 mL) and the mixture was allowed to warm to rt with stirring for 6 h. The mixture was re-cooled to -78 °C and a further aliquot of NaHMDS (1.0 M in THF, 0.40 mL, 0.40 mmol) was added and stirring continued, allowing to warm to rt, over 29 h. A solution containing additional 4-fluorobenzyl chloride (31.8 mg, 0.22 mmol) and TBAI (7.4 mg, 0.020 mmol) in THF (0.5 mL) was added and stirring was continued for a further 72 h. The mixture was diluted with Et₂O (20 mL) and washed with 1 M HCl (20 mL) and saturated NaHCO₃ (20 mL), then dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (12% EtOAc/pet. ether) gave 36 (26.6 mg, 34%) as a colorless oil. TLC (20% EtOAc/pet. ether) $R_{\rm F} = 0.48$; $[\alpha]_{\rm D}^{25}$ -44.4 (*c* 0.22, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.32 (app. t, J = 6.6 Hz, 2H), 7.03 (app. t, J = 8.5 Hz, 2H), 5.09 – 5.01 (bm, 1H), 4.99 – 4.90 (bm, 1H), 4.56 (s, 2H), 4.44 (s, 2H), 1.77 – 1.60 (m, 3H), 1.44 (s, 9H), 0.95 (d, J = 6.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 162.4 (d, $J_{C-F} = 245.6$ Hz), 155.1, 137.7, 136.1, 133.5 (d, J_{C-F} = 3.3 Hz), 129.6 (d, J_{C-F} = 8.1 Hz), 115.2 (d, J_{C-F} = 21.4 Hz), 79.8, 71.9, 63.9, 47.4, 43.6, 28.3, 24.6, 22.6, 22.1; MS (ES⁺) m/z 431 (22%, M+K), 415 (100%, M+Na), 393 (60%, M+H), 337 (55%, M+HCOOH-Boc); HRMS (ES⁺) Calcd. for C₂₁H₂₉FN₂NaO₄: 415.2009 (M+Na), Found: 415.2009.

(S)-tert-Butyl (1-(4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)(methyl)carbamate (37)

To a solution of **29** (27.2 mg, 0.080 mmol) and TBAI (3.0 mg, 0.008 mmol) in THF (0.8 mL) under N₂ at -78 °C was added a solution of KHMDS (1.0 M in THF, 0.096 mL, 0.096 mmol) and the solution was stirred at -78 °C for 1 h. To this was added MeI (0.025 mL, 0.40 mmol) and the mixture was allowed to warm to rt with stirring for 18 h. The mixture was quenched with saturated NH₄Cl (3 mL), then diluted with Et₂O (15 mL), washed with brine (10 mL), dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (3.5% EtOAc/pet. ether) gave **37** (21.2 mg, 75%) as a colorless gum. TLC (10% EtOAc/pet. ether) $R_{\rm F} = 0.65$; $[\alpha]_{\rm D}^{25}$ -65.4 (*c* 0.92, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 5.62 – 5.50 (bm, H_{\alpha}, rotamer A, 1H), 5.38 – 5.25 (bm, H_{\alpha}, rotamer B, 1H), 4.41 (s, 2H), 3.28 (d, *J* = 6.7 Hz, 2H), 2.69 (bs, 3H), 1.99 – 1.76 (m, 3H), 1.66 – 1.54 (m, 1H), 1.48 (s, 9H), 0.97 (d, *J* = 6.1 Hz, 6H), 0.91 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃, major rotamer only, Boc carbonyl was not observed) δ 163.6, 138.2, 136.1, 80.3, 77.8, 65.1, 51.8, 50.5, 38.6, 28.38, 28.36, 24.3, 23.2, 21.6, 19.3; MS (ES⁺) *m*/*z* 377 (100%, M+Na), 355 (45%, M+H), 299 (23%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₉H₃₄N₂NaO₄: 377.2416 (M+Na), Found: 377.2419.

(S)-tert-Butyl (1-(4-(isobutoxymethyl)-5-phenyloxazol-2-yl)-3-methylbutyl)carbamate (38)

Based on a literature C–H arylation method,^{S8} a 15 mL glass vial equipped with a stir bar was charged in the air with **29** (40.9 mg, 0.12 mmol), Pd(dppf)Cl₂·CH₂Cl₂ (4.9 mg, 0.0060 mmol), PPh₃ (3.1 mg, 0.012 mmol), Ag₂CO₃ (66.2 mg, 0.24 mmol), PhI (29.4 mg, 0.14 mmol) and water (1.2 mL). The vial was fitted with a rubber septum, evacuated and refilled with N₂ (two cycles), then heated at 70 °C with rapid stirring for 40 h during which time a silver mirror formed on the reaction vial. After cooling to rt, the mixture was filtered through celite with the aid of CH₂Cl₂ (30 mL), then concentrated under reduced pressure. Flash chromatography (5% EtOAc/pet. ether) gave **38** (32.1 mg, 64%) as a colorless gum. TLC (10% EtOAc/pet. ether) $R_{\rm F} = 0.38$; $[\alpha]_{\rm D}^{25}$ –44.3 (*c* 1.53, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 7.3 Hz, 1H), 5.17 – 4.94 (m, 2H), 4.53 (s, 2H), 3.33 (d, *J* = 6.7 Hz, 2H), 1.93 (sep, *J* = 6.7 Hz, 1H), 1.84 – 1.65 (m, 3H), 1.45 (s, 9H), 0.98 (d, *J* = 5.7 Hz, 6H), 0.92 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 155.1, 148.8, 132.5, 128.7, 128.4, 128.1, 126.1, 79.8, 77.5, 65.1, 47.4, 43.7, 28.4, 28.3, 24.7, 22.6, 22.2, 19.5; MS (ES⁺) *m*/*z* 439 (19%, M+Na), 417 (100%, M+H), 361 (11%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₂₄H₃₆N₂NaO₄: 439.2573 (M+Na), Found: 439.2590.

(S)-tert-Butyl (1-(5-bromo-4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (39)

To a solution of **29** (54.0 mg, 0.16 mmol) in THF (1.6 mL) at -78 °C under N₂ was added dropwise a solution of LDA (1.55 M in THF, 0.215 mL, 0.33 mmol) and the mixture was stirred at -78 °C for 1.25 h. To this was added a solution of NBS (62.1 mg, 0.35 mmol) in THF (1.0 mL) and the mixture was allowed to warm to 10 °C over 1.25 h, before quenching with saturated NH₄Cl (2 mL) and stirring for a further 15 min. The mixture was diluted with Et₂O (20 mL), washed with brine (20 mL), dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (3.5% EtOAc/pet. ether) gave **39** (26.8 mg, 40%) as a pale yellow gum. TLC (10% EtOAc/pet. ether) $R_F = 0.42$; $[\alpha]_D^{25}$ -38.3 (*c* 1.21, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 5.06 - 4.86 (m, 2H), 4.33 (s, 2H), 3.24 (d, J = 6.7 Hz, 2H), 1.89 (sep, J = 6.6 Hz, 1H), 1.77 - 1.59 (m, 3H), 1.44 (s, 9H), 0.95 (d, J = 5.2 Hz, 6H), 0.90 (d, J = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 155.0, 135.7, 120.2, 80.0, 77.6, 63.5, 47.5, 43.3, 28.3, 24.6, 22.7, 22.0, 19.3; MS (ES⁺) *m/z* 443 (100%, M+Na, ⁸¹Br), 441 (99%, M+Na, ⁷⁹Br), 421 (26%, M+H, ⁸¹Br), 419 (23%, M+H, ⁷⁹Br); HRMS (ES⁺) Calcd. for C₁₈H₃₁⁷⁹BrN₂NaO₄: 441.1365 (M+Na), Found: 441.1381. Continued elution (3.5% EtOAc/pet. ether) returned the starting material **29** (22.1 mg, 41% recovery).

(S)-2-(1-((tert-Butoxycarbonyl)amino)-3-methylbutyl)oxazole-4-carboxylic acid (40)

A mixture of ester 16^{84} (187.4 mg, 0.60 mmol) and LiOH (143.7 mg, 6.00 mmol) in THF (6 mL) and water (6 mL) was stirred at rt in an air atmosphere for 3.5 h. The mixture was diluted with EtOAc (20 mL) and 1 M HCl (20 mL) and the organic phase was washed with water (15 mL) and brine (15 mL), then dried (MgSO₄) and concentrated to give the known acid **40** (176.4 mg, 99%) as a white solid. NMR data was in good agreement with that reported previously for **40** prepared by saponification with NaOH in dioxane.⁸⁴ TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.24$; $[\alpha]_{\rm D}^{25} -70.8$ (*c* 2.26, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 10.01 (bs, 1H), 8.27 (s, 1H), 6.06 (bm, 1H), 5.09 – 4.96 (m, 1H), 1.76 (t, *J* = 7.0 Hz, 2H), 1.66 (sep, *J* = 6.6 Hz, 1H), 1.40 (s, 9H), 0.95 (app. t, *J* = 6.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 163.9, 155.5, 144.5, 133.2, 80.0, 47.4, 43.2, 28.2, 24.7, 22.5, 22.0; MS (ES⁻) m/z 297 (100%, M–H); HRMS (ES⁺) Calcd. for C₁₄H₂₁N₂O₅: 297.1450 (M–H), Found: 297.1461.

(S)-Isobutyl 2-(1-((tert-butoxycarbonyl)amino)-3-methylbutyl)oxazole-4-carboxylate (41)

This ester was prepared according to *General Procedure 1* using carboxylic acid **40** (29.8 mg, 0.10 mmol) and i-BuOH (74.1 mg, 1.00 mmol), with a 42 h reaction time. Flash chromatography (5% EtOAc/pet. ether) gave **41** (17.4 mg, 49%) as a pale yellow gum. TLC (10% EtOAc/pet. ether) $R_{\rm F} = 0.25$; $[\alpha]_{\rm D}^{25}$ -46.1 (*c* 0.87, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 5.11 (bm, 1H), 5.04 –

4.92 (m, 1H), 4.11 (d, J = 6.8 Hz, 2H), 2.06 (sep, J = 6.8 Hz, 1H), 1.82 – 1.59 (m, 3H), 1.43 (s, 9H), 0.98 (d, J = 6.8 Hz, 6H), 0.95 (d, J = 6.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 161.2, 155.1, 143.4, 133.4, 80.0, 71.1, 47.4, 43.5, 28.3, 27.8, 24.6, 22.6, 22.0, 19.0; MS (ES⁺) m/z 377 (100%, M+Na), 299 (49%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₈H₃₀N₂NaO₅: 377.2052 (M+Na), Found: 377.2057.

(S)-tert-Butyl (1-(4-(isobutylcarbamoyl)oxazol-2-yl)-3-methylbutyl)carbamate (42)

This compound was prepared according to *General Procedure 1* using carboxylic acid **40** (29.8 mg, 0.10) and i-BuNH₂ (8.8 mg, 0.12 mmol) with a 24 h reaction time to give **42** (30.6 mg, 87%) as a pale yellow gum. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.58$; $[\alpha]_{\rm D}^{25}$ -48.9 (*c* 1.26, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 6.97 (bs, 1H), 5.13 – 4.85 (m, 2H), 3.23 (t, *J* = 6.9 Hz, 2H), 1.88 (sep, *J* = 6.8 Hz, 1H), 1.79 – 1.60 (m, 3H), 1.44 (s, 9H), 1.02 – 0.92 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 160.5, 155.0, 140.7, 136.2, 80.1, 47.4, 46.3, 43.1, 28.6, 28.3, 24.6, 22.5, 22.0, 20.1; MS (ES⁺) m/z 376 (100%, M+Na), 298 (90%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₈H₃₁N₃NaO₄: 376.2212 (M+Na), Found: 376.2199.

(S)-tert-Butyl (1-(4-(methoxy(methyl)carbamoyl)oxazol-2-yl)-3-methylbutyl)carbamate (43)

This compound was prepared according to *General Procedure 1* using carboxylic acid **40** (89.5 mg, 0.30 mmol) and *N*,*O*-dimethylhydroxylamine·HCl (35.1 mg, 0.36 mmol), with added NEt(i-Pr)₂ (46.5 mg, 0.36 mmol) and a 16 h reaction time to give **43** (98.2 mg, 96%) as a pale yellow gum. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.59$; $[\alpha]_{\rm D}^{25} -48.5$ (*c* 3.49, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 5.20 – 5.13 (m, 1H), 5.03 – 4.94 (m, 1H), 3.75 (s, 3H), 3.38 (s, 3H), 1.83 – 1.60 (m, 3H), 1.43 (s, 9H), 0.95 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 161.0, 155.1, 142.2, 133.4, 79.9, 61.3, 47.2, 43.5, 33.2, 28.2, 24.6, 22.5, 22.1; MS (ES⁺) *m*/*z* 364 (100%, M+Na), 342 (16%, M+H), 286 (41%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₆H₂₇N₃NaO₅: 364.1848 (M+Na), Found: 364.1851.

(S)-tert-Butyl (3-methyl-1-(4-(4-methylpentanoyl)oxazol-2-yl)butyl)carbamate (44)

Preparation of (i-pentyl)MgBr: To a suspension of acid-washed Mg flakes (48.6 mg, 2.00 mmol) in THF (2.0 mL) under N₂ was added in a single aliquot (i-pentyl)Br (0.25 mL, 2.00 mmol) and the suspension was stirred at rt for 2 h. The resulting supernatant was titrated with a standard solution of 2-butanol in toluene (1.00 M) with 1,10-phenanthroline (*ca.* 3 mg) as indicator^{S9} to determine the concentration of the Grignard reagent (0.61 M, 61% of theoretical).

To a solution of **43** (21.0 mg, 0.062 mmol) in THF (0.22 mL) under N₂ at -10 °C (ice/salt bath) was added a solution of (i-pentyl)MgBr (prepared as described above, 0.61 M in THF, 0.40 mL, 0.25 mmol) and the mixture was allowed to warm to rt and stirred for 19 h. After quenching with saturated NH₄Cl (3 mL), the mixture was diluted with EtOAc (15 mL) and the organic layer washed with saturated NaHCO₃ (15 mL) and brine (15 mL), then dried (MgSO₄) and concentrated. Flash chromatography (5% EtOAc/pet. ether) gave **44** (16.3 mg, 75%) as a pale yellow gum. TLC (10% EtOAc/pet. ether) $R_F = 0.38$; $[\alpha]_D^{25} -46.8$ (*c* 1.00, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 8.13 (s, 1H), 5.12 - 4.89 (m, 2H), 2.87 (t, *J* = 7.4 Hz, 2H), 1.81 - 1.55 (m, 6H), 1.44 (s, 9H), 0.98 - 0.91 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 195.4, 165.3, 155.1, 141.8, 140.6, 80.1, 47.4, 43.3, 37.9, 32.6, 28.3, 27.7, 24.7, 22.6, 22.4, 22.1; MS (ES⁺) *m*/*z* 375 (100%, M+Na), 297 (82%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₁₉H₃₂N₂NaO₄: 375.2260 (M+Na), Found: 375.2267.

(S)-tert-Butyl (1-(4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)(methyl)carbamate (45)

To a solution of **17** (260 mg, 0.91 mmol) in THF (9.0 mL) under N₂ at -78 °C was added a solution of NaHMDS (1.0 M in THF, 2.00 mL, 2.00 mmol) and the solution was stirred at -78 °C for 25 min. To this was added a solution of MeI (1.292 g, 9.10 mmol) and TBAI (33.2 mg, 0.09 mmol) in THF (5.0 mL) and the mixture was allowed to warm to rt with stirring for 16 h. The mixture was diluted with EtOAc (20 mL) and washed with 1 M HCl (20 mL) and saturated NaHCO₃ (20 mL), then dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (14% EtOAc/pet. ether) gave **45** (216 mg, 76%) as a colorless gum. ¹H NMR (500 MHz, CDCl₃): δ 0.97 (d, *J* = 7.0 Hz, 6H, 2 x CH₃), 1.48 (s, 9H, ^{*t*}Bu), 1.49-1.69 (m, 1H, CH), 1.79-2.00 (m, 2H, CH₂), 2.69 (s, 3H, NCH₃), 3.42 (s, 3H, OCH₃), 4.37 (s, 2H, CH₂O), 5.28-5.40 (m, 0.5H, CH), 5.50-5.65 (m, 0.5H, CH); ¹³C NMR (75 MHz, CDCl₃): δ rotamers 21.5/21.7 (CH₃), 23.2 (CH₃), rotamers 24.3/24.6 (CH), 28.3 (C(<u>CH₃</u>)₃), rotamers 28.9/29.2 (NCH₃), rotamers 38.2/38.5 (CH₂), rotamers 50.5/51.8 (CH), 58.5 (OCH₃), 66.3 (CH₂O), rotamers 80.0/80.3 (<u>C(CH₃</u>)₃), 136.3 (ArH), 137.6, 163.9 (ArC), rotamers 155.5/156.0 (C=O). MS (ESI, +ve) *m/z* 313 (100%) [M+H]⁺; 335 (50%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₁₆H₂₉N₂O₄ 313.2127, found 313.2126.

(S)-tert-Butyl (1-(4-(methoxymethyl)-5-methyloxazol-2-yl)-3-methylbutyl)(methyl)carbamate (46)

To a solution of **45** (49 mg, 0.16 mmol) in dry THF (0.5 mL) at -78 °C was slowly added *n*-BuLi (2.5 M in hexane, 0.13 mL, 2.0 equiv.). After stirring at -78 °C for 30 min, methyl iodide (1 mL, excess) was added dropwise. The mixture was stirred at this temperature for additional 30 min, and then was quenched with saturated aqueous NH₄Cl (3 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The yellowish crude was purified by column flash chromatography (0.5% MeOH/CH₂Cl₂) to yield **46** (23 mg, 45%) as a yellowish compound. ¹H NMR (300 MHz, CDCl₃): δ 0.96 (d, *J* = 6.6 Hz, 6H, CH₃), 0.97 (d, *J* = 6.6 Hz, 6H, CH₃), 1.49 (s, 9H, ^{*t*}Bu), 1.51-1.66 (m, 1H, CH), 1.73-1.99 (m, 2H, CH₂), 2.30 (s, 3H, ArCH₃), 2.68 (s, 3H, NCH₃), 3.39 (s, 3H, OCH₃), 4.29 (s, 2H, CH₂O), 5.21-5.31 (m, 0.5H, CH), 5.44-

5.56 (m, 0.5H, CH); ¹³C NMR (75 MHz, CDCl₃): δ 10.23 (Ar<u>C</u>H₃), rotamers 21.6/21.8 (CH₃), 23.3 (CH₃), rotamers 24.3/24.7 (CH), 28.4 (C(<u>C</u>H₃)₃), rotamers 28.9/29.2 (NCH₃), 38.5 (CH₂), rotamers 50.4/51.7 (CH), 58.5 (OCH₃), 65.9 (CH₂O), rotamers 80.0/80.2 (<u>C</u>(CH₃)₃), 131.5, 134.4, 146.7, 161.5 (ArC), rotamers 155.6/156.0 (C=O). MS (ESI, +ve) *m*/*z* 327 (100%) [M+H]⁺; 349 (40%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₁₇H₃₁N₂O₄ 327.2284, found 327.2272. Further elution (0.5% MeOH/CH₂Cl₂) returned the starting material **45** (7 mg, 14% recovery).

(S)-tert-Butyl (1-(4-(methoxymethyl)-5-iodooxazol-2-yl)-3-methylbutyl)(methyl)carbamate (47)

To a solution of **45** (216 mg, 0.69 mmol) in dry THF (1 mL) at -78 °C was slowly added *n*-BuLi (2.5 M in hexane, 0.33 mL, 1.2 equiv.). After stirring at -78 °C for 30 min, a solution of iodine (200 mL, 0.79 mmol) in dry THF (1 mL) was alowly added. The mixture was stirred at this temperature for additional 30 min, and then was quenched with saturated aqueous NH₄Cl (3 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The yellowish crude was purified by column flash chromatography (10% EtOAc/pet. ether) to yield **47** (181 mg, 60%) as a colorless oil. $[\alpha]_D^{25}$ –62.95 (*c* 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.97 (2 x d, *J* = 6.6 Hz, 6H, 2 x CH₃), 1.48 (s, 9H, ¹Bu), 1.51-1.67 (m, 1H, CH), 1.72-2.01 (m, 2H, CH₂), 2.71 (s, 3H, NCH₃), 3.40 (s, 3H, OCH₃), 4.29 (s, 2H, CH₂O), 5.26-5.38 (m, 0.5H, CH), 5.52-5.65 (m, 0.5H, CH); ¹³C NMR (75 MHz, CDCl₃): δ rotamers 21.5/21.7 (CH₃), 23.2 (CH₃), rotamers 24.3/24.6 (CH), 28.4 (C(<u>C</u>H₃)₃), rotamers 29.1/29.3 (NCH₃), 38.4, 142.6, 168.4 (ArC), rotamers 155.4/156.0 (C=O). MS (ESI, +ve) *m/z* 435 (35%) [M+H]⁺; 461 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₁₆H₂₈N₂O₄I 439.1094, found 439.1113. Further elution (14% EtOAc/pet. ether) returned the starting material **45** (43 mg, 20% recovery).

(S)-tert-Butyl (1-(4-(methoxymethyl)-5-phenyloxazol-2-yl)-3-methylbutyl)(methyl)carbamate (48)

This compound was prepared according to *General Procedure 2* using **47** (20 mg, 0.046 mmol) and phenylboronic acid (6 mg, 0.049 mmol). Purification by flash column chromatography (7% EtOAc/pet. ether) afforded **48** (17 mg, 95%) as a yellow oil. $[\alpha]_D^{25}$ -50.7 (*c* 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.10 (d, *J* = 6.9 Hz, 6H, 2 x CH₃), 1.50 (s, 9H, ^{*t*}Bu), 1.63-1.71 (m, 1H, CH), 1.84-2.05 (m, 2H, CH₂), 2.17 (s, 3H, NCH₃), 3.47 (s, 3H, OCH₃), 4.51 (s, 2H, CH₂O), 5.31-5.45 (m, 0.5H, CH), 5.56-5.70 (m, 0.5H, CH), 7.37 (d, *J* = 6.9 Hz, 1H, ArH), 7.42-7.47 (m, 2H, ArH), 7.63-7.66 (m, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ rotamers 21.8/22.1 (CH₃), 23.5 (CH₃), rotamers 24.6/24.9 (CH), 28.6 (C(<u>C</u>H₃)₃), rotamers 29.3/29.6 (NCH₃), 38.7 (CH₂), rotamers 50.9/52.1 (CH), 58.4 (OCH₃), 66.8 (CH₂O), rotamers 80.2/80.6 (<u>C</u>(CH₃)₃), 126.4, 128.9, 129.1 (ArCH), 128.3, 132.4, 149.3, 161.9 (ArC), 155.8 (C=O). MS (ESI, +ve) *m*/*z* 389 (60%) [M+H]⁺; 411 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₂₂H₃₃N₂O₄ 389.2440, found 389.2443.

(S)-tert-Butyl (1-(4-(methoxymethyl)-5-(4-isopropylphenyl)oxazol-2-yl)-3methylbutyl)(methyl)carbamate (49)

This compound was prepared according to *General Procedure 2* using **47** (19 mg, 0.043 mmol) and (4-isopropylphenyl)boronic acid (8 mg, 0.049 mmol). Purification by flash column chromatography (7% EtOAc/pet. ether) afforded **49** (14 mg, 76%) as a yellow oil. $[\alpha]_D^{25}$ –53.5 (*c* 0.7, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.99 (d, *J* = 6.5 Hz, 6H, 2 x CH₃), 1.27 (d, *J* = 6.5 Hz, 6H, 2 x CH₃Ar), 1.50 (s, 9H, ¹Bu), 1.58-1.69 (m, 1H, CH), 1.81-2.03 (m, 2H, CH₂), 2.72-2.76 (m, 3H, NCH₃), 2.94 (septet, *J* = 7.0 Hz, 1H, C₆H₄C<u>H</u>(CH₃)₂), 3.46 (s, 3H, OCH₃), 4.50 (s, 2H, CH₂O), 5.31-5.42 (m, 0.5H, CH), 5.55-5.69 (m, 0.5H, CH), 7.30 (d, *J* = 7.5 Hz, 2H, ArH), 7.56 (d, *J* = 6.5 Hz, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ rotamers 21.8/22.1 (CH₃), 23.5 (CH₃), 24.1 ((CH₃)₂CHAr), rotamers 24.7/25.0 (CH), 28.7 (C(<u>CH₃</u>)₃), rotamers 29.3/29.6 (NCH₃), 34.2 ((CH₃)₂CHAr), 38.8 (CH₂), rotamers 50.9/52.1 (CH), 58.4 (OCH₃), 66.9 (CH₂O), rotamers 80.2/80.6 (<u>C</u>(CH₃)₃), 126.5, 127.2 (ArCH), 125.9, 131.4, 149.5, 149.9, 161.9 (ArC), 155.8 (C=O). MS (ESI, +ve) *m/z* 431 (100%) [M+H]⁺; 453 (90) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₂₅H₃₉N₂O₄ 431.2910, found 431.2930.

(S)-tert-Butyl (1-(4-(methoxymethyl)-5-(4-trifluoromethylphenyl)oxazol-2-yl)-3methylbutyl)(methyl)carbamate (50)

This compound was prepared according to *General Procedure 2* using **47** (24 mg, 0.055 mmol) and (4-(trifluoromethyl)phenyl)boronic acid (6 mg, 0.049 mmol). Purification by flash column chromatography (10% EtOAc/pet. ether) afforded **50** (21 mg, 84%) as a yellow oil. $[\alpha]_D^{25}$ –49.06 (*c* 1.1, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 1.04 (d, *J* = 6.5 Hz, 6H, 2 x CH₃), 1.53 (s, 9H, ^{*t*}Bu), 1.59-1.78 (m, 1H, CH), 1.82-2.10 (m, 2H, CH₂), 2.79-2.80 (m, 3H, NCH₃), 3.50 (s, 3H, OCH₃), 4.56 (s, 2H, CH₂O), 5.35-5.50 (m, 0.5H, CH), 5.61-5.71 (m, 0.5H, CH), 7.73 (d, *J* = 6.5 Hz, 2H, ArH), 7.78 (d, *J* = 6.5 Hz, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ rotamers 21.5/21.8 (CH₃), 23.3 (CH₃), rotamers 24.4/24.7 (CH), 28.4 (C(<u>C</u>H₃)₃), rotamers 29.1/29.4 (NCH₃), rotamers 38.4/38.6 (CH₂), rotamers 50.7/51.9 (CH), 58.3 (OCH₃), 66.6 (CH₂O), rotamers 80.2/80.5 (<u>C</u>(CH₃)₃), 124.0 (q, *J* = 273 Hz, CF₃), 125.9, 126.2 (ArCH), 130.3 (q, *J* = 30 Hz, <u>C</u>CF₃), 131.3, 134.0, 147.7, rotamers 162.5/162.4 (ArC), rotamers 155.5/156.0 (C=O). MS (ESI, +ve) *m/z* 457 (50%) [M+H]⁺; 479 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₂₃H₃₂N₂O₄F₃ 457.2314, found 457.2336.

(S)-tert-Butyl (methylbutyl)(methyl)carbamate (51)

This compound was prepared according to *General Procedure 2* using **47** (25 mg, 0.057 mmol) and (2,4-difluorophenyl)boronic acid (10 mg, 0.062 mmol). Purification by flash column chromatography (12% EtOAc/pet. ether) afforded **51** (22 mg, 91%) as a yellow oil. $[\alpha]_D^{25}$ –62.96 (*c* 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.99 (d, *J* = 6.9 Hz, 6H, 2 x CH₃), 1.48 (s, 9H, ^{*t*}Bu), 1.55-1.69 (m, 1H, CH), 1.81-2.05 (m, 2H, CH₂), 2.76 (s, 3H, NCH₃), 3.41 (s, 3H, OCH₃), 4.40 (d, *J* = 9 Hz, 2H, CH₂O), 5.33-5.45 (m, 0.5H, CH), 5.56-5.69 (m, 0.5H, CH), 6.89-7.00 (m, 2H, ArH), 7.49-7.56 (m, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ rotamers 21.5/21.8 (CH₃), 23.2 (CH₃), rotamers 24.4/24.7 (CH), 28.4 (C(<u>CH₃</u>)₃), rotamers 29.0/29.3 (NCH₃), 38.5 (CH₂), rotamers 50.7/51.9 (CH), 58.5 (OCH₃), rotamers 66.1/66.2 (CH₂O), rotamers 80.0/80.4 (<u>C</u>(CH₃)₃), 104.8 (t, *J* = 26 Hz, C3"''), 111.9 (d, *J* = 21 Hz, C5"''), 112.7 (d, *J* = 11 Hz, C1"'), 131.2 (C6"'), 134.4 (C4), 143.0 (C3), rotamers 155.5/156.0 (C=O), 159.5 (dd, *J₁* = 253 Hz, *J₂* = 12 Hz, C2"''), 163.1 (C2), 163.4 (dd, *J₁* = 251 Hz, *J₂* = 12 Hz, C4"''); MS (ESI, +ve) *m/z* 425 (50%) [M+H]⁺; 447 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₂₂H₃₁N₂O₄F₂ 425.2252, found 425.2243.

(S)-tert-Butyl (1-(4-(methoxymethyl)-5-(3,5-dimethylisoxazol-4-yl)oxazol-2-yl)-3methylbutyl)(methyl)carbamate (52)

This compound was prepared according to *General Procedure* 2 using **47** (20 mg, 0.046 mmol) and (3,5-dimethylisoxazol-4-yl)boronic acid (7 mg, 0.051 mmol). Purification by flash column chromatography (13% EtOAc/pet. ether) afforded **52** (16 mg, 85%) as a yellow oil. $[\alpha]_D^{25}$ –60.48 (*c* 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.99 (d, *J* = 6.6 Hz, 3H, CH₃), 1.00 (d, *J* = 6.9 Hz, 3H, CH₃), 1.48 (s, 9H, ^{*t*}Bu), 1.59-1.71 (m, 1H, CH), 1.79-2.04 (m, 2H, CH₂), 2.26 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 2.73 (s, 3H, NCH₃), 3.42 (s, 3H, OCH₃), 4.25 (ABq, *J* = 11.4 Hz, 2H, CH₂O), 5.34-5.40 (m, 0.5H, CH), 5.56-5.61 (m, 0.5H, CH); ¹³C NMR (75 MHz, CDCl₃): δ 10.6 (CH₃), 11.4 (CH₃), rotamers 21.4/21.6 and 23.3 (C4' and C4''), rotamers 24.3/24.6 (C3'), 28.4 (C(<u>C</u>H₃)₃), rotamers 28.9/29.4 (NCH₃), 38.2 (C2'), rotamers 50.7/51.8 (C1'), 58.9 (OCH₃), 65.8 (CH₂O), rotamers 80.1/80.6 (<u>C</u>(CH₃)₃), 104.9 (C3'''), 134.7 (C5), 139.3 (C4), rotamers 155.4/155.9 (C=O), 159.1 (C4'''), rotamers 163.8/164.0 (C2), 168.4 (C2'''). MS (ESI, +ve) *m/z* 408 (90%) [M+H]⁺; 430 (100) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₂₁H₃₄N₃O₅ 408.2498, found 408.2505.

(S)-1-(4-Benzyloxazol-2-yl)-3-methylbutan-1-amine (53)

A solution of Type **B** protected amine **13** (140 mg, 0.37 mmol) and ethylenediamine (0.10 mL, 1.50 mmol) in ethanol (5 mL) was heated at reflux for 18 h. The ethanol was removed in vacuo and the remaining mixture was dissolved in CH₂Cl₂ and acidified with 1 M HCl. The organic layer was separated and the aqeous phase was made basic with 1M NaOH, then extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were dried (Na₂SO₄) and concentrated to give amine **53** (70 mg, 78%). ¹H NMR (300 MHz, CDCl₃) δ 0.92-0.97 (m, 6H), 1.60-1.75 (m, 5H/NH₂), 3.86 (s, 2H), 4.03-4.08 (m, 1H), 7.17 (s, 1H), 7.22-7.35 (m, 5H). Subsequent coupling to commercially obtained Fmoc-D-Arg(Pbf)-OH (see Scheme S7) revealed that amine **53** had been formed with minor amounts of the (*R*)-enantiomer (due to the formation of chromatographically separable epimers), presumably as a consequence of partial racemization during this deprotection protocol.

(S)-3-Methyl-1-(4-phenyloxazol-2-yl)butan-1-amine (54)

A solution of Type **B** protected amine **14** (160 mg, 0.44 mmol) and ethylenediamine (0.10 mL, 1.50 mmol) in ethanol (5 mL) was heated at reflux for 18 h. The ethanol was removed in vacuo and the remaining mixture was dissolved in CH₂Cl₂ and acidified with 1 M HCl. The organic layer was separated and the aqeous phase was made basic with 1M NaOH, then extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were dried (Na₂SO₄) and concentrated to give **54** (90 mg, 87%). ¹H NMR (300 MHz, CDCl₃) δ 0.72-1.00 (m, 6H), 1.68-1.86 (m, 5H/NH₂), 4.11-4.19 (m, 1H), 7.27-7.34 (m, 1H), 7.38-7.42 (m, 2H), 7.70-7.74 (m, 2H), 7.84 (s, 1H). Subsequent coupling to commercially obtained Fmoc-D-Arg(Pbf)-OH (see Scheme S7) revealed that amine **54** had been formed with minor amounts of the (*R*)-enantiomer (due to the formation of chromatographically separable epimers), presumably as a consequence of partial racemization during this deprotection protocol.

(S)-3-Methyl-1-(oxazol-2-yl)butan-1-ammonium chloride (55)

To a solution of Type **B** protected amine **15** (16.9 mg, 0.059 mmol) in i-PrOH (0.50 mL) and H₂O (0.09 mL) was added NaBH₄ (11.2 mg, 0.30 mmol) and the mixture was stirred at rt in a capped vial (air atmosphere) for 20 h. To this was added AcOH (0.08 mL) and the mixture was heated at 80 °C for 2 h. An additional aliquot of AcOH (0.06 mL) was added and heating continued at 80 °C for a further 6 h to complete the amide hydrolysis. The mixture was diluted with 1 M HCl (10 mL) and EtOAc (10 mL). The aqueous phase was separated and basified to pH \geq 10 with 25% K₂CO₃ and the free amine was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were dried (Na₂SO₄)

and filtered, and then an aliquot of ethereal HCl (2 M in Et₂O, 0.20 mL) was added to convert the amine to the non-volatile HCl salt. Removal of the solvents under reduced pressure gave **55** (8.5 mg, 75%) as a white solid. ¹H NMR (500 MHz, CD₃OD) δ 8.02 (s, 1H), 7.26 (s, 1H), 4.63 (dd, J = 9.2, 6.0 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.87 – 1.79 (m, 1H), 1.60 (sep, J = 6.8 Hz, 1H), 0.99 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 161.2, 142.1, 128.7, 48.5, 42.1, 25.8, 22.8, 22.0; MS (ES⁺) m/z 155 (100%, M+H); HRMS (ES⁺) Calcd. for C₈H₁₄N₂NaO: 177.1004 (M+Na), Found: 177.1005. Subsequent coupling to the stereochemically pure carboxylic acid **A** (with formation of ~90:10 inseparable epimers) revealed that amine **55** had contained *ca*. 10% of the minor (*R*)-enantiomer, presumably as a consequence of partial racemization during this deprotection protocol.

(S)-1-(4-methyloxazol-2-yl)-3-methylbutan-1-ammonium trifluoroacetate (56)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **18** (21.7 mg, 0.08 mmol) and omitting the aqueous work-up to yield amine TFA salt **56** (27.4 mg, 120% of theoretical due to residual TFA) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 0.89 - 0.96 (6H, m, H4 and H3-CH₃), 1.26 - 1.57 (3H, m, H3 and H2), 2.00 (2H, bm, NH), 2.17 (3H, s, H4'-CH₃), 4.68 - 4.84 (1H, bm, H1), 7.47 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 10.3 (C4'-CH₃), 21.3 (C4/3-CH₃), 22.4 (C4/3-CH₃), 24.7 (C3), 40.9 (C2), 47.9 (C1), 136.5 (C4'), 136.7 (C5'), 159.7 (C2'). MS (ESI⁺) *m*/*z* = 169 (100 %, [M+H]⁺).

(S)-1-(4-(fluoromethyl)oxazol-2-yl)-3-methylbutan-1-ammonium trifluoroacetate (57)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **19** (26 mg, 0.09 mmol) and omitting the aqueous work-up to yield amine TFA salt **57** (27.1 mg, quant.) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 0.92 (6H, t, *J* = 6.8 Hz H4 and H3-C<u>H</u>₃), 1.27 - 1.60 (3H, m, H2 and H3), 1.90 - 1.99 (2H, bm, NH), 4.56 - 4.70 (1H, bm, H1), 5.18 (2H, d, *J*_{H-F} = 47.4 Hz, CH₂F), 7.66 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 21.5 (C4/C3-<u>C</u>H₃), 22.3 (C4/C3-<u>C</u>H₃), 24.7 (C3), 41.1 (C2), 48.2 (C1), 75.5 (*J*_{C-F} = 164.5 Hz), 136.4 (C5'), 136.7 (C5'), 139.2 (C4'), 139.3 (C4'), 160.7 (C2'). MS (ESI⁺) *m*/*z* = 187 (100 %, [M+H]⁺).

(S)-(2-(1-Amino-3-methylbutyl)oxazol-4-yl)methanol (58)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **17** (22.2 mg, 0.078 mmol) to give **58** (11.2 mg, 78%) as a pale yellow gum. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 4.57 (s, 2H), 4.06 (t, J = 7.0 Hz, 1H), 2.19 (bs, 3H), 1.76 – 1.56 (m, 3H), 0.94 (d, J = 6.2 Hz, 3H), 0.92 (d, J = 6.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 140.0, 134.7, 56.4, 48.3,

45.1, 24.7, 22.7, 22.1; MS (ES⁺) m/z 185 (100%, M+H); HRMS (ES⁺) Calcd. for C₉H₁₇N₂O₂: 185.1290 (M+H), Found: 185.1284.

(S)-1-(4-(Methoxymethyl)oxazol-2-yl)-3-methylbutan-1-amine (59)

OMé

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **33** (45 mg, 0.15 mmol) to yield **59** (25 mg, 84%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ 0.92 (d, *J* = 6.3 Hz, 3H, CH₃), 0.94 (d, *J* = 6.3 Hz, 3H, CH₃), 1.60-1.76 (m, 5H, CH, CH₂ and NH₂), 3.43 (s, 3H, OCH₃), 4.00-4.15 (m, 1H, CH), 4.36 (s, 2H, CH₂O), 7.54 (s, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 22.0 (CH₃), 22.8 (CH₃), 24.7 (CH), 45.0 (CH₂), 48.2 (CH), 58.5 (OCH₃), 66.2 (CH₂O), 135.9 (ArCH), 137.3, 168.4 (ArC). MS (ESI, +ve) *m*/*z* 199 (100%) [M+H]⁺; HRMS (ES⁺) Calcd. for C₁₀H₁₉N₂O₂: 199.1447 [M+H]⁺, Found: 199.1445.

(S)-1-(4-(Methoxymethyl)thiazol-2-yl)-3-methylbutan-1-amine (60)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **26** (58.3 mg, 0.18 mmol) to yield **60** (33.8 mg, 85%) as a viscous yellow oil. $[\alpha]_D^{25} = -5.7$ (c 1.7, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.94 (6H, t, J = 6.8 Hz, H4 and 3-CH₃), 1.56 - 1.66 (1H, m, H2_a), 1.69 - 1.83 (4H, m, H2_a and H3 and NH₂), 3.43 (3H, s, OCH₃), 4.29 (1H, dd, J = 8.8, 4.8 Hz, H1), 4.52 (2H, s, CH₂OCH₃), 7.11 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 21.9 (C4 or 3-CH₃), 23.3 (C4 or 3-CH₃), 25.0 (C3), 47.9 (C2), 52.5 (C1), 58.7 (OCH₃), 70.6 (CH₂OCH₃), 115.5 (C5'), 153.4 (C4'), 178.8 (C2'). IR (neat) ν [cm⁻¹] = 3374 (w), 2955 (m), 2927 (m), 2870 (m), 1719 (w), 1664 (w), 1612 (w), 1533 (w), 1468 (m), 1368 (m), 1259 (m), 1195 (m), 1138 (m), 1094 (s), 985 (w), 953 (w), 907 (w), 861 (w), 803 (m), 746 (m). MS (ESI⁺) m/z = 215 (100%, [M+H]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₁₀H₁₉N₂OS: 215.1218, Found: 215.1216.

(S)-1-(4-(Isopropoxymethyl)oxazol-2-yl)-3-methylbutan-1-ammonium trifluoroacetate (61)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **27** (22 mg, 0.067 mmol) and omitting the aqueous work-up to yield amine TFA salt **61** (22 mg, 96%) as an oil. ¹H NMR (500 MHz, CD₃OD): δ 0.92 (d, *J* = 6.5 Hz, 3H, CH₃), 0.96 (d, *J* = 7.0 Hz, 3H, CH₃), 1.16 (d, *J* = 6.5 Hz, 3H, 2 x CH₃), 1.55-1.61 (m, 1H, CH), 1.75-1.80 (m, 1H, CH₂ (H_a)), 1.95-2.01 (m, 1H, CH₂ (H_b)), 3.72 (septet, *J* = 6.0 Hz, 1H, OCH), 4.42 (s, 2H, CH₂O), 4.56 (dd, *J*₁ = 6.5, *J*₂ = 9.0 Hz, 1H, CH), 7.90 (s, 1H, ArH (oxazole)); ¹³C NMR (126 MHz, CD₃OD): δ 22.0, 22.2, 22.3, 22.8 (4 x CH₃), 25.7 (CH), 42.0 (CH₂), 48.5 (CH), 65.6 (CH₂O), 70.9 (CHO), 140.4 (ArCH), 140.6, 161.3 (ArC). MS (ESI, +ve) *m/z* 227 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₂H₂₃N₂O₂ 227.1760, found 227.1754.

(S)-1-(4-(Isopropoxymethyl)thiazol-2-yl)-3-methylbutan-1-amine (62)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **28** (53.2 mg, 0.16 mmol) to yield **62** (27.4 mg, 71%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 0.96 (6H, t, *J* = 10.0 Hz, H4 and 3-CH₃), 1.22 - 1.26 (6H, m, CH₂OCH(C<u>H₃)₂), 1.59 - 1.68 (1H, m, H3), 1.71 - 1.80 (2H, m, H2), 1.86 (1H, bs, NH), 3.73 - 3.77 (1H, m, CH₂OC<u>H</u>(CH₃)₂), 4.29 (1H, dd, *J* = 8.8, 4.9 Hz H1), 4.60 (2H, s, C<u>H₂OCH(CH₃)₂), 7.12 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 21.9 (C4 or 3-CH₃), 22.1 (C4 or 3-CH₃), 23.1 (CH₂OCH(<u>C</u>H₃)₂), 24.8 (C3), 47.7 (C2), 52.3 (C1), 66.3 (<u>C</u>H₂OCH(CH₃)₂), 71.6 (CH₂O<u>C</u>H(CH₃)₂), 114.5 (C5'), 154.3 (C4'), 178.1 (C2'). MS (ESI⁺) *m/z* = 243 (100 %, [M+H]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₁₂H₂₂N₂NaOS: 243.1531, Found: 243.1531.</u></u>

(S)-1-(4-(Isobutoxymethyl)oxazol-2-yl)-3-methylbutan-1-amine (63)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **29** (34.0 mg, 0.10 mmol) to give **63** (24.2 mg, 100%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (s, 1H), 4.38 (s, 2H), 4.04 (t, *J* = 7.0 Hz, 1H), 3.26 (d, *J* = 6.5 Hz, 2H), 1.88 (sep, *J* = 6.5 Hz, 1H), 1.73 – 1.58 (m, 5H), 0.93 – 0.87 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 138.0, 135.5, 77.8, 65.0, 48.3, 45.1, 28.3, 24.7, 22.8, 22.0, 19.3; MS (ES⁺) *m*/*z* 241 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₃H₂₅N₂O₂: 241.1916 (M+H), Found: 241.1928.

(S)-1-(4-((Isopentyloxy)methyl)oxazol-2-yl)-3-methylbutan-1-amine (64)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **30** (42.7 mg, 0.12 mmol) to give **64** (27.1 mg, 89%) as a pale yellow gum. ¹H NMR (500 MHz, CDCl₃) δ 7.52 (s, 1H), 4.40 (s, 2H), 4.06 (t, *J* = 6.9 Hz, 1H), 3.55 (t, *J* = 7.0 Hz, 2H), 1.77 – 1.58 (m, 6H), 1.51 (q, *J* = 7.0 Hz, 2H), 0.99 – 0.85 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 137.8, 135.6, 69.4, 64.7, 48.3, 45.1, 38.4, 25.0, 24.7, 22.8, 22.6, 22.0; MS (ES⁺) *m/z* 255 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₄H₂₇N₂O₂: 255.2073 (M+H), Found: 255.2075.

(S)-3-Methyl-1-(4-(phenoxymethyl)oxazol-2-yl)butan-1-amine (65)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **32** (27 mg, 0.075 mmol) to yield **65** (19 mg, 97%) as an oil. ¹H NMR (500 MHz, CDCl₃): δ 0.91 (d, J = 6.5 Hz, 3H, CH₃), 0.94 (d, J = 6.0 Hz, 3H, CH₃), 1.71-1.76 (m, 1H, CH), 1.98-2.08 (m, 2H, CH₂), 4.59 (t, J = 7.0 Hz, 1H, CH), 4.96 (ABq, J = 13.5 Hz, 2H, CH₂O), 6.93-6.97 (m, 3H, ArH), 7.26 (d, J = 9.2 Hz, 2H, ArH), 7.65 (s, 1H, ArH (oxazole)), 9.07 (br s, 2H, NH₂); ¹³C NMR (75 MHz, CDCl₃): δ 21.9 (CH₃), 22.3 (CH₃), 24.5 (CH), 41.0 (CH₂), 47.8 (CH), 62.5 (CH₂O), 115.0, 151.5, 129.6 (ArCH), 137.6, 158.1, 159.9 (ArC). MS (ESI, +ve) *m/z* 261 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₅H₂₁N₂O₂ 261.1603, found 261.1607.

(S)-1-(4-(Benzyloxymethyl)oxazol-2-yl)-3-methylbutan-1-amine (66)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **34** (19 mg, 0.050 mmol) to yield **66** (10 mg, 73%) as an oil. ¹H NMR (500 MHz, CDCl₃): δ 0.91-0.95 (m, 6H, 2 x CH₃), 1.62-1.72 (m, 3H, CH and CH₂), 1.85-2.04 (m, 2H, NH₂), 4.02-4.17 (m, 1H, CH), 4.45 (s, 2H, CH₂O), 4.62 (s, 2H, C<u>H₂Ph</u>), 7.26-7.36 (m, 5H, ArH), 7.53 (s, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 22.0 (CH₃), 22.8 (CH₃), 24.7 (CH), 45.0 (CH₂), 48.3 (CH), 63.9 (CH₂O), 72.7 (<u>CH₂Ph</u>), 127.7, 127.9, 128.4 (ArCH), 135.9 (ArCH (oxazole)), 137.5, 137.7, 168.2. MS (ESI, +ve) *m/z* 275 (100%) [M+H]⁺.

(S)-1-(4-(4-Chlorobenzyloxymethyl)oxazol-2-yl)-3-methylbutan-1-amine (67)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **35** (37 mg, 0.090 mmol) to yield **67** (27 mg, 97%) as an oil. ¹H NMR (500 MHz, CDCl₃): δ 0.92 (d, *J* = 6.0 Hz, 3H, CH₃), 0.95 (d, *J* = 6.0 Hz, 3H, CH₃), 1.61-1.76 (m, 5H, CH, CH₂ and NH₂), 4.02-4.12 (m, 1H, CH), 4.44 (s, 2H, CH₂O), 4.58 (s, 2H, CH₂ArCl), 7.27-7.34 (m, 4H, ArH), 7.54 (s, 1H, ArH (oxazole)); ¹³C NMR (126 MHz, CDCl₃): δ 22.0 (CH₃), 22.8 (CH₃), 24.7 (CH), 45.1 (CH₂), 48.3 (CH), 64.0 (CH₂O), 71.8 (<u>CH</u>₂ArCl), 128.5, 129.1 (ArCH), 135.9 (ArCH (oxazole)), 133.5, 136.3, 137.3; MS (ESI, +ve) *m/z* 309 (100%) [M+H]⁺.

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **36** (22.2 mg, 0.057 mmol) to give **68** (13.5 mg, 82%) as a colorless gum. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.38 – 7.29 (m, 2H), 7.03 (app. t, *J* = 8.5 Hz, 2H), 4.57 (s, 2H), 4.44 (s, 2H), 4.07 (t, *J* = 6.8 Hz, 1H), 1.81 – 1.57 (m, 5H), 0.95 (d, *J* = 6.0 Hz, 3H), 0.92 (d, *J* = 5.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 162.4 (d, *J*_{C-F} = 245.6 Hz), 137.4, 135.9, 133.6 (d, *J*_{C-F} = 3.0 Hz), 129.7 (d, *J*_{C-F} = 8.0 Hz), 115.3 (d, *J*_{C-F} = 21.4 Hz), 72.0, 63.9, 48.3, 45.1, 24.7, 22.8, 22.0; MS (ES⁺) *m/z* 293 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₆H₂₂FN₂O₂: 293.1665 (M+H), Found: 293.1653.

(S)-4-(((2-(1-Ammonio-3-methylbutyl)oxazol-4-yl)methoxy)methyl)pyridin-1-ium trifluoroacetate (69)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **31** (13 mg, 0.035 mmol) and omitting the aqueous work-up to yield amine TFA salt **69** (13 mg, 96%) as an oil. ¹H NMR (300 MHz, CD₃OD): δ 0.85 (d, J = 6.6 Hz, 3H, CH₃), 0.89 (d, J = 6.6 Hz, 3H, CH₃), 1.45-1.58 (m, 1H, CH), 1.67-1.77 (m, 1H, CH₂ (H_a)), 1.84-1.96 (m, 1H, CH₂ (H_b)), 4.52 (dd, $J_1 = 6.3$, $J_2 = 9.0$ Hz, 1H, CH), 4.58 (d, J = 3.9 Hz, 2H, CH₂O), 4.81 (s, 2H, CH₂Py), 7.94-7.99 (m, 2H, ArH), 7.98 (s, 1H, ArH (oxazole)), 8.71 (d, J = 3.9 Hz, 2H, ArH); ¹³C NMR (75 MHz, CD₃OD): δ 22.0 (CH₃), 22.8 (CH₃), 25.8 (CH), 42.0 (CH₂), 48.5 (CH), 65.4 (CH₂O), 70.7 (<u>C</u>H₂Py), 125.8, 143.0 (ArCH), 139.2, 161.4, 161.7 (ArC). MS (ESI, +ve) *m/z* 276 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₅H₂₂N₃O₂ 276.1712, found 276.1708.

(S)-1-(4-(Isobutoxymethyl)oxazol-2-yl)-N,3-dimethylbutan-1-amine (70)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **37** (18.4 mg, 0.052 mmol) to give **70** (8.6 mg, 65%) as a pale yellow gum. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (s, 1H), 4.43 (s, 2H), 3.79 (t, J = 7.5 Hz, 1H), 3.29 (d, J = 6.7 Hz, 2H), 2.32 (s, 3H), 1.90 (sep, J = 6.5 Hz, 1H), 1.72 – 1.48 (m, 4H), 0.99 – 0.82 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 138.0, 135.7, 77.7, 65.1, 56.7, 43.5, 34.2, 28.4, 24.9, 22.52, 22.48, 19.4; MS (ES⁺) m/z 255 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₄H₂₇N₂O₂: 255.2073 (M+H), Found: 255.2072.

(S)-1-(4-(Isobutoxymethyl)-5-phenyloxazol-2-yl)-3-methylbutan-1-amine (71)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **38** (30.6 mg, 0.073 mmol) to give **71** (21.0 mg, 91%) as a pale yellow gum. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 2H), 7.50 – 7.31 (m, 3H), 4.53 (s, 2H), 4.12 (t, J = 6.8 Hz, 1H), 3.35 (d, J = 6.3 Hz, 2H), 1.94 (sep, J = 6.5 Hz, 1H), 1.86 – 1.63 (m, 5H), 1.03 – 0.88 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 148.5, 132.4, 128.7, 128.3, 128.2, 126.0, 77.5, 65.2, 48.3, 45.1, 28.4, 24.8, 22.9, 22.1, 19.5; MS (ES⁺) m/z 317 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₉H₂₉N₂O₂: 317.2229 (M+H), Found: 317.2226.

(S)-1-(5-Bromo-4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutan-1-amine (72)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **39** (24.2 mg, 0.058 mmol) to give **72** (16.1 mg, 88%) as a pale yellow gum. ¹H NMR (300 MHz, CDCl₃) δ 4.32 (s, 2H), 4.04 (t, J = 6.9 Hz, 1H), 3.25 (d, J = 6.8 Hz, 2H), 1.91 (sep, J = 6.8 Hz, 1H), 1.80 – 1.56 (m, 5H), 1.04 – 0.85 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 135.5, 120.0, 77.7, 63.5, 48.5, 44.7, 28.3, 24.7, 22.8, 21.9, 19.3; MS (ES⁺) m/z 321 (94%, M+H, ⁸¹Br), 319 (100%, M+H, ⁷⁹Br); HRMS (ES⁺) Calcd. for C₁₃H₂₄⁷⁹BrN₂O₂: 319.1021 (M+H), Found: 319.1037.

(S)-Isobutyl 2-(1-amino-3-methylbutyl)oxazole-4-carboxylate (73)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **41** (17.4 mg, 0.049 mmol) to give **73** (10.3 mg, 82%) as a pale yellow gum. ¹H NMR (300 MHz, CDCl₃) δ 8.15 (s, 1H), 4.18 – 4.08 (m, 3H), 2.08 (sep, J = 6.6 Hz, 1H), 1.82 – 1.59 (m, 5H), 1.04 – 0.87 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 161.3, 143.4, 133.2, 71.0, 48.4, 44.9, 27.8, 24.7, 22.8, 22.0, 19.1; MS (ES⁺) m/z 255 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₃H₂₃N₂O₃: 255.1709 (M+H), Found: 255. 1700.

(S)-2-(1-Amino-3-methylbutyl)-N-isobutyloxazole-4-carboxamide (74)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **42** (25.2 mg, 0.071 mmol) to give **74** (17.1 mg, 94%) as an off-white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 6.98 (bs, 1H), 4.09 (t, J = 6.8 Hz, 1H), 3.24 (t, J = 6.9 Hz, 2H), 1.89 (sep, J = 6.7 Hz, 1H), 1.78 – 1.59 (m, 5H), 1.04 – 0.88 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 160.6, 140.4, 136.1, 48.2, 46.3, 45.1, 28.6, 24.7, 22.7, 22.0, 20.1; MS (ES⁺) *m*/*z* 254 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₃H₂₄N₃O₂: 254.1869 (M+H), Found: 254.1870.

(S)-2-(1-Amino-3-methylbutyl)-N-methoxy-N-methyloxazole-4-carboxamide (75)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **43** (29.5 mg, 0.09 mmol) to give **75** (16.8 mg, 81%) as a yellow oil. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.48$. ¹H NMR (500 MHz, CDCl₃) δ 0.92 - 0.96 (6H, m, H4 and H3-C<u>H</u>₃), 1.64 - 1.77 (4H, m, H3/H2/NH), 3.38 (3H, s, N-CH₃), 3.76 (3H, s, O-CH₃), 4.14 (1H, t, J = 6.9 Hz, H1), 8.11 (1H, s, H5'). ¹³C NMR (126 MHz, CDCl₃) δ 22.2 (C4/3-<u>C</u>H₃), 22.9 (C4/3-<u>C</u>H₃), 24.9 (C3), 33.4 (N-CH₃), 45.1 (C2), 48.5 (C1), 61.5 (O-CH₃), 133.4 (C4'), 142.4 (C5'), 159.7 (C2'), 167.8 (CO). MS (ESI⁺) $m/z = 242 (100 \%, [M+H]^+).$

(S)-3-Methyl-1-(4-(4-methylpentanoyl)oxazol-2-yl)butan-1-ammonium trifluoroacetate (76)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **44** (19.9 mg, 0.056 mmol) and omitting the aqueous work-up to give amine TFA salt **76** (22.5 mg, 109% of theoretical due to residual TFA) as a yellow gum. ¹H NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 4.74 (t, *J* = 7.5 Hz, 1H), 2.80 (t, *J* = 7.1 Hz, 2H), 1.99 (t, *J* = 7.6 Hz, 2H), 1.80 – 1.48 (m, 4H), 1.07 – 0.82 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 195.4, 161.6, 144.4, 139.8, 47.7, 41.0, 37.7, 32.5, 27.6, 24.4, 22.2, 21.5; MS (ES⁺) *m*/*z* 253 (100%, M+H); HRMS (ES⁺) Calcd. for C₁₄H₂₅N₂O₂: 253.1916 (M+H), Found: 253.1919.

(S)-1-(4-(Methoxymethyl)oxazol-2-yl)-*N*,3-dimethylbutan-1-amine (77)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **45** (16 mg, 0.051 mmol) to yield **77** (9 mg, 82%) as an oil. ¹H NMR (500 MHz, CDCl₃): δ 0.88 (d, J =

6.5 Hz, 3H, CH₃), 0.93 (d, J = 6.5 Hz, 3H, CH₃), 1.55-1.59 (m, 1H, CH), 1.68-1.72 (m, 2H, CH₂), 2.04 (br s, 1H, NH), 2.34 (s, 3H, NCH₃), 3.43 (s, 3H, OCH₃), 3.83 (t, J = 7.5 Hz, 1H, CH), 4.39 (s, 2H, CH₂O), 7.57 (s, 1H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.4 (CH₃), 22.5 (CH₃), 24.9 (CH), 34.0 (NCH₃), 43.3 (CH₂), 56.6 (CH), 58.5 (OCH₃), 66.4 (CH₂O), 136.0 (ArCH), 137.5, 166.3 (ArC). MS (ESI, +ve) m/z 213 (100%) [M+H]⁺.

(S)-1-(4-(Methoxymethyl)-5-methyloxazol-2-yl)-N,3-dimethylbutan-1-amine (78)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **46** (23 mg, 0.070 mmol) to yield **78** (11 mg, 69%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ 0.88 (d, J = 6.3 Hz, 3H, CH₃), 0.93 (d, J = 6.0 Hz, 3H, CH₃), 1.54-1.68 (m, 1H, CH, CH₂ and NH), 2.32 and 2.33 (2 x s, 3H each, ArCH₃ and NCH₃), 3.40 (s, 3H, OCH₃), 3.73 (t, J = 7.5 Hz, 1H, CH), 4.30 (s, 2H, CH₂O); ¹³C NMR (75 MHz, CDCl₃): δ 10.5 (ArCH₃) 22.7 (CH₃), 22.8 (CH₃), 25.2 (CH), 34.5 (NCH₃), 43.7 (CH₂), 56.8 (CH), 58.4 (OCH₃), 66.1 (CH₂O), 131.4, 146.4, 164.4 (ArC). MS (ESI, +ve) *m/z* 227 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₂H₂₃N₄O₂ 227.1760, found 227.1756.

(S)-1-(4-(Methoxymethyl)-5-iodooxazol-2-yl)-N,3-dimethylbutan-1-amine (79)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **47** (19.2 mg, 0.05 mmol) to yield **79** (13.3 mg, 90%) as a colorless oil. TLC (5% MeOH/CH₂Cl₂) $R_F = 0.31$. ¹H NMR (500 MHz, CDCl₃) δ 0.88 - 0.94 (6H, q, H4 and H3-C<u>H</u>₃), 1.56 - 1.67 (4H, m, H3/H2/NH), 2.34 (3H, s, N-CH₃), 3.40 (3H, s, O-CH₃), 3.80 (1H, t, *J* = 7.2 Hz, H1), 4.31 (3H, s, H4'-C<u>H</u>₂). ¹³C NMR (126 MHz, CDCl₃) δ 22.5 (C4/C3-<u>C</u>H₃), 22.7 (C4/C3-<u>C</u>H₃), 25.0 (C3), 34.4 (N-CH₃), 43.5 (C2), 56.9 (C1), 58.5 (O-CH₃), 65.9 (H4'-<u>C</u>H₂), 87.7 (C4'), 142.5 (C5'), 171.4 (C2'). MS (ESI⁺) m/z = 339 (100 %, [M+H]⁺). HRMS (ESI⁺) [M+Na]⁺ Calcd. for C₁₁H₁₉IN₂NaO₂: 361.0389, Found: 361.0377.

(S)-1-(4-(Methoxymethyl)-5-phenyloxazol-2-yl)-N,3-dimethylbutan-1-amine (80)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **48** (16 mg, 0.041 mmol) to yield **80** (9 mg, 80%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ 0.91 (d, J = 6.6 Hz, 3H, CH₃), 0.96 (d, J = 6.3 Hz, 3H, CH₃), 1.63-1.77 (m, 1H, CH), 2.39 (s, 3H, NCH₃), 3.47 (s, 3H, OCH₃), 3.85 (t, J = 7.5 Hz, 1H, CH), 4.53 (s, 2H, CH₂O), 7.37 (d, J = 7.2 Hz, 2H, ArH), 7.43-7.48 (m, 2H, ArH), 7.67 (dd, $J_1 = 1.5$, $J_2 = 6.9$ Hz, 1H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 22.6 (2 x CH₃), 25.0 (CH), 34.3 (NCH₃), 43.6 (CH₂), 56.7 (CH), 58.2 (OCH₃), 66.7 (CH₂O), 126.1, 128.5,

128.8 (ArCH), 128.2, 132.1, 148.7, 164.5 (ArC). MS (ESI, +ve) m/z 289 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₇H₂₅N₂O₂ 289.1916, found 289.1921.

(S)-1-(5-(4-Isopropylphenyl)-4-(methoxymethyl)oxazol-2-yl)-N,3-dimethylbutan-1-ammonium trifluoroacetate (81)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **49** (19 mg, 0.0.043 mmol) and omitting the aqueous work-up to yield amine TFA salt **81** (18 mg, 94%) as an oil. ¹H NMR (500 MHz, CD₃OD): δ 0.88 (d, J = 6.5 Hz, 3H, CH₃), 0.93 (d, J = 6.5 Hz, 3H, CH₃), 1.20 (d, J = 7.0 Hz, 3H, 2 x CH₃), 1.45-1.54 (m, 1H, CH), 1.78-1.83 (m, 1H, CH₂ (H_a)), 2.04-2.10 (m, 1H, CH₂ (H_b)), 2.63 (s, 3H, NCH₃), 2.89 (septet, J = 7.0 Hz, 1H, C₆H₄C<u>H(CH₃)</u>, 3.38 (s, 3H, OCH₃), 4.47 (s, 2H, CH₂O), 4.51 (dd, $J_1 = 4.5$, $J_2 = 11.0$ Hz, 1H, CH), 7.30 (d, J = 8.0 Hz, 2H, ArH), 7.54 (d, J = 8.0 Hz, 2H, ArH); ¹³C NMR (75 MHz, CD₃OD): δ 22.5, 23.1, 24.1 (4 x CH₃), 25.8 (CH), 31.6 (NCH₃), 35.0 (CH), 42.2 (CH₂), 56.0, (OCH₃), 58.5 (CH), 66.9 (CH₂O), 127.3, 128.0 (ArCH), 125.5, 133.2, 151.7, 156.7 (ArC). MS (ESI, +ve) m/z 331 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₂₀H₃₁N₂O₂ 331.2386, found 231.2398.

(S)-1-(5-(4-Trifluoromethylphenyl)-4-(methoxymethyl)oxazol-2-yl)-N,3-dimethylbutan-1ammonium trifluoroacetate (82)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **50** (21 mg, 0.046 mmol) and omitting the aqueous work-up to yield amine TFA salt **82** (21 mg, 97%) as an oil. ¹H NMR (500 MHz, CD₃OD): δ 0.97 (d, *J* = 6.5 Hz, 3H, CH₃), 1.02 (d, *J* = 6.5 Hz, 3H, CH₃), 1.57-1.61 (m, 1H, CH), 1.90-1.96 (m, 1H, CH₂ (H_a)), 2.14-2.20 (m, 2H, CH₂ (H_b)), 2.76 (s, 3H, NCH₃), 3.46 (s, 3H, OCH₃), 4.61 (s, 2H, CH₂O), 4.71 (dd, *J*₁ = 5.0, *J*₂ = 11.0 Hz, 1H, CH), 7.83 (d, *J* = 8.0 Hz, 2H, ArH), 7.94 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 21.7 (CH₃), 23.2 (CH₃), 26.2 (CH), 31.8 (NCH₃), 40.5 (CH₂), 56.3, (OCH₃), 58.6 (CH), 67.1 (CH₂O), 125.4 (q, *J* = 272 Hz, CF₃), 1.27.1 (t, *J* = 3.8 Hz, ArCH), 127.9 (ArCH), 132.0 (q, *J* = 33 Hz, <u>C</u>CF₃), 132.0, 136.3, 150.5, 158.3 (ArC). MS (ESI, +ve) *m*/z 357 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₈H₂₄N₂O₂F₃ 357.1790, found 357.1801.

(S)-1-(5-(2,4-Difluorophenyl)-4-(methoxymethyl)oxazol-2-yl)-N,3-dimethylbutan-1-ammonium trifluoroacetate (83)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **51** (22 mg, 0.052 mmol) and omitting the aqueous work-up to yield amine TFA salt **83** (22 mg, 97%) as an oil. ¹H NMR (500 MHz, CD₃OD): δ 0.94 (d, *J* = 6.5 Hz, 3H, CH₃), 0.99 (d, *J* = 7.0 Hz, 3H, CH₃), 1.53-1.59 (m, 1H, CH), 1.90 (ddd, *J*₁ = 4.5, *J*₂ = 9.0, *J*₃ = 13.5 Hz, 1H, CH₂ (H_a)), 2.12 (ddd, *J*₁ = 5.0, *J*₂ = 10.5, *J*₃ = 13.0 Hz, 1H, CH₂ (H_b)), 2.73 (s, 3H, NCH₃), 3.34 (s, 3H, OCH₃), 4.44 (s, 2H, CH₂O), 4.66 (dd, *J*₁ = 6.0, *J*₂ = 11.5 Hz, 1H, CH), 7.13-7.20 (m, 2H, ArH), 7.65-7.69 (m, 1H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 21.6 (CH₃), 23.2 (CH₃), 26.1 (CH), 31.8 (NCH₃), 40.5 (CH₂), 56.3, (OCH₃), 58.6 (CH), 66.7 (CH₂O), 105.8 (t, *J* = 26 Hz, C3'''), 113.0 (d, *J* = 11 Hz, C5'''), 113.3 (dd, *J*₁ = 3 Hz, *J*₂ = 22 Hz, C5'''), 133.0 (dd, *J*₁ = 3 Hz, *J*₂ = 10 Hz, C6'''), 136.8 (C4), 146.1 (C3), 159.0 (C2), 161.3 (dd, *J*₁ = 3 Hz, *J*₂ = 253 Hz, C2'''), 165.6 (dd, *J*₁ = 12 Hz, *J*₂ = 252 Hz, C4'''). MS (ESI, +ve) *m/z* 325 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₇H₂₃N₂O₂F₂ 325.1728, found 325.1741.

(S)-1-(4-(Methoxymethyl)-5-(3,5-dimethylisoxazol-4-yl)oxazol-2-yl)-N,3-dimethylbutan-1ammonium trifluoroacetate (84)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **52** (16 mg, 0.039 mmol) and omitting the aqueous work-up to yield amine TFA salt **84** (15 mg, 94%) as an oil. ¹H NMR (300 MHz, CD₃OD): δ 0.95 (d, J = 6.9 Hz, 3H, CH₃), 0.99 (d, J = 6.6 Hz, 3H, CH₃), 1.46-1.59 (m, 1H, CH), 1.89 (ddd, $J_1 = 4.8$, $J_2 = 9.0$, $J_3 = 13.2$ Hz, 1H, CH₂ (H_a)), 2.10 (ddd, $J_1 = 5.1$, $J_2 = 10.8$, $J_3 = 15.9$ Hz, 1H, CH₂ (H_b)), 2.24 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 2.73 (s, 3H, NCH₃), 3.38 (s, 3H, OCH₃), 4.33 (s, 2H, CH₂O), 4.65 (dd, $J_1 = 4.8$, $J_2 = 10.8$ Hz, 1H, CH); ¹³C NMR (75 MHz, CD₃OD): δ 10.5, 11.6, 21.6, 23.2 (4 x CH₃), 26.2 (CH), 31.8 (NCH₃), 40.5 (CH₂), 56.3, (OCH₃), 59.0 (CH), 66.5 (CH₂O), 105.4, 137.6, 142.2, 159.8, 160.4, 171.1 (ArC). MS (ESI, +ve) *m/z* 308 (100%) [M+H]⁺. HRMS (ESI, +ve) calcd for C₁₆H₂₆N₃O₃ 308.1974, found 308.1988.
$tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-benzyloxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (85)$

This compound was prepared according to *General Procedure 1* using the known carboxylic acid **S11**^{S10} (50 mg, 0.12 mmol, structure drawn in Scheme S7) and amine **S10** (53 mg, 0.06 mmol, structure drawn in Scheme S7). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **85** (80 mg, 100% based on **S10**, 21% over five steps from amine **53**, see Scheme S7) as a solid. ¹H NMR (300 MHz, CDCl₃) δ 0.49 (d, *J* = 6.3 Hz, 3H), 0.52 (d, *J* = 6.3 Hz, 3H), 0.74-0.89 (m, 2H), 0.92 (d, *J* = 6.3 Hz, 3H), 0.95 (d, *J* = 6.3 Hz, 3H), 1.05-1.98 (m, 16H), 1.45-1.46 (m, 15H, ¹Bu and 2 x CH₃ (Pbf)), 2.10 (s, 3H, CH₃ (Pbf)), 2.52 (s, 3H, CH₃ (Pbf)), 2.59 (s, 3H, CH₃ (Pbf)), 2.90-2.99 (m, 2H), 2.96 (s, 2H, CH₂ (Pbf)), 3.05-3.24 (m, 2H), 3.76 (s, 2H), 3.86-3.92 (m, 1H), 4.01-4.08 (m, 2H), 4.40-4.56 (m, 3H), 4.81-4.85 (m, 1H), 5.13-5.21 (m, 1H), 6.15 (d, J = 6.9 Hz, NH), 6.30 (br s, NH), 7.12-7.43 (m, 12H), 7.46 (d, *J* = 9.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 8.03 (s, 1H). MS (ESI +ve) *m*/*z* 1277 ([M+H]⁺, 30%), 1299 ([M+H]⁺, 100%).

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-phenyloxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (86)$

This compound was prepared according to *General Procedure 1* using the known carboxylic acid **S12**^{S10} (40 mg, 0.062 mmol, structure drawn in Scheme S7) and amine **S9** (40 mg, 0.063 mmol, structure drawn in Scheme S7). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **86** (60 mg, 76%, 12% over three steps from amine **54**, see Scheme S7) as a solid. ¹H NMR (300 MHz, CDCl₃) δ 0.45 (d, J = 6.3 Hz, 3H), 0.49 (d, J = 6.3 Hz, 3H), 0.67-0.82 (m, 2H), 0.92 (d, J = 6.6 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H), 1.02-1.48 (m, 11H), 1.42 (s, 15H, ¹Bu and 2 x CH₃ (Pbf)), 1.78-1.92 (m, 3H), 2.04 (s, 3H, CH₃ (Pbf)), 2.48 (s, 3H, CH₃ (Pbf)), 2.55 (s, 3H, CH₃ (Pbf)), 2.79-2.96 (m, 2H), 2.87 (s, 2H, CH₂ (Pbf)), 3.00-3.22 (m, 2H), 3.77-3.84 (m, 1H), 3.92-4.02 (m, 2H), 4.37-4.52 (m, 3H), 4.70-4.82 (m, 1H, NH), 5.20-5.28 (m, 1H), 6.08 (d, J = 6.9 Hz, 1H, NH), 6.27 (br s, 2H, NH), 7.09-

7.43 (m, 13H), 7.60-7.63 (m, 1H), 7.79-7.90 (m, 4H); MS (ESI +ve) *m*/*z* 1263 ([M+H]⁺, 30%), 1285 ([M+Na]⁺, 100%).

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (87)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (39.1 mg, 0.037 mmol) and Type C amine HCl salt 55 (8.5 mg, 0.045 mmol), with added NEt(i-Pr)₂ (8.7 mg, 0.067 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave 87 (32.4 mg, 73%) as a white solid, which was revealed by NMR analysis to be a ca. 90:10 mixture of diastereomers, epimeric at leucine, presumably due to partial racemization of amine 55 in the phthalimide deprotection step. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.42$ (both diastereomers); $[\alpha]_{\rm p}^{25} -33.3$ (c 1.62, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, major diastereomer only) δ 7.96 (t, J = 8.4 Hz, 2H), 7.87 (t, J = 6.9 Hz, 2H), 7.60 - 7.10 (m, 11H), 6.92 (s, 1H), 6.27 (bs, 2H), 6.13 (bd, J = 5.5 Hz, 1H), 5.17 (dd, J= 15.0, 7.9 Hz, 1H), 4.82 (bs, 1H), 4.56 - 4.35 (m, 3H), 4.12 - 3.81 (m, 3H), 3.26 - 3.04 (m, 2H), 3.02 - 2.86 (m, 4H), 2.56 (s, 3H), 2.49 (s, 3H), 2.07 (s, 3H), 1.98 - 1.85 (m, 1H), 1.84 - 1.71 (m, 2H), 1.69 – 1.02 (m, 26H), 0.93 (d, J = 6.4 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H), 0.84 – 0.69 (m, 2H), 0.52 (d, J = 6.5 Hz, 3H), 0.46 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃, major diastereomer only) § 171.6, 171.3, 169.5, 164.7, 158.6, 156.2, 156.1, 154.3, 152.1, 138.7, 138.3, 133.8, 133.6, 133.1, 132.2, 129.8, 129.3, 128.1, 127.9, 126.7, 126.6, 126.5, 125.4, 125.0, 124.5, 124.2, 124.0, 123.8, 120.2, 119.7, 117.4, 116.1, 114.0, 86.3, 79.0, 68.6, 68.0, 53.3, 52.5, 46.1, 43.2, 42.1, 40.5, 40.1, 38.0, 31.0, 29.0, 28.5, 28.4, 25.5, 24.7, 24.5, 22.7, 22.5, 22.3, 22.04, 21.97, 21.8, 19.2, 17.9, 12.4; MS (ES⁺) *m/z* 1210 (100%, M+Na), 1188 (97%, M+H).

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(methyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (88)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (115.6 mg, 0.11 mmol) and Type C amine TFA salt **56** (22.6 mg, 0.08 mmol, limiting reagent in this case), with added NEt(i-Pr)₂ (28 μ L, 0.16 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂)

gave **88** as a white solid (the yield of this analogue was determined after deprotection, see the experimental procedure for compound **120**). TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.39$. $[\alpha]_D^{25} = -86.5$ (*c* 0.68, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.48 (3H, d, J = 6.5 Hz), 0.52 (3H, d, J = 6.5 Hz), 0.71 - 0.84 (4H, m), 0.89 - 0.93 (6H, q, J = 6.5 Hz), 1.05 - 1.11 (2H, m), 1.15 - 1.19 (3H, m), 1.24 - 1.27 (3H, m), 1.42 (16H, d, J = 9.6 Hz), 1.54 - 1.62 (3H, m), 1.71 - 1.81 (2H, m), 1.82 - 1.92 (2H, m), 2.04 (3H, s), 2.07 (3H, s), 2.49 (3H, s), 2.55 (3H, s), 2.92 (2H, bs), 3.10 - 3.17 (4H, bm), 3.84 - 3.88 (2H, m), 4.02 - 4.06 (3H, m), 4.40 - 4.52 (4H, m), 4.82 (1H, bs), 5.14 (2H, m), 5.29 (1H, s), 6.12 (2H, d, J = 6.5 Hz), 6.27 (3H, bs), 7.15 (3H, m), 7.22 - 7.26 (5H, m), 7.31 - 7.37 (4H, m), 7.86 (2H, t, J = 8.2 Hz), 7.95 (2H, t, J = 8.1 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 11.4, 12.6, 18.0, 19.4, 21.9, 22.2, 22.4, 22.9, 24.6, 24.8, 28.6, 28.7, 29.2, 31.5, 38.1, 40.6, 42.3, 43.4, 46.2, 53.2, 53.5, 68.2, 68.6, 86.4, 105.1, 114.2, 115.9, 117.5, 119.7, 120.4, 124.0, 124.3, 124.6, 125.6, 126.8, 126.9, 128.1, 128.2, 129.4, 129.9, 132.4, 133.2, 133.7, 134.0, 134.4, 136.0, 138.4, 152.2, 154.5, 156.4, 158.8, 164.1, 169.5, 171.3. IR (neat) ν [cm⁻¹] = 3852 (s), 3331 (s), 2300 (m), 1653 (s), 1559 (s), 1244 (w), 1074 (w). MS (ESI⁺) m/z = 1201 (75 %, [M+H]⁺), 1223 (100 %, [M+Na]⁺).

tert-Butyl ((R)-6-(((R)-1-(((S)-1-(4-(fluoromethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (89)

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (73.0 mg, 0.07 mmol) and Type **C** amine TFA salt **57** (27.1 mg, 0.09 mmol), with added NEt(i-Pr)₂ (19.2 μ L, 0.11 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **89** (73.0 mg, 86%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.38$. $[\alpha]_D^{25} = -31.9$ (*c* 0.037, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.46 - 0.56 (6H,m), 0.71 - 0.81 (2H, m), 0.90 - 0.95 (7H, m), 1.03 - 1.19 (7H, m), 1.42 (16H, d, J = 5.4 Hz), 1.61 - 1.92 (6H, m), 2.07 (3H, s), 2.49 (3H, s), 2.56 (3H, s), 2.84 - 3.00 (4H, bm), 3.10 - 3.16 (2H, bm), 3.84 - 3.93 (1H, m), 4.02 - 4.09 (2H, m), 4.39 - 4.55 (4H, m), 4.76 (1H, bs), 5.18 (2H, d, $J_{\rm H-F} = 48.0$ Hz), 5.29 (1H, s), 6.09 - 6.15 (3H, m), 6.20 - 6.30 (3H, m), 7.13 - 7.64 (m), 7.85 - 7.89 (2H, m), 7.94 - 7.98 (2H, m). ¹³C NMR (126 MHz, CDCl₃) δ 12.6, 18.1, 19.4, 21.9, 22.2, 22.5, 23.0, 24.6, 24.8, 28.6, 28.7, 29.2, 31.4, 38.1, 40.6, 42.1, 43.4, 46.2, 53.6, 53.8, 68.2, 68.8, 75.9 ($J_{\rm C-F} = 166.3$ Hz), 86.5, 105.1, 114.2, 116.3, 117.6, 124.2, 124.4, 124.7, 125.2, 125.6, 126.8, 127.0, 128.2, 128.3, 129.5, 130.0, 132.4, 133.2, 133.7, 134.0, 138.5, 152.2, 154.5, 156.4, 169.8, 171.5. IR (neat) ν [cm⁻¹] = 3865 (s), 3726 (s), 3634 (s), 2963 (w), 2321 (w), 1706 (s), 1558 (s), 1505 (s), 1268 (m), 1171 (m), 803 (w). MS (ESI⁺) m/z = 1220 (75 %, [M+H]⁺), 1242 (100 %, [M+Na]⁺).

 $tert-Butyl \quad ((R)-6-(((R)-1-(((S)-1-(4-(hydroxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (90)$

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (53.3 mg, 0.051 mmol) and Type **C** amine **58** (11.2 mg, 0.061 mmol) to give **90** (58.3 mg, 94%) as an off-white solid. TLC (2% MeOH/EtOAc) $R_{\rm F} = 0.34$; $[\alpha]_{\rm D}^{25} -55.9$ (*c* 2.17, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (bd, J = 7.9 Hz, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.88 (t, J = 8.4 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.47 – 7.40 (m, 3H), 7.39 – 7.32 (m, 2H), 7.31 – 7.21 (m, 2H), 7.15 (d, J = 8.3 Hz, 2H), 6.37 – 6.06 (bm, 3H), 5.00 – 4.80 (m, 2H), 4.56 (d, J = 14.4 Hz, 1H), 4.48 – 4.27 (m, 4H), 4.05 – 3.98 (m, 1H), 3.92 – 3.83 (m, 2H), 3.05 – 2.84 (m, 4H), 2.56 (s, 3H), 2.51 – 2.47 (m, 5H), 2.07 (s, 3H), 1.82 – 1.69 (m, 2H), 1.68 – 1.55 (m, 2H), 1.52 – 1.39 (m, 15H), 1.38 – 0.98 (m, 12H), 0.92 (d, J = 4.9 Hz, 3H), 0.88 (d, J = 4.9 Hz, 3H), 0.53 (d, J = 6.4 Hz, 3H), 0.47 (d, J = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 171.3, 170.0, 165.9, 158.6, 156.2, 156.1, 154.4, 151.9, 139.7, 138.2, 135.6, 133.8, 133.5, 133.1, 132.2, 129.9, 129.8, 129.7, 129.2, 128.2, 127.9, 126.8, 126.7, 125.4, 124.9, 124.5, 124.2, 124.0, 120.1, 119.5, 117.3, 116.0, 113.7, 86.2, 79.0, 68.4, 67.9, 55.1, 53.8, 46.5, 43.2, 41.9, 40.3, 40.2, 37.9, 30.7, 29.3, 28.6, 28.4, 25.5, 24.6, 24.4, 22.7, 22.3, 22.0, 21.6, 19.2, 17.9, 12.4; MS (ES⁺) m/z 1239 (79%, M+Na), 1217 (100%, M+H); HRMS (ES⁺) Calcd. for C₆₆H₈₉N₈O₁₂S: 1217.6321 (M+H), Found: 1217.6342.

 $tert-Butyl \quad ((R)-6-(((R)-1-(((S)-1-((-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (91)$

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (117 mg, 0.11 mmol) and Type **C** amine **59** (22 mg, 0.11 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **91** (90 mg, 66%) as an off-white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.49 (d, J = 6.5 Hz, 3H, CH₃), 0.53 (d, J = 6.5 Hz, 3H, CH₃), 0.70-0.85 (m, 2H, CH₂), 0.86-0.96 (m, 1H, CH₂ (H_a^{*})), 0.90 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.93 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.07-1.15 (m, 1H, CH), 1.16-1.20 (m, 2H, CH₂), 1.21-1.29 (m, 2H, CH₂), 1.26-1.36 (m, 1H, CH₂ (H_b^{*})), 1.41-1.53 (m, 2H, CH₂), 1.42 (s, 9H, ^tBu), 1.44 (s, 6H, 2 x CH₃ (Pbf)), 1.53-1.67 (m, 1H, CH₂ (H_a^{*})), 1.56-1.69 (m, 1H, CH), 1.74-1.80 (m, 2H, CH₂), 1.86-1.92 (m, 1H, CH₂ (H_b^{*})), 2.07 (s, 3H, CH₃ (Pbf)), 2.50 (s, 3H, CH)

CH₃ (Pbf)), 2.56 (s, 3H, CH₃ (Pbf)), 2.86-2.98 (m, 2H, CH₂N (Lys)), 2.92 (s, 2H, CH₂ (Pbf)), 3.04-3.23 (m, 2H, CH₂N (Arg)), 3.47 (s, 3H, OCH₃), 3.85-3.90 (m, 1H CH₂O (H_a)), 3.94-4.03 (m, 1H, CH), 4.02-4.07 (m, 1H CH₂O (H_b)), 4.23 (s, 2H, oxazole-C<u>H₂)</u>, 4.42-4.48 (m, 1H, CH), 4.47 (ABq, *J* = 14.5 Hz, 2H, OCH₂CO), 4.76-4.82 (m, 1H, N<u>H</u>Boc), 5.13-5.18 (m, 1H, CH), 6.10 (d, *J* = 6.0 Hz, 1H, NH), 6.26 (br s, 2H , 2 x NH), 7.13-1.17 (m, 2H, ArH), 7.22-7.29 (m, 2H, ArH), 7.32-7.37 (m, 2H, ArH), 7.46 (d, *J* = 9.0 Hz, 2H, ArH), 7.50 (s, 1H, ArH (oxazole)), 7.86-7.88 (m, 2H, ArH), 7.95-7.98 (m, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 12.4, 17.9, 19.2 (CH₃ (Pbf)), 21.7, 22.0, 22.3, 22.8 (CH₃), 22.5, 25.4, 29.1, 30.9, 37.9, 42.0 (CH₂), 24.4, 24.6, 46.0, 52.4, 53.2 (CH), 28.4 (C(<u>C</u>H₃)₃), 28.5 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.5 (CH₂N (Arg)), 43.2 (CH₂ (Pbf)), 58.3 (OCH₃), 66.1 (oxazole-<u>C</u>H₂), 68.0 (O<u>C</u>H₂CO), 68.5 (CH₂O), 79.0 (<u>C</u>(CH₃)₃), 86.3 (C (Pbf)), 114.1, 116.0, 124.0, 124.2, 125.0, 125.4, 126.6, 126.8, 127.9, 128.1, 129.8 (ArCH), 117.3, 119.6, 120.2, 124.5, 129.3, 129.7, 132.2, 133.1, 133.6, 133.8, 137.3, 138.3, 152.1, 154.3, 156.2, 164.9 (ArC), 156.0 (C=O (Boc)), 158.6 (C=N), 169.5, 171.2, 171.8 (C=O). MS (ESI, +ve) *m*/*z* 1232 (5%) [M+H]⁺; 1253 (100%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₆₇H₉₁N₈O₁₂S 1231.6477, found 1231.6493.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(methoxymethyl)thiazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (92)

This compound was prepared according to General Procedure 1 using carboxylic acid A (124 mg, 0.12 mmol) and Type C amine 60 (33.8 mg, 0.16 mmol). Flash chromatography (100% CH₂Cl₂ to 6% MeOH/CH₂Cl₂) gave 92 (101 mg, 69%) as a light yellow solid. mp 82-90 °C. TLC (10% MeOH/CH₂Cl₂) $R_{\rm F} = 0.68$. $[\alpha]_{D}^{25} = -32.37$ (c 5.0, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃, major rotamer only) δ 0.48 (3H, d, J = 6.2 Hz, CH_{3a} (^{*i*}Pent)), 0.52 (3H, d, J = 6.4 Hz, CH_{3b} (^{*i*}Pent)), 0.72 -0.84 (2H, m, CH₂ (Lys)), 0.88 - 1.01 (7H, m, 3"-CH₃, H4", CH), 1.03 - 1.15 (1H, m, CH (ⁱPent)), 1.14 - 1.40 (6H, m, CH₂CH(CH₃)₂ ('Pent)), 1.30 - 1.50 (16H, m, (CH₃)₃, 2"(CH₃)₂), 1.52 - 1.96 (7H, m, H3', H4', H2", H3"), 2.07 (3H, s, H7"), 2.48 (3H, s, H6"), 2.56 (3H, s, H4"), 2.74 - 2.96 (2H, CH₂N (Lys)), 2.88 - 2.92 (H3"), 3.13 (2H, bs, H5'), 3.40 (3H, s, OCH₃), 3.82 - 3.92 (1H, m, CH_{2a}, (¹Pent)), 3.98 - 4.20 (2H, m, CH_{2b} (¹Pent), H5), 4.33 - 4.56 (3H, OCH₂C=O, H2'), 4.49 (2H, 4'''-CH₂) 4.84 (1H, s), 1-NH), 5.24 - 5.39 (1H, m, H1"), 6.16 - 6.21 (1H, m, NH (Lys)), 6.21 - 6.37 (3H, m, guanidino), 7.10 (2H, t, J = 10.3, Hz, ArH), 7.16 (1H, s, H5""), 7.18 - 7.27 (3H, m, ArH, NH(Arg)), 7.30 (1H, t, J = 7.5 Hz, ArH), 7.35 (2H, t, J = 7.4 Hz, ArH), 7.40 - 7.46 (1H, m, ArH), 7.54 - 7.65 (1H, m, NH (Leu)), 7.85 (2H, t, J = 9.3 Hz, ArH), 7.89 - 7.97 (2H, m, ArH). ¹³C NMR (126 MHz, CDCl₃, major rotamer only) δ 12.4 (7"-CH₃), 17.9 (4"-CH₃), 19.2 (6"-CH₃), 21.4, 21.6, 22.0, 22.2, 22.4, 23.0, 24.4, 24.8, 25.5 (C4'), 28.4 ((CH₃)₃), 28.5 (2"-(CH₃)₂), 29.0 (C4), 31.2 (C3'), 37.9 (OCH₂CH₂), 38.4, 40.0 (C5'), 40.3 (C1), 43.1 (C3"), 43.7 (C2""), 50.0 (C1""), 52.7 (C5, C2'), 58.4 (OCH₃), 68.1 (OCH₂C=O), 68.2 (OCH₂ (¹Pent)), 70.3 (4""-CH₂), 78.8 (C(CH₃)₃), 86.2 (C2"), 114.2, 115.5, 115.8, 117.3, 119.3, 120.3, 123.8, 124.1, 124.5, 124.8, 125.4, 126.5, 126.6, 127.9, 128.0, 129.1, 129.6, 129.7, 129.7, 132.1, 132.9, 133.5, 133.7, 138.1, 152.1 (C2""" or C2"""), 153.4 (C4""),

154.3 (C2""" or C2""), 155.9 (guanidino), 156.3 (<u>C</u>=O(OC(CH₃)₃), 158.6 (C7a"), 169.1 (C=O), 171.4 (C=O), 173.5 (C=O). IR (neat) v [cm⁻¹] = 3340 (w), 2934 (w), 2369 (w), 1673 (m), 1658 (m), 1548 (s), 1514 (s), 1462 (w), 1365 (w), 1246 (m), 1162 (m), 1094 (s), 906 (w), 809 (m), 745 (m), 665 (m), 611 (m). MS (ESI⁺) m/z = 1247 (100%, [M+H]⁺), 1270 (48%, [M+Na]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₆₇H₉₁N₈O₁₁S₂: 1247.6249, Found: 1247.6283.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(isopropoxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6oxohexyl)carbamate (93)

This compound was prepared according to *General Procedure 1* using carboxylic acid A (68 mg, 0.065 mmol) and Type C amine TFA salt 61 (22 mg, 0.065 mmol), with added NEt(i-Pr)₂ (10.1 mg, 0.078 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave 93 (70 mg, 85%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.48 (d, J = 6.0 Hz, 3H, CH₃), 0.53 (d, J = 6.5 Hz, 3H, CH₃), 0.71-0.83 (m, 2H, CH₂), 0.89-0.94 (m, 1H, CH₂ (H_a^{*})), 0.90 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 0.93 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.06-1.15 (m, 1H, CH), 1.12-1.20 (m, 2H, CH₂), 1.15 (d, J = 6.0 Hz, 3H, CH₃), 1.16 (d, J = 6.5 Hz, 3H, CH₃), 1.21-1.30 (m, 2H, CH₂), 1.30-1.42 (m, 1H, CH₂) (H_b^{*})), 1.42-1.52 (m, 2H, CH₂), 1.43 (s, 9H, ^tBu), 1.44 (s, 6H, 2 x CH₃ (Pbf)), 1.52-1.67 (m, 2H, CH and CH₂ (H_a[#])), 1.72-1.82 (m, 2H, CH₂), 1.79-1.89 (m, 1H, CH₂ (H_b[#])), 2.07 (s, 3H, CH₃ (Pbf)), 2.49 (s, 3H, CH₃ (Pbf)), 2.55 (s, 3H, CH₃ (Pbf)), 2.76-2.98 (m, 2H, CH₂N (Lys)), 2.92 (s, 2H, CH₂ (Pbf)), 3.00-3.12 (m, 1H, CH₂N (Arg, H_a)), 3.12-3.24 (m, 1H, CH₂N (Arg, H_b)), 3.63-3.68 (m, 1H, OCH), 3.85-3.89 (m, 1H CH₂O (H_a)), 4.01-4.06 (m, 2H, CH and CH₂O (H_b)), 4.33 (s, 2H, oxazole-CH₂), 4.36-4.48 (m, 1H, CH), 4.47 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.77-4.86 (m, 1H, NHBoc), 5.15-5.19 (m, 1H, CH), 6.14 (d, J = 6.0 Hz, 1H, NH), 6.28 (br s, 2H , 2 x NH), 7.13 (d, J = 9.0 Hz, 1H, ArH), 7.16 (d, J = 9.0 Hz, 1H, ArH), 7.21-7.37 (m, 5H, ArH), 7.45 (d, J = 9.0 Hz, 1H, ArH), 7.49 (s, 1H, ArH (oxazole)), 7.85-7.87 (m, 2H, ArH), 7.94-7.97 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.8, 22.01, 22.03, 22.1, 22.3, 22.8 (CH₃), 22.5, 25.5, 29.1, 29.3, 31.1, 38.0, 42.1 (CH₂), 24.5, 24.7, 46.1, 52.6, 53.0 (CH), 28.5 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.5 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 62.3 (oxazole-CH₂), 68.1 (OCH₂CO), 68.4 (CH₂O), 71.7 (OCH), 78.9 (C(CH₃)₃), 86.3 (C (Pbf)), 114.2, 116.0, 124.0, 124.2, 125.0, 125.5, 126.6, 126.8, 128.0, 128.1, 129.79, 129.8 (ArCH), 117.4, 119.5, 120.4, 124.5, 129.2, 132.2, 133.1, 133.6, 133.9, 138.3, 138.5, 152.2, 154.4, 156.3, 164.5 (ArC), 135.9 (ArCH (oxazole)), 156.1 (C=O (Boc)), 158.6 (C=N), 169.4, 171.2, 171.5 (C=O). MS (ESI, +ve) m/z 1259 (5%) $[M+H]^+$; 1281 (100%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for $C_{69}H_{95}N_8O_{12}S$ 1259.6790, found 1259.6852 [M+H]⁺; calcd for $C_{69}H_{94}N_8O_{12}SNa \ 1281.6610$, found $1281.6605 \ [M+Na]^+$.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(isopropoxymethyl)thiazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6oxohexyl)carbamate (94)

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (87 mg, 0.08 mmol) and Type **C** amine **62** (26 mg, 0.11 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **94** (64.4 mg, 63%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.35$. $[\alpha]_D^{25} = -35.1$ (*c* 0.19, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.48 (3H, d, *J* = 6.2 Hz), 0.52 (3H, d, *J* = 6.0 Hz), 0.70 - 0.84 (2H, m), 0.91 - 0.95 (6H, m), 1.03 - 1.19 (1H, m), 1.19 - 1.25 (8H, m), 1.42 (16H, d, *J* = 6.3 Hz), 1.52 - 1.86 (7H, m), 2.06 (3H, s), 2.48 (3H, s), 2.56 (3H, s), 2.84 - 2.98 (2H, bm), 3.19 (2H, bs), 3.66 - 3.74 (1H, m), 3.85 - 3.88 (1H, m), 3.98 - 4.20 (1H, m), 4.43 - 4.48 (3H, m), 4.56 (2H, s) 4.79 (1H, bs), 5.28 - 5.31 (1H, m), 6.13 - 6.23 (3H, m), 6.23 (3H, m), 7.11 - 7.51 (m), 7.88 (2H, t, *J* = 7.5 Hz), 7.94 (2H, d, *J* = 8.9 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 13.1, 18.6, 19.9, 22.2, 22.7, 22.9, 23.1, 23.6, 25.1, 25.5, 29.0, 29.2, 29.7, 31.2, 38.5, 40.0, 40.6, 43.8, 44.6, 50.6, 53.3, 66.9, 68.6, 69.0, 72.3, 78.8, 86.9, 114.8, 115.3, 116.6, 118.0, 120.9, 124.5, 124.8, 125.1, 125.6, 126.1, 127.2, 127.4, 128.6, 128.7, 129.8, 130.4, 132.8, 133.6, 134.2, 134.4, 138.9, 152.7, 154.9, 155.2, 156.9, 159.3, 158.6, 169.9, 171.9, 172.1, 173.5. IR (neat) ν [cm⁻¹] = 3409 (s), 2957 (m), 1654 (s), 1549 (s), 1459 (m), 1366 (m), 1246, 1087 (s), 806 (m), 668 (m). MS (ESI⁺) *m/z* = 1297 (100 %, [M+Na]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₆₉H₉₄N₈NaO₁₁S₂: 1297.6381, Found: 1297.6381.

tert-Butyl ((R)-6-(((R)-1-(((S)-1-(4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (95)

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (84.1 mg, 0.080 mmol) and Type **C** amine **63** (24.0 mg, 0.10 mmol). Flash chromatography (100% CH₂Cl₂ to 1.5% MeOH/CH₂Cl₂) gave **95** (83.8 mg, 82%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_F = 0.45$; $[\alpha]_D^{25} -42.1$ (*c* 0.77, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (t, *J* = 8.6 Hz, 2H), 7.88 – 7.83 (m, 2H), 7.54 – 7.19 (m, 9H), 7.18 – 7.11 (m, 2H), 6.28 (bs, 2H), 6.13 (bd, *J* = 6.1 Hz, 1H), 5.17 (dd, *J* = 14.7, 7.8 Hz, 1H), 4.82 (bs, 1H), 4.57 – 4.38 (m, 3H), 4.31 (s, 2H), 4.11 – 3.96 (m, 2H), 3.87 (dd, *J* = 15.4, 6.8 Hz, 1H), 3.25 – 3.00 (m, 4H), 2.92 (s, 2H), 2.87 – 2.78 (m, 2H), 2.56 (s, 3H), 2.49 (s, 3H),

2.07 (s, 3H), 1.92 - 1.70 (m, 4H), 1.68 - 1.53 (m, 2H), 1.51 - 1.35 (m, 15H), 1.30 - 1.05 (m, 8H), 0.99 - 0.83 (m, 13H), 0.83 - 0.70 (m, 2H), 0.53 (d, J = 6.3 Hz, 3H), 0.48 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 171.2, 169.4, 164.5, 158.6, 156.2, 156.0, 154.3, 152.1, 138.2, 138.0, 135.8, 133.8, 133.5, 133.1, 132.1, 129.74, 129.72, 129.2, 128.0, 127.9, 126.7, 126.5, 125.4, 124.9, 124.4, 124.2, 123.9, 120.2, 119.5, 117.3, 116.0, 114.1, 86.2, 78.9, 77.7, 68.5, 68.0, 64.9, 53.0, 52.5, 46.0, 43.2, 42.1, 40.4, 40.0, 37.9, 31.0, 29.2, 29.0, 28.5, 28.4, 28.3, 25.4, 24.6, 24.4, 22.8, 22.5, 22.3, 22.0, 21.7, 19.3, 19.2, 17.9, 12.4; MS (ES⁺) *m*/*z* 1312 (25%, M+K), 1296 (98%, M+Na), 1274 (100%, M+H); HRMS (ES⁺) Calcd. for C₇₀H₉₇N₈O₁₂S: 1273.6947 (M+H), Found: 1273.6965.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(isopentoxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6oxohexyl)carbamate (96)

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (84.1 mg, 0.080 mmol) and Type **C** amine **64** (27.1 mg, 0.11 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **96** (87.7 mg, 85%) as an off-white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.47$; $[\alpha]_{\rm p}^{25}$ -39.1 (*c* 3.95, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.98 – 7.91 (m, 2H), 7.89 – 7.82 (m, 2H), 7.52 – 7.41 (m, 2H), 7.42 – 7.19 (m, 7H), 7.18 – 7.10 (m, 2H), 6.29 (bs, 2H), 6.16 (bd, *J* = 6.6 Hz, 1H), 5.18 (dd, *J* = 15.1, 7.7 Hz, 1H), 4.83 (bs, 1H), 4.58 – 4.27 (m, 5H), 4.14 – 3.98 (m, 2H), 3.87 (dd, *J* = 15.5, 6.7 Hz, 1H), 3.49 (t, *J* = 6.7 Hz, 2H), 3.23 – 2.81 (m, 6H), 2.54 (s, 3H), 2.48 (s, 3H), 2.07 (s, 3H), 1.89 – 1.72 (m, 3H), 1.71 – 1.31 (m, 23H), 1.30 – 1.04 (m, 5H), 1.03 – 0.71 (m, 15H), 0.52 (d, *J* = 6.4 Hz, 3H), 0.48 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 171.1, 169.2, 164.2, 158.6, 156.2, 156.0, 154.3, 152.1, 138.2, 138.0, 135.9, 133.8, 133.5, 133.0, 132.1, 129.7, 129.1, 128.0, 127.9, 126.6, 126.5, 125.4, 124.9, 124.4, 124.1, 123.8, 120.3, 119.4, 117.3, 115.9, 114.2, 86.2, 78.8, 69.4, 68.3, 68.0, 64.7, 52.8, 45.9, 43.2, 42.0, 40.4, 40.0, 38.3, 37.9, 31.1, 29.3, 29.0, 28.5, 28.4, 25.4, 25.0, 24.6, 24.4, 22.7, 22.57, 22.55, 22.4, 22.2, 22.0, 21.7, 19.2, 17.9, 12.4; MS (ES⁺) m/z 1309 (100%, M+Na), 1288 (98%, M+H); HRMS (ES⁺) Calcd. for C₇₁H₉₉N₈O₁₂S: 1287.7103 (M+H), Found: 1287.7087.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(phenoxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (97)

This compound was prepared according to *General Procedure 1* using carboxylic acid A (77 mg, 0.073 mmol) and Type C amine 65 (77 mg, 0.073 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave 97 (50 mg, 53%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.46 $(d, J = 6.5 Hz, 3H, CH_3), 0.50 (d, J = 6.5 Hz, 3H, CH_3), 0.72-0.86 (m, 2H, CH_2), 0.89-0.96 (m, 7H, 7H)$ CH_2 (H_a^{*}) and 2 x CH₃ (Leu)), 1.05-1.11 (m, 1H, CH), 1.12-1.37 (m, 2H, CH₂), 1.23-1.37 (m, 3H, CH₂ and CH₂ (H_b^{*})), 1.40-1.53 (m, 2H, CH₂), 1.42-1.43 (s, 15H, 2 x CH₃ (Pbf) and ^tBu), 1.57-1.66 (m, 2H, CH and CH₂ (H_a[#])), 1.76-1.95 (m, 3H, CH₂ and CH₂ (H_b[#])), 2.07 (s, 3H, CH₃ (Pbf)), 2.48 (s, 3H, CH₃ (Pbf)), 2.55 (s, 3H, CH₃ (Pbf)), 2.87-2.94 (m, 2H, CH₂N (Lys)), 2.90 (s, 2H, CH₂ (Pbf)), 3.01-3.12 (m, 1H, CH₂N (Arg, H_a)), 3.13-3.24 (m, 1H, CH₂N (Arg, H_b)), 3.82-3.86 (m, 1H CH₂O (H_a)), 3.95-4.05 (m, 2H, CH and CH₂O (H_b)), 4.43-4.52 (m, 1H, CH), 4.47 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.74-4.82 (m, 1H, NHBoc), 4.85 (s, 1H, oxazole-CH₂ (H_a)), 4.98 (s, 1H, oxazole-CH₂ (H_b)), 5.20 (dd, $J_1 = 9.0$, $J_2 = 15.0$ Hz, 1H, CH), 6.10 (d, J = 6.5 Hz, 1H, NH), 6.24 (br s, 2H, 2 x NH), 6.85 (d, *J* = 8.5 Hz, 1H, ArH), 6.94-6.99 (m, 3H, ArH), 7.12 (d, *J* = 8.5 Hz, 1H, ArH), 7.15 (d, *J* = 8.5 Hz, 1H, ArH), 7.20-7.38 (m, 6H, ArH), 7.44 (d, J = 9.0 Hz, 1H, ArH), 7.59 (s, 1H, ArH) (oxazole)), 7.85 (d, J = 8.0 Hz, 2H, ArH), 7.89 (d, J = 9.0 Hz, 1H, ArH), 7.96 (d, J = 9.0 Hz, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.8, 22.0, 22.3, 22.9 (CH₃), 22.6, 25.5, 29.1, 29.2, 31.0, 37.9, 42.1 (CH₂), 24.5, 24.7, 46.1, 53.2 (CH), 28.5 (C(<u>CH₃)₃</u>), 28.6 (2 x CH₃) (Pbf)), 40.1 (CH₂N (Lys)), 40.5 (CH₂N (Arg)), 43.2 (CH₂ (Pbf)), 62.4 $(oxazole-CH_2), 68.0$ (OCH₂CO), 68.5 (CH₂O), 79.0 (C(CH₃)₃), 86.3 (C (Pbf)), 114.1, 114.7, 114.8, 116.0, 121.26, 121.32, 124.0, 124.2, 125.0, 125.5, 126.7, 126.8, 128.0, 128.1, 129.49, 129.52, 129.9 (ArCH), 117.4, 119.6, 120.3, 124.5, 129.3, 129.8, 132.3, 133.1, 133.6, 133.9, 136.8, 138.3, 152.1, 154.3, 156.3, 158.2, 164.9 (ArC), 156.1 (C=O (Boc)), 158.7 (C=N), 169.5, 171.3, 171.6 (C=O). MS (ESI, +ve) m/z 1294 (5%) $[M+H]^+$, 1316 (100%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for $C_{72}H_{93}N_8O_{12}S$ 1293.6634, found $1293.6641 [M+H]^+$, calcd for $C_{72}H_{92}N_8O_{12}NaS$ 1315.6453, found 1315.6473 [M+Na]⁺.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(benzyloxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6oxohexyl)carbamate (98)

This compound was prepared according to *General Procedure 1* using carboxylic acid A (38 mg, 0.036 mmol) and Type C amine 66 (10 mg, 0.036 mmol). Flash chromatography (100% CH_2Cl_2 to 4% MeOH/CH₂Cl₂) gave **98** (17 mg, 36%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.48 $(d, J = 6.5 Hz, 3H, CH_3), 0.52 (d, J = 6.0 Hz, 3H, CH_3), 0.75-0.82 (m, 2H, CH_2), 0.90-0.94 (m, 1H, 1H, 1H)$ $CH_2(H_a^{\circ})), 0.91 (d, J = 7.0 Hz, 3H, CH_3 (Leu)), 0.93 (d, J = 6.0 Hz, 3H, CH_3 (Leu)), 1.08-1.14 (m, CH_2 (H_a^{\circ})))$ 1H, CH), 1.15-1.20 (m, 2H, CH₂), 1.22-1.30 (m, 3H, CH₂ and CH₂ (H_b^{*})), 1.40-1.52 (m, 2H, CH₂), 1.42 (s, 9H, ^tBu), 1.43 (s, 6H, 2 x CH₃ (Pbf)), 1.54-1.64 (m, 2H, CH and CH₂ (H_a[#])), 1.76-1.80 (m, 2H, CH₂), 1.86-1.92 (m, 1H, CH₂ (H_b[#])), 2.07 (s, 3H, CH₃ (Pbf)), 2.49 (s, 3H, CH₃ (Pbf)), 2.56 (s, 3H, CH₃ (Pbf)), 2.85-3.00 (m, 2H, CH₂N (Lys)), 2.91 (s, 2H, CH₂ (Pbf)), 3.00-3.24 (m, 2H, CH₂N (Arg)), 3.84-3.88 (m, 1H CH₂O (H_a)), 3.93-4.02 (m, 1H, CH), 4.00-4.04 (m, 1H CH₂O (H_b)), 4.36 (s, 2H, oxazole-CH₂), 4.41-4.48 (m, 1H, CH), 4.47 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.50 (s, 2H, CH_2Ph), 4.71-4.79 (m, 1H, NHBoc), 5.15-5.20 (m, 1H, CH), 6.10 (d, J = 6.5 Hz, 1H, NH), 6.21 (br s, 2H, 2 x NH), 7.12-7.16 (m, 2H, ArH), 7.21-7.37 (m, 10H, ArH), 7.44 (d, J = 9.0 Hz, 1H, ArH), 7.50 (s, 1H, ArH (oxazole)), 7.84-7.87 (m, 2H, ArH), 7.92 (d, J = 9.0 Hz, 1H, ArH), 7.96 (d, J = 9.0 Hz, 1H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.8, 22.0, 22.3, 22.8 (CH₃), 22.5, 25.3, 29.1, 30.8, 37.9, 42.2 (CH₂), 24.5, 24.7, 46.1, 52.4, 53.2 (CH), 28.6 (C(CH₃)₃), 29.1 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.5 (CH₂N (Arg)), 43.2 (CH₂ (Pbf)), 63.8 (oxazole-CH₂), 68.0 (OCH₂CO), 68.5 (CH₂O), 72.5 (CH₂Ph), 79.0 (C(CH₃)₃), 86.3 (C (Pbf)), 114.1, 116.0, 124.0, 124.2, 125.0, 125.5, 126.6, 126.8, 127.8, 128.0, 128.1, 128.4, 129.7, 129.8 (ArCH), 117.4, 119.6, 120.2, 124.5, 129.3, 132.2, 133.1, 133.6, 133.8, 137.6, 138.3, 152.1, 154.3, 156.2, 164.8 (ArC), 156.0 (C=O (Boc)), 158.6 (C=N), 169.5, 171.1, 171.5 (C=O). MS (ESI, +ve) m/z 1307 (5%) $[M+H]^+$; 1329 (100%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₇₃H₉₅N₈O₁₂S 1307.6790, found 1307.6843.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(4-chlorobenzyloxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (99)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (85 mg, 0.081 mmol) and Type C amine 67 (25 mg, 0.081 mmol). Flash chromatography (100% CH_2Cl_2 to 4% MeOH/CH₂Cl₂) gave **99** (89 mg, 82%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.48 $(d, J = 6.0 \text{ Hz}, 3H, CH_3), 0.52 (d, J = 6.0 \text{ Hz}, 3H, CH_3), 0.76-0.83 (m, 2H, CH_2), 0.90-0.94 (m, 1H, 1H, 1H)$ $CH_2(H_a^{\circ})), 0.91 (d, J = 6.5 Hz, 3H, CH_3 (Leu)), 0.93 (d, J = 6.5 Hz, 3H, CH_3 (Leu)), 1.07-1.13 (m, CH_2)), 0.91 (d, J = 6.5 Hz, 3H, CH_3 (Leu)), 0.91 (d, J = 6.5 Hz, 2H)), 0.91 (d, J = 6.$ 1H, CH), 1.15-1.20 (m, 2H, CH₂), 1.21-1.38 (m, 3H, CH₂ and CH₂ (H_b^{*})), 1.40-1.52 (m, 2H, CH₂), 1.42 (s, 9H, ^tBu), 1.43 (s, 6H, 2 x CH₃ (Pbf)), 1.54-1.64 (m, 2H, CH and CH₂ (H_a[#])), 1.74-1.82 (m, 2H, CH₂), 1.81-1.92 (m, 1H, CH₂ (H_b[#])), 2.07 (s, 3H, CH₃ (Pbf)), 2.49 (s, 3H, CH₃ (Pbf)), 2.55 (s, 3H, CH₃ (Pbf)), 2.86-2.98 (m, 2H, CH₂N (Lys)), 2.91 (s, 2H, CH₂ (Pbf)), 3.00-3.12 (m, 1H, CH₂N (Arg, H_a)), 3.12-3.23 (m, 1H, CH₂N (Arg, H_b)), 3.84-3.88 (m, 1H CH₂O (H_a)), 3.95-4.05 (m, 2H, CH and CH₂O (H_b)), 4.35 (s, 2H, oxazole-CH₂), 4.41-4.49 (m, 1H, CH), 4.47 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.45 (s, 2H, CH₂ArCl), 4.73-4.99 (m, 1H, NHBoc), 5.15-5.20 (m, 1H, CH), 6.11 (d, J =7.0 Hz, 1H, NH), 6.22 (br s, 2H, 2 x NH), 7.13 (d, J = 8.5 Hz, 1H, ArH), 7.15 (d, J = 9.0 Hz, 1H, ArH), 7.20-7.38 (m, 9H, ArH), 7.44 (d, J = 9.0 Hz, 2H, ArH), 7.51 (s, 1H, ArH (oxazole)), 7.84-7.87 (m, 2H, ArH), 7.92 (d, J = 9.0 Hz, 1H, ArH), 7.95 (d, J = 9.0 Hz, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.4, 17.9, 19.2 (CH₃ (Pbf)), 21.7, 22.0, 22.2, 22.8 (CH₃), 22.4, 25.4, 29.0, 29.2, 31.0, 37.8, 41.9 (CH₂), 24.4, 24.6, 45.9, 52.5, 52.9 (CH), 28.4 (C(CH₃)₃), 28.5 (2 x CH₃ (Pbf)), 40.0 (CH₂N (Lys)), 40.3 (CH₂N (Arg)), 43.1 (CH₂ (Pbf)), 63.9 (oxazole-<u>CH₂</u>), 68.0 (O<u>C</u>H₂CO), 68.3 (CH₂O), 71.6 (CH₂ArCl), 78.9 (C(CH₃)₃), 86.2 (C (Pbf)), 114.1, 115.8, 123.9, 124.1, 124.9, 125.4, 126.5, 126.7, 127.9, 128.0, 128.5, 129.0, 129.7, 136.2 (ArCH), 117.3, 119.4, 120.2, 124.5, 129.1, 132.1, 132.9, 133.4, 133.5, 133.7, 136.2, 137.3, 138.2, 152.0, 154.3, 156.2, 164.6 (ArC), 156.0 (C=O (Boc)), 158.6 (C=N), 169.3, 171.3, 171.5 (C=O). MS (ESI, +ve) m/z 1363 (100%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for $C_{73}H_{94}N_8O_{12}SCl 1341.6400$, found 1341.6428.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(4-fluorobenzyloxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (100)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (38.8 mg, 0.037 mmol) and Type C amine 68 (13.5 mg, 0.046 mmol). Flash chromatography (100% CH_2Cl_2 to 2% MeOH/CH₂Cl₂) gave 100 (38.4 mg, 79%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.38$; $[\alpha]_{D}^{25}$ -41.2 (c 1.82, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.98 - 7.90 (m, 2H), 7.85 (t, J = 7.1 Hz, 2H), 7.50 (s, 1H), 7.44 (d, J = 8.9 Hz, 1H), 7.39 – 7.19 (m, 9H), 7.18 – 7.10 (m, 2H), 6.99 (t, J = 8.3 Hz, 2H), 6.24 (bs, 2H), 6.12 (bd, J = 6.0 Hz, 1H), 5.17 (q, J = 6.6 Hz, 1H), 4.82 – 4.72 (bm, 1H), 4.60 -4.28 (m, 7H), 4.06 - 3.95 (m, 2H), 3.86 (q, J = 8.0 Hz, 1H), 3.24 - 2.99 (m, 2H), 2.92 - 2.88 (m, 4H), 2.55 (s, 3H), 2.48 (s, 3H), 2.06 (s, 3H), 1.94 – 1.52 (m, 6H), 1.51 – 1.36 (m, 15H), 1.36 – 1.04 (m, 8H), 0.93 (d, J = 6.3 Hz, 3H), 0.90 (d, J = 6.2 Hz, 3H), 0.84 – 0.71 (m, 2H), 0.52 (d, J = 6.2 Hz, 3H), 0.47 (d, J = 6.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 171.2, 169.4, 164.7, 162.4 (d, $J_{C-F} = 245.8 \text{ Hz}$, 158.6, 156.2, 156.0, 154.3, 152.1, 138.3, 137.5, 136.2, 133.8, 133.6, 133.5 (d, J_{C-F} = 3.1 Hz), 133.0, 132.2, 129.8, 129.7, 129.6 (d, $J_{C-F} = 8.1$ Hz), 129.2, 128.1, 127.9, 126.7, 126.6, 125.5, 124.9, 124.5, 124.2, 123.9, 120.3, 119.5, 117.4, 115.9, 115.2 (d, $J_{C-F} = 21.4 \text{ Hz}$), 114.1, 86.3, 79.0, 71.8, 68.4, 68.0, 63.8, 53.1, 52.5, 46.0, 43.2, 42.1, 40.4, 40.1, 37.9, 30.9, 29.3, 29.1, 28.5, 28.4, 25.4, 24.6, 24.5, 22.8, 22.5, 22.3, 22.0, 21.7, 19.2, 17.9, 12.4; MS (ES^+) m/z 1347 (16%, M+Na), 1325 (100%, M+H); HRMS (ES⁺) Calcd. for $C_{73}H_{94}FN_8O_{12}S$: 1325.6696 (M+H), Found: 1325.6704.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-((4-(pyridin-4-ylmethoxy)methyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (101)$

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (35 mg, 0.033 mmol) and Type **C** amine TFA salt **69** (13 mg, 0.033 mmol), with added NEt(i-Pr)₂ (5.1 mg, 0.040 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **101** (81 mg, 81%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.48 (d, J = 6.0 Hz, 3H, CH₃), 0.52 (d, J = 6.0 Hz, 3H, CH₃), 0.73-0.86 (m, 2H, CH₂), 0.90-1.01 (m, 1H, CH₂ (H_a^{*})), 0.91 (d, J = 6.5 Hz, 3H, CH₃)

(Leu)), 0.94 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 08-1.13 (m, 1H, CH), 1.15-1.20 (m, 2H, CH₂), 1.21-1.29 $(m, 2H, CH_2), 1.30-1.40 (m, 2H, CH_2 (H_b^{*})), 1.41 (s, 9H, {}^{t}Bu), 1.42-1.52 (m, 2H, CH_2), 1.43 (s, 6H, 2)$ x CH₃ (Pbf)), 1.56-1.63 (m, 2H, CH and CH₂ (H_a[#])), 1.73-1.93 (m, 3H, CH₂ and CH₂ (H_b[#])), 2.06 (s, 3H, CH₃ (Pbf)), 2.48 (s, 3H, CH₃ (Pbf)), 2.54 (s, 3H, CH₃ (Pbf)), 2.84-2.98 (m, 2H, CH₂N (Lys)), 2.90 (s, 2H, CH₂ (Pbf)), 2.99-3.23 (m, 2H, CH₂N (Arg)), 3.84-3.89 (m, 1H CH₂O (H₂)), 4.01-4.02 (m, 2H, CH and CH₂O (H_b)), 4.35-4.58 (m, 3H, CH and OCH₂CO), 4.42 (s, 2H, oxazole-CH₂), 4.53 (s, 2H, CH₂-Py), 4.78-4.85 (m, 1H, NHBoc), 5.19 (dd, $J_1 = 8.5$, $J_2 = 14.5$ Hz, 1H, CH CH), 6.14 (d, J =6.0 Hz, 1H, NH), 6.23 (br s, 2H, 2 x NH), 7.12 (d, J = 9.0 Hz, 1H, ArH), 7.15 (d, J = 9.0 Hz, 1H, ArH), 7.21-7.26 (m, 5H, ArH), 7.30-7.37 (m, 2H, ArH), 7.43 (d, J = 9.0 Hz, 1H, ArH), 7.54 (s, 1H, ArH (oxazole)), 7.83-7.87 (m, 2H, ArH), 7.91-7.96 (m, 2H, ArH), 8.54 (d, J = 5.5 Hz, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.8, 22.1, 22.3, 22.8 (CH₃), 22.6, 25.5, 29.2, 29.4, 31.0, 38.0, 42.1 (CH₂), 24.5, 24.7, 46.1, 52.6, 53.1 (CH), 28.5 (C(<u>C</u>H₃)₃), 28.6 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.5 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 64.5 (oxazole-CH₂), 68.1 (OCH₂CO), 68.4 (CH₂O), 70.7 (CH₂Py), 79.0 (C(CH₃)₃), 86.3 (C (Pbf)), 114.2, 116.0, 121.8, 124.0, 124.3, 125.0, 125.5, 126.7, 126.8, 128.0, 128.1, 129.78, 129.83, 149.8 (ArCH), 117.4, 119.5, 120.4, 124.6, 129.3, 129.81, 132.2, 133.1, 133.6, 133.9, 137.2, 138.3, 147.1, 152.2, 154.4, 156.3, 164.8 (ArC), 136.4 (ArCH (oxazole)), 156.1 (C=O (Boc)), 158.7 (C=N), 169.4, 171.3, 171.5 (C=O). MS (ESI, +ve) m/z 1308 (100%) $[M+H]^+$; 1330 (25%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for $C_{72}H_{94}N_9O_{12}S$ 1308.6743, found 1308.6744.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (102)$

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (32.6 mg, 0.031 mmol) and Type **C** amine **70** (8.6 mg, 0.034 mmol). Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave **102** (15.6 mg, 39%) as an off-white solid. TLC (5% MeOH/CH₂Cl₂) $R_F = 0.44$; $[\alpha]_{p}^{25}$ -41.6 (*c* 0.66, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, major rotamer only) δ 8.01 – 7.94 (m, 2H), 7.87 (t, *J* = 8.5 Hz, 2H), 7.55 (s, 1H), 7.47 (d, *J* = 8.9 Hz, 1H), 7.39 – 7.21 (m, 5H), 7.18 – 7.12 (m, 2H), 6.91 (bd, *J* = 8.0 Hz, 1H), 6.26 – 6.04 (bm, 3H), 5.90 (dd, *J* = 8.9, 6.3 Hz, 1H), 4.86 – 4.79 (m, 1H), 4.62 – 4.42 (m, 3H), 4.40 (s, 2H), 4.11 – 4.03 (m, 1H), 3.95 – 3.80 (m, 2H), 3.33 – 3.23 (m, 3H), 3.19 – 3.08 (m, 1H), 2.99 – 2.88 (m, 4H), 2.83 (s, 3H), 2.59 (s, 3H), 2.53 (s, 3H), 2.09 (s, 3H), 1.98 – 1.67 (m, 5H), 1.66 – 1.07 (m, 24H), 1.01 – 0.71 (m, 15H), 0.56 (d, *J* = 6.5 Hz, 3H), 0.51 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 170.8, 169.1, 162.1, 158.5, 156.1, 155.9, 154.4, 152.0, 138.4, 138.3, 136.4, 133.8, 133.6, 133.4, 132.3, 129.9, 129.8, 129.7, 129.2, 128.03, 127.99, 126.8, 126.6, 125.5, 125.0, 124.4, 124.2, 123.9, 120.2, 119.5, 117.3, 115.9, 114.1, 86.2, 79.1, 77.9, 68.4, 67.8, 65.0, 53.4, 53.1, 49.2, 43.3, 40.6, 40.1, 38.1, 37.9, 30.6, 30.0, 29.3, 28.6, 28.43, 28.36, 24.7, 24.5, 24.1, 23.2, 22.6, 22.3, 22.1, 21.5, 19.35, 19.30, 19.25, 17.9, 12.4; MS (ES⁺) m/z

1309 (94%, M+Na), 1287 (100%, M+H); HRMS (ES⁺) Calcd. for $C_{71}H_{98}N_8NaO_{12}S$: 1309.6923 (M+Na), Found: 1309.6969.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(isobutoxymethyl)-5-phenyloxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (103)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (63.1 mg, 0.060 mmol) and Type C amine 71 (21.0 mg, 0.066 mmol). Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave 103 (63.0 mg, 78%) as an off-white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F}$ = 0.41; $\left[\alpha\right]_{D}^{25}$ -46.7 (c 2.29, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.9 Hz, 2H), 7.86 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 7.5 Hz, 2H), 7.53 - 7.17 (m, 11H), 7.15 (d, J = 7.5 Hz, 2H), 7.53 - 7.178.5 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 6.27 (bs, 2H), 6.14 (bd, J = 6.8 Hz, 1H), 5.27 (dd, J = 14.8, 7.8 Hz, 1H), 4.77 (bs, 1H), 4.60 - 4.35 (m, 5H), 4.13 - 3.95 (m, 2H), 3.89 - 3.81 (m, 1H), 3.26 (d, J =6.4 Hz, 2H), 3.21 - 3.10 (m, 1H), 2.96 - 2.76 (m, 5H), 2.54 (s, 3H), 2.47 (s, 3H), 2.03 (s, 3H), 1.95 -1.77 (m, 4H), 1.70 - 1.04 (m, 26H), 0.96 (d, J = 6.4 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H)Hz, 6H), 0.84 - 0.71 (m, 2H), 0.51 (d, J = 6.2 Hz, 3H), 0.46 (d, J = 6.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) § 171.4, 171.1, 169.3, 162.0, 158.6, 156.2, 156.0, 154.3, 152.1, 148.9, 138.2, 133.8, 133.5, 133.1, 132.3, 132.1, 129.7, 129.2, 128.6, 128.4, 128.02, 127.96, 127.9, 126.7, 126.5, 126.1, 125.5, 124.9, 124.4, 124.1, 123.8, 120.3, 119.4, 117.3, 115.9, 114.2, 86.2, 78.9, 77.5, 68.3, 68.1, 65.1, 52.7, 52.4, 46.0, 43.2, 42.3, 40.5, 40.0, 37.9, 29.6, 29.0, 28.5, 28.4, 28.3, 25.3, 24.7, 24.5, 22.8, 22.5, 22.3, 22.0, 21.9, 19.4, 19.2, 17.9, 12.4; MS (ES⁺) m/z 1372 (56%, M+Na), 1349 (100%, M+H); HRMS (ES^+) Calcd. for C₇₆H₁₀₁N₈O₁₂S: 1349.7260 (M+H), Found: 1349.7295.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(5-bromo-4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (104)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (48.4 mg, 0.046 mmol) and Type C amine 72 (16.1 mg, 0.050 mmol). Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave 104 (44.1 mg, 71%) as an off-white solid. TLC (5% MeOH/CH₂Cl₂) $R_F =$ 0.49; $[\alpha]_{p}^{25}$ -38.4 (c 1.89, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (t, J = 8.5 Hz, 2H), 7.86 (t, J = 7.1 Hz, 2H), 7.48 – 7.39 (m, 2H), 7.39 – 7.20 (m, 6H), 7.18 – 7.11 (m, 2H), 6.26 (bs, 2H), 6.13 (bd, J = 6.2 Hz, 1H), 5.19 - 5.11 (m, 1H), 4.80 (bs, 1H), 4.60 - 4.38 (m, 3H), 4.25 (s, 2H), 4.12 - 3.95 (m, 2H), 3.91 - 3.82 (m, 1H), 3.18 (d, J = 6.5 Hz, 2H), 3.11 - 2.84 (m, 6H), 2.56 (s, 3H), 2.49 (s, 3H), 2.08 (s, 3H), 1.91 - 1.70 (m, 4H), 1.69 - 1.03 (m, 25H), 0.93 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H), 0.87 (d, *J* = 6.4 Hz, 6H), 0.83 – 0.71 (m, 3H), 0.52 (d, *J* = 6.3 Hz, 3H), 0.47 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 171.3, 169.4, 165.4, 158.6, 156.2, 156.0, 154.3, 152.1, 138.3, 135.6, 133.8, 133.6, 133.0, 132.2, 129.78, 129.76, 129.2, 128.1, 127.9, 126.7, 126.6, 125.4, 124.9, 124.5, 124.2, 123.9, 120.3, 119.6, 117.4, 116.0, 114.1, 86.3, 78.9, 77.5, 68.5, 68.0, 63.4, 52.9, 52.4, 46.2, 43.2, 41.8, 40.5, 40.0, 37.9, 31.0, 29.3, 29.0, 28.6, 28.4, 28.2, 25.4, 24.6, 24.5, 22.8, 22.5, 22.3, 22.0, 21.6, 19.31, 19.27, 17.9, 12.4; MS (ES⁺) m/z 1375 (70%, M+Na, ⁸¹Br), 1373 (41%, M+Na, ⁷⁹Br), 1353 (100%, M+H, ⁸¹Br), 1351 (84%, M+H, ⁷⁹Br); HRMS (ES⁺) Calcd. for $C_{70}H_{95}^{79}BrN_8Na_2O_{12}S$ (M+2Na): 698.2885, Found: 698.2852.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(isobutylcarboxy)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (105)

This compound was prepared according to General Procedure 1 using carboxylic acid A (38.9 mg, 0.037 mmol) and Type C amine 73 (10.3 mg, 0.040 mmol). Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave 105 (30.5 mg, 64%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F}$ = 0.45; $[\alpha]_{p}^{25}$ -37.1 (c 1.34, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 8.00 - 7.91 (m, 2H), 7.90 - 7.83 (m, 2H), 7.54 - 7.42 (m, 3H), 7.38 - 7.29 (m, 2H), 7.29 - 7.20 (m, 3H), 7.18 - 7.11 (m, 2H), 6.31 (bs, 2H), 6.13 (bd, J = 5.6 Hz, 1H), 5.18 (dd, J = 14.2, 8.6 Hz, 1H), 4.73 (bs, 1H), 4.55 (d, J = 14.3 Hz, 1H), 4.51 - 4.37 (m, 2H), 4.09 - 3.93 (m, 4H), 3.86 (dd, J = 15.8, 6.8 Hz, 1H), 3.27 - 3.03(m, 2H), 3.01 - 2.84 (m, 4H), 2.56 (s, 3H), 2.49 (s, 3H), 2.07 (s, 3H), 2.00 (sep, J = 6.7 Hz, 1H), 1.94- 1.70 (m, 3H), 1.70 - 1.58 (m, 2H), 1.57 - 1.37 (m, 17H), 1.37 - 1.03 (m, 6H), 1.02 - 0.87 (m, 13H), 0.84 - 0.69 (m, 2H), 0.52 (d, J = 6.4 Hz, 3H), 0.47 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) 8 171.6, 171.5, 169.6, 165.9, 161.0, 158.6, 156.2, 156.0, 154.3, 152.1, 143.6, 138.3, 133.8, 133.6, 133.1, 132.9, 132.2, 129.74, 129.70, 129.3, 128.0, 127.9, 126.7, 126.5, 125.4, 125.0, 124.5, 124.1, 124.0, 120.2, 119.7, 117.3, 116.2, 114.2, 86.3, 79.0, 71.0, 68.6, 68.0, 53.3, 52.5, 46.1, 43.2, 41.8, 40.5, 40.1, 37.9, 30.9, 28.9, 28.5, 28.4, 27.7, 25.4, 24.6, 24.4, 22.8, 22.5, 22.3, 22.0, 21.6, 19.2, 19.0, 17.9, 12.4; MS (ES⁺) m/z 1309 (91%, M+Na), 1287 (100%, M+H); HRMS (ES⁺) Calcd. for C₇₀H₉₅N₈O₁₃S: 1287.6739 (M+H), Found: 1287.6810.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(isobutylcarbamoyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6oxohexyl)carbamate (106)

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (58.9 mg, 0.056 mmol) and Type **C** amine **74** (17.1 mg, 0.067 mmol). Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave **106** (57.2 mg, 79%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.42$; $[\alpha]_{\rm D}^{25} -44.1$ (*c* 2.63, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.93 (t, J = 7.7 Hz, 2H), 7.85 (t, J = 9.0 Hz, 2H), 7.57 (bs, 1H), 7.47 – 7.08 (m, 10H), 6.22 (bs, 2H), 6.14 (bd, J = 6.5 Hz, 1H), 5.22 (dd, J = 15.1, 8.0 Hz, 1H), 4.85 (bs, 1H), 4.57 – 4.32 (m, 3H), 4.11 – 3.95 (m, 2H), 3.92 – 3.82 (m, 1H), 3.24 – 3.12 (m, 2H), 3.05 – 2.81 (m, 6H), 2.52 (s, 3H), 2.45 (s, 3H), 2.06 (s, 3H), 1.91 – 1.72 (m, 4H), 1.68 – 1.04 (m, 26H), 1.02 – 0.87 (m, 12H), 0.85 – 0.70 (m, 2H), 0.52 (d, J = 6.2 Hz, 3H), 0.47 (d, J = 6.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 171.4, 169.2, 163.7, 160.6, 158.7, 156.3, 156.0, 154.4, 152.1, 140.8, 138.2, 136.2, 133.8, 133.5, 132.8, 132.1, 129.8, 129.71, 129.68, 129.1, 128.0, 127.9, 126.7, 126.5, 125.5, 124.9, 124.6, 124.2, 123.9, 120.4, 119.3, 117.5, 115.8, 114.2, 86.3, 78.9, 68.2, 68.1, 52.8, 46.3, 45.8, 43.2, 41.8, 40.3, 40.0, 37.9, 31.1, 29.0, 28.6, 28.55, 28.52, 28.4, 25.7, 24.6, 24.5, 22.7, 22.4, 22.3, 22.0, 21.8, 20.1, 19.2, 17.9, 12.4; MS (ES⁺) m/z 1308 (85%, M+Na), 1286 (100%, M+H); HRMS (ES⁺) Calcd. for C₇₀H₉₅N₉NaO₁₂S: 1308.6719 (M+Na), Found: 1308.6738.

tert-Butyl ((*R*)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-(((*R*)-1-(((*S*)-1-(4-(methoxy(methyl)carbamoyl) oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-6oxohexyl)carbamate (107)

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (55 mg, 0.05 mmol) and Type **C** amine **75** (16.5 mg, 0.07 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **107** (27.5 mg, 43%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.41$. $[\alpha]_D^{25} = -24.3$ (*c* 0.92, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.46 (3H, d, J = 6.6 Hz), 0.51 (3H, d, J = 6.6 Hz), 0.69 - 0.83 (2H, m), 0.93 (6H, t, J = 6.4 Hz), 1.03 - 1.10 (2H, m), 1.13 - 1.26 (3H, m), 1.43 (16H, s, J = 9.6 Hz), 1.51 - 1.93 (6H, m), 2.07 (3H, s), 2.30 (3H, s), 2.51 (3H, s), 2.58 (3H, s),

2.92 (4H, bs), 3.06 - 3.16 (1H, bm), 3.27 (3H, s), 3.73 (3H, s), 3.83 - 3.91 (2H, m), 4.02 - 4.06 (1H, m), 4.53 (AB_q, 4H, $\Delta\sigma_{AB} = 0.65$, $J_{AB} = 14.5$ Hz), 5.12 - 5.16 (1H, m), 5.30 (1H, s), 6.13 (2H, d, J = 6.5 Hz), 6.36 (2H, bs), 7.14 - 7.16 (2H, m), 7.23 - 7.26 (3H, m), 7.30 - 7.37 (4H, m), 7.47 (1H, d, J = 9.0 Hz), 7.87 (2H, t, J = 8.2 Hz), 7.94 - 7.99 (2H, m), 8.09 (1H, s). ¹³C NMR (126 MHz, CDCl₃) δ 12.7, 18.2, 19.5, 21.9, 22.2, 22.5, 23.0, 24.6, 24.9, 28.7, 28.8, 29.5, 33.1, 38.1, 40.8, 42.2, 43.5, 46.4, 53.7, 61.6, 68.2, 69.0, 86.5, 105.0, 114.6, 116.5, 117.5, 120.2, 120.4, 124.2, 124.4, 124.7, 125.3, 125.7, 126.8, 127.0, 128.1, 128.4, 129.6, 129.9, 130.0, 132.5, 133.9, 134.0, 138.5, 142.9, 152.4, 154.6, 156.5, 158.8, 165.3, 170.0, 171.8. IR (neat) $v [\text{cm}^{-1}] = 3852$ (s), 3675 (s), 2966 (w), 2360 (m), 1684 (s), 1558 (s), 1507 (s), 1248 (w), 1089 (w), 667 (m). MS (ESI⁺) m/z = 1275 (40 %, [M+H]⁺), 1297 (100 %, [M+Na]⁺).

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(4-methylpentanoyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-dimensional (199)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (49.4 mg, 0.047 mmol) and Type C amine TFA salt 76 (20.7 mg, 0.056 mmol), with added NEt(i-Pr)₂ (10.9 mg, 0.085 mmol). Flash chromatography (100% CH₂Cl₂ to 2.5% MeOH/CH₂Cl₂) gave 108 (45.2 mg, 75%) as an off-white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.49$; $[\alpha]_{\rm D}^{25} -40.2$ (c 2.10, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 7.97 – 7.91 (m, 2H), 7.86 (t, J = 8.8 Hz, 2H), 7.52 (bs, 1H), 7.44 (d, J = 9.0 Hz, 1H), 7.41 – 7.29 (m, 3H), 7.29 – 7.19 (m, 3H), 7.17 – 7.10 (m, 2H), 6.31 (bs, 2H), 6.15 (bd, J = 6.7 Hz, 1H), 5.19 (dd, J = 15.0, 8.4 Hz, 1H), 4.80 – 4.71 (m, 1H), 4.58 – 4.34 (m, 3H), 4.11 - 3.96 (m, 2H), 3.93 - 3.81 (m, 1H), 3.26 - 3.02 (m, 2H), 2.97 - 2.86 (m, 4H), 2.80 (t, J =7.6 Hz, 2H), 2.54 (s, 3H), 2.47 (s, 3H), 2.06 (s, 3H), 1.93 – 1.73 (m, 3H), 1.71 – 1.04 (m, 29H), 1.01 -0.86 (m, 12H), 0.84 - 0.70 (m, 2H), 0.52 (d, J = 6.5 Hz, 3H), 0.47 (d, J = 6.5 Hz, 3H); 13 C NMR (125 MHz, CDCl₃) δ 194.8, 171.5, 169.4, 165.0, 158.6, 156.3, 156.0, 154.4, 152.1, 142.5, 140.2, 138.2, 133.8, 133.6, 133.0, 132.1, 129.8, 129.73, 129.67, 129.2, 128.0, 127.9, 126.7, 126.5, 125.4, 124.9, 124.5, 124.1, 123.9, 120.3, 119.6, 117.4, 116.0, 114.2, 86.3, 78.9, 68.4, 68.0, 53.0, 46.0, 43.2, 41.7, 40.4, 40.0, 37.9, 37.8, 32.5, 31.0, 29.2, 29.1, 28.5, 28.4, 27.6, 25.4, 24.6, 24.4, 22.7, 22.5, 22.36, 22.35, 22.3, 22.0, 21.7, 19.2, 17.9, 12.4; MS (ES^+) m/z 1307 (66%, M+Na), 1285 (100%, M+H); HRMS (ES⁺) Calcd. for C₇₁H₉₇N₈O₁₂S: 1285.6947 (M+H), Found: 1285.6956.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-(((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (109)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (38 mg, 0.036 mmol) and Type C amine 77 (38 mg, 0.036 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **109** (17 mg, 47%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.51 (d, J = 6.5 Hz, 3H, CH₃), 0.56 (d, J = 7.0 Hz, 3H, CH₃), 0.75-0.86 (m, 2H, CH₂), 0.91-0.95 (m, 1H, CH₂ (H_a^{*})), 0.92 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.97 (d, J = 7.0 Hz, 3H, CH₃ (Leu)), 1.12-1.17 (m, 1H, CH), 1.18-1.34 (m, 4H, 2 x CH₂), 1.30-1.41 (m, 1H, CH₂ (H_b^{*})), 1.40-1.48 (m, 1H, CH), 1.44 (s, 15H, 2 x CH₃ (Pbf) and ^tBu), 1.46-1.54 (m, 2H, CH₂), 1.52-1.64 (m, 1H, CH₂ (H_a[#])), 1.70-1.81 (m, 1H, CH₂ (H_b[#])), 1.84-1.93 (m, 2H, CH₂), 2.08 (s, 3H, CH₃ (Pbf)), 2.53 (s, 3H, CH₃ (Pbf)), 2.59 (s, 3H, CH₃ (Pbf)), 2.83 (s, 3H, NCH₃), 2.88-3.00 (m, 2H, CH₂N (Lys)), 2.94 (s, 2H, CH₂ (Pbf)), 3.07-3.19 (m, 1H, CH₂N (Arg, H_a)), 3.23-3.32 (m, 1H, CH₂N (Arg, H_b)), 3.42 (s, 3H, OCH₃), 3.80-3.88 (m, 1H, CH), 3.90-3.94 (m, 1H CH₂O (H_a)), 4.05-4.09 (m, 1H CH₂O (H_b)), 4.35 (s, 2H, oxazole- CH_2), 4.48 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.54-4.61 (m, 1H, NHBoc), 4.81-4.84 (m, 0.7H, CH), 4.97-5.05 (m, 0.3H, CH), 5.90 (dd, $J_1 = 6.0$, $J_2 = 10.0$ Hz, 1H, CH), 6.08 (d, J = 6.0 Hz, 1H, NH), 6.13 (br s, 2H , 2 x NH), 6.89 (d, J = 8.0 Hz, 1H, NH), 7.14-7.16 (m, 2H, ArH), 7.23-7.26 (m, 2H, ArH), 7.29-7.38 (m, 2H, ArH), 7.47 (d, J = 9.0 Hz, 2H, ArH); 7.57 (s, 1H, ArH (oxazole)), 7.86-7.89 (m, 2H, ArH), 7.96-7.99 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.4, 17.9, 19.3 (CH₃ (Pbf)), 21.5, 22.1, 22.3, 23.2 (CH₃), 22.6, 24.0 29.2, 29.7, 30.6, 37.9, 38.0 (CH₂), 24.5, 24.7, 49.2, 53.4 (CH), 28.4 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.5 (CH₂N (Arg)), 43.2 (CH₂ (Pbf)), 58.5 (OCH₃), 66.2 (oxazole-CH₂), 67.8 (OCH₂CO), 68.3 (CH₂O), 79.1 (C(CH₃)₃), 86.2 (C (Pbf)), 114.0, 115.9, 123.9, 134.2, 125.0, 125.4, 126.6, 126.8, 128.0, 129.6, 129.9, 136.7, 137.3 (ArCH), 117.3, 119.5, 120.2, 124.4, 129.1, 129.8, 132.2, 133.4, 133.6, 133.8, 138.3, 152.0, 154.4, 156.1, 162.4 (ArC), 156.0 (C=O (Boc)), 158.5 (C=N), 169.1, 170.8, 171.1 (C=O). MS (ESI, +ve) m/z 1245 (5%) $[M+H]^+$; 1266 (100%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for C₆₈H₉₃N₈O₁₂S 1245.6643, found 1245.6696.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(methoxymethyl)-5-methyloxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (110)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (51 mg, 0.048 mmol) and Type C amine 78 (10 mg, 0.044 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **110** (38 mg, 69%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.51 (d, J = 6.5 Hz, 3H, CH₃), 0.56 (d, J = 6.0 Hz, 3H, CH₃), 0.75-0.85 (m, 2H, CH₂), 0.88-1.00 (m, 1H, CH₂ (H_a^{*})), 0.91 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.96 (d, J = 7.0 Hz, 3H, CH₃ (Leu)), 1.12-1.17 (m, 1H, CH), 1.18-1.30 (m, 4H, 2 x CH₂), 1.36-1.46 (m, 1H, CH₂ (H_b^{*})), 1.43-1.44 (m, 16H, CH, 2 x CH₃ (Pbf) and ^tBu), 1.46-1.53 (m, 2H, CH₂), 1.50-1.61 (m, 1H, CH₂ (H_a[#])), 1.68-1.78 (m, 1H, CH₂ $(H_b^{\#})$, 1.81-1.91 (m, 2H, CH₂), 2.08 (s, 3H, CH₃ (Pbf)), 2.29 (s, 3H, oxazole-CH₃), 2.53 (s, 3H, CH₃) (Pbf)), 2.59 (s, 3H, CH₃ (Pbf)), 2.84 (s, 3H, NCH₃), 2.85-3.01 (m, 2H, CH₂N (Lys)), 2.94 (s, 2H, CH₂) (Pbf)), 3.06-3.20 (m, 1H, CH₂N (Arg, H_a)), 3.22-3.33 (m, 1H, CH₂N (Arg, H_b)), 3.38 (s, 3H, OCH₃), 3.88-3.94 (m, 2H, CH and CH₂O (H_a)), 4.04-4.09 (m, 1H CH₂O (H_b)), 4.27 (s, 2H, oxazole-CH₂), 4.48 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.58-4.66 (m, 1H, NHBoc), 4.79-4.83 (m, 0.7H, CH), 4.96-5.00 (m, 0.3H, CH), 5.85 (dd, $J_1 = 5.5$, $J_2 = 10.0$ Hz, 1H, CH), 6.10 (d, J = 6.5 Hz, 1H, NH), 6.17 (br s, 2H, 2 x NH), 6.64 (d, J = 8.0 Hz, 1H, NH), 7.13-7.16 (m, 2H, ArH), 7.22-7.26 (m, 2H, ArH), 7.30-7.37 (m, 3H, ArH), 7.46 (d, J = 9.0 Hz, 1H, ArH), 7.85-7.89 (m, 2H, ArH), 7.97 (d, J = 8.5 Hz, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 10.5 (oxazole-CH₃), 12.7, 18.2, 19.5 (CH₃ (Pbf)), 21.8, 22.3, 22.5, 23.4 (CH₃), 22.9, 24.5, 29.5, 29.9, 30.9, 38.2, 38.4 (CH₂), 24.8, 24.9, 49.3, 53.3, 53.6 (CH), 28.7 (C(CH₃)₃), 28.8 (2 x CH₃ (Pbf)), 30.2 (NCH₃), 40.3 (CH₂N (Lys)), 40.8 (CH₂N (Arg)), 43.5 (CH₂ (Pbf)), 58.5 (OCH₃), 66.0 (oxazole-CH₂), 68.1 (OCH₂CO), 68.6 (CH₂O), 79.3 (C(CH₃)₃), 86.5 (C (Pbf)), 114.3, 116.1, 124.1, 124.4, 125.3, 125.7, 126.8, 127.0, 128.2, 128.3, 129.9, 130.1 (ArCH), 117.5, 119.7, 120.5, 124.7, 129.4, 130.1, 131.9, 132.5, 133.7, 133.9, 134.1, 138.5, 147.3, 152.3, 154.7, 156.4, 160.3 (ArC), 156.2 (C=O (Boc)), 158.8 (C=N), 169.3, 171.5 (C=O). MS (ESI, +ve) m/z $1260 (100\%) [M+H]^+$; $1282 (100\%) [M+Na]^+$. HRMS (ESI, +ve) calcd for C₆₉H₉₅N₈O₁₂S 1259.6790, found 1259.6841.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(methoxymethyl)-5-iodooxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (111)$

This compound was prepared according to *General Procedure 1* using carboxylic acid A (32.6 mg, 0.03 mmol) and Type C amine 79 (13.3 mg, 0.04 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) gave **111** (15.7 mg, 37%) as a white solid. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.38$. $[\alpha]_{D}^{25} = -44.2$ (c 0.52, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 0.52 (3H, d, J = 6.5 Hz), 0.57 (3H, d, J = 6.5 Hz), 0.77 - 0.86 (2H, m), 0.92 - 0.97 (6H, m), 1.12 - 1.17 (2H, m), 1.22 - 1.31 (5H, m), 1.43 -1.44 (16H, m), 1.55 - 1.63 (2H, m), 1.68 - 1.93 (7H, m), 2.09 (3H, s), 2.53 (3H, s), 2.59 (3H, s), 2.86 (4H, bs), 2.94 (3H, bs), 3.06 - 3.19 (1H, bm), 3.24 - 3.30 (1H, m), 3.40 (3H, s), 3.79 - 3.85 (1H, m), 3.88 - 3.95 (2H, m), 4.03 - 4.09 (1H, m), 4.27 (2H, s), 4.43 - 4.58 (4H, m), 4.82 - 4.84 (1H, m), 5.30 (1H, s), 5.88 - 5.92 (2H, m), 6.09 - 6.16 (3H, m), 6.88 (1H, d, J = 7.6 Hz), 7.14 - 7.16 (2H, d, J = 7.7Hz), 7.24 - 7.26 (3H, m), 7.30 - 7.38 (3H, m), 7.47 (1H, d, J = 8.8 Hz), 7.88 (2H, t, J = 7.9 Hz), 7.98 (2H, d, J = 9.0 Hz), 8.09 (1H, s). ¹³C NMR (126 MHz, CDCl₃) δ 12.6, 18.1, 19.4, 21.6, 22.2, 22.4, 23.3, 24.7, 24.8, 28.6, 28.7, 29.4, 30.4, 38.1, 43.4, 49.6, 56.8, 58.7, 65.8, 68.0, 68.5, 86.4, 114.2, 116.1, 117.5, 119.7, 120.4, 124.0, 124.4, 125.2, 125.6, 126.8, 127.0, 128.1, 128.4, 129.3, 129.9, 130.0, 132.5, 133.8, 142.9, 152.2, 154.6, 156.2, 167.1, 171.6. IR (neat) $v [cm^{-1}] = 3752$ (s), 3342 (s), 2967 (m), 2334 (m), 1635 (s), 1558 (s), 1242 (m), 1090 (m), 809 (m), 667 (s). MS (ESI⁺) m/z = 1371 $(45\%, [M+H]^+), 1391 (100\%, [M+Na]^+).$

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(4-(methoxymethyl)-5-phenyloxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (112)$

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (33 mg, 0.031 mmol) and Type **C** amine **80** (9 mg, 0.031 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **112** (33 mg, 81%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.45 (d, J = 6.0 Hz, 3H, CH₃), 0.55 (d, J = 6.5 Hz, 3H, CH₃), 0.72-0.84 (m, 2H, CH₂), 0.86-0.98 (m, 1H, CH₂ (H_a^{*})), 0.95 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 0.99 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 1.12-1.17 (m, 1H,

CH), 1.19-1.26 (m, 4H, 2 x CH₂), 1.25-1.36 (m, 1H, CH₂ (H_b^{*})), 1.38-1.50 (m, 1H, CH), 1.42 (s, 9H, ^tBu), 1.44 (s, 6H, 2 x CH₃ (Pbf)), 1.45-1.56 (m, 2H, CH₂), 1.55-1.65 (m, 1H, CH₂ (H_a[#])), 1.70-1.80 (m, 1H, CH₂ (H_b[#])), 1.86-2.00 (m, 2H, CH₂), 2.08 (s, 3H, CH₃ (Pbf)), 2.52 (s, 3H, CH₃ (Pbf)), 2.56 (s, 3H, CH₃ (Pbf)), 2.87-2.89 (m, 2H, CH₂N (Lys)), 2.93 (s, 5H, CH₂ (Pbf) and NCH₃), 3.07-3.20 (m, 1H, CH₂N (Arg, H_a)), 3.23-3.32 (m, 1H, CH₂N (Arg, H_b)), 3.46 (s, 3H, OCH₃), 3.88-3.93 (m, 1H, CH and CH₂O (H_a)), 4.03-4.07 (m, 1H CH₂O (H_b)), 4.47 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.49 (s, 2H, oxazole-CH2), 4.55-4.64 (m, 1H, NHBoc), 4.80-4.88 (m, 0.7H, CH), 5.02-5.12 (m, 0.3H, CH), 5.96-5.99 (m, 1H, CH), 6.10 (d, J = 5.5 Hz, 1H, NH), 6.18 (br s, 2H, 2 x NH), 6.95 (d, J = 7.5 Hz, 1H, NH), 7.12-7.1 (m, 2H, ArH), 7.23-7.26 (m, 2H, ArH), 7.28-7.38 (m, 5H, ArH), 7.42-7.44 (m, 3H, ArH), 7.62 (d, J = 7.5 Hz, 1H, ArH), 7.84 (d, J = 8.0 Hz, 1H, ArH), 7.87 (d, J = 8.5 Hz, 1H, ArH), 7.94-7.97 (m, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.6, 22.1, 22.3, 23.2 (CH₃), 22.6, 24.2, 29.2, 29.7, 30.2, 38.0, 38.4 (CH₂), 24.5, 24.8, 49.3, 53.3 (CH), 28.4 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 30.7 (NCH₃), 40.1 (CH₂N (Lys)), 40.6 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 58.3 (OCH₃), 66.5 (oxazole-CH₂), 67.9 (OCH₂CO), 68.3 (CH₂O), 79.6 (C(CH₃)₃), 86.2 (C (Pbf)), 114.1, 115.9, 123.9, 124.2, 125.0, 125.5, 126.2, 126.3, 126.6, 126.8, 128.0, 128.8, 128.9, 129.7, 129.9 (ArCH), 117.3, 119.5, 120.3, 124.5, 127.8, 129.2, 132.27, 132.34, 133.4 133.7, 133.9, 138.3, 149.4, 152.1, 154.4, 156.2, 160.3 (ArC), 156.0 (C=O (Boc)), 158.6 (C=N), 169.1, 171.5 (C=O). MS (ESI, +ve) m/z 1322 (5%) $[M+H]^+$; 1344 (100%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for $C_{74}H_{97}N_8O_{12}S$ 1321.6947, found 1321.6904 $[M+H]^+$; calcd for $C_{74}H_{96}N_8O_{12}SNa$ 1343.6766, found 1343.6729 [M+Na]⁺.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(5-(4-isopropylphenyl)-4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (113)$

This compound was prepared according to *General Procedure 1* using carboxylic acid **A** (43 mg, 0.040 mmol) and Type **C** amine TFA salt **81** (18 mg, 0.040 mmol), with added NEt(i-Pr)₂ (6.2 mg, 0.048 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **113** (36 mg, 65%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.50 (d, J = 6.0 Hz, 3H, CH₃), 0.55 (d, J = 6.5 Hz, 3H, CH₃), 0.52-0.84 (m, 2H, CH₂), 0.82-0.94 (m, 1H, CH₂ (H_a^{*})), 0.94 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.98 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 1.11-1.18 (m, 1H, CH), 1.19-1.29 (m, 10H, 2 x CH₂, C₆H₄CH(C<u>H₃)₂</u>), 1.32-1.41 (m, 1H, CH₂ (H_b^{*})), 1.42-1.44 (m, 16H, CH, 2 x CH₃ (Pbf) and ^{*t*}Bu), 1.44-1.56 (m, 2H, CH₂), 1.56-1.61 (m, 1H, CH₂ (H_a^{*})), 1.71-1.80 (m, 1H, CH₂ (H_b[#])), 1.85-1.99 (m, 2H, CH₂), 2.08 (s, 3H, CH₃ (Pbf)), 2.53 (s, 3H, CH₃ (Pbf)), 2.59 (s, 3H, CH₃ (Pbf)), 2.87-2.98 (m, 3H, CH₂ (Lys) and C₆H₄CH(CH₃)₂), 2.92 (s, 3H, NCH₃), 2.93 (s, 2H, CH₂ (Pbf)), 3.07-3.20 (m, 1H, CH₂O (H_a)), 4.05-4.07 (m, 1H CH₂O (H_b)), 4.47 (ABq, J = 14.0 Hz, 2H, OCH₂CO), 4.48 (s, 2H, oxazole-C<u>H₂</u>), 4.55-4.65 (m, 1H, N<u>H</u>Boc), 4.79-4.88 (m, 0.7H, CH), 5.05-5.10 (m, 0.3H, CH), 5.95-5.98 (m, 1H, CH), 6.10 (d, J = 5.5 Hz, 1H, NH), 6.18-6.22 (m, 2H, 2 x NH), 6.98 (d, J = 7.0 Hz, 1H,

NH), 7.13-7.16 (m, 2H, ArH), 7.23-7.26 (m, 2H, ArH), 7.29-7.37 (m, 5H, ArH), 7.45 (d, J = 9.5 Hz, 1H, ArH), 7.49 (d, J = 8.0 Hz, 1H, ArH), 7.55 (d, J = 8.0 Hz, 1H, ArH), 7.94-7.97 (m, 2H, ArH), 7.84-7.87 (m, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 12.5, 18.0, 19.3 (CH₃ (Pbf)), 21.7, 22.1, 22.3, 23.2 (CH₃), 22.6, 24.2, 29.2, 29.7, 30.7, 38.0, 38.4 (CH₂), 24.6, 24.8, 49.3, 53.3 (CH), 23.9 (C₆H₄CH(CH₃)₂), 28.5 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 30.2 (NCH₃), 34.0 (C₆H₄CH(CH₃)₂), 40.1 (CH₂N (Lys)), 40.6 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 58.3 (OCH₃), 66.5 (oxazole-CH₂), 67.9 (OCH₂CO), 68.3 (CH₂O), 79.1 (C(CH₃)₃), 86.2 (C (Pbf)), 114.1, 115.9, 123.9, 124.2, 125.0, 125.3, 126.4, 126.5, 126.6, 126.8, 127.0, 127.2, 128.0, 128.1, 129.7, 129.9 (ArCH), 117.3, 119.5, 120.3, 124.4, 125.5, 129.2, 129.8, 131.8, 132.3, 133.5, 133.7, 133.9, 138.3, 149.6, 149.9, 152.1, 154.4, 156.2, 160.0 (ArC), 156.0 (C=O (Boc)), 158.5 (C=N), 169.1, 170.8, 171.4 (C=O). MS (ESI, +ve) m/z 1364 (50%) [M+H]⁺; 1386 (100%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₇₇H₁₀₃N₈O₁₂S 1363.7416, found 1363.7416; calcd for C₇₇H₁₀₂N₈O₁₂SNa 1385.7236, found 1385.7175.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(5-(4-trifluoromethylphenyl)-4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)-*N*-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (114)

This compound was prepared according to General Procedure 1 using carboxylic acid A (47 mg, 0.045 mmol) and Type C amine TFA salt 82 (21 mg, 0.045 mmol), with added NEt(i-Pr)₂ (7.0 mg, 0.054 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **114** (54 mg, 86%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.50 (d, J = 6.5 Hz, 3H, CH₃), 0.55 (d, J = 6.0Hz, 3H, CH₃), 0.73-0.85 (m, 2H, CH₂), 0.86-0.96 (m, 1H, CH₂ (H_a^{*})), 0.95 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.00 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.12-1.16 (m, 1H, CH), 1.18-1.31 (m, 4H, 2 x CH₂), $1.28-1.40 \text{ (m, 1H, CH}_2 (H_b^*)), 1.38-1.50 \text{ (m, 1H, CH)}, 1.42 \text{ (s, 9H, }^{t}Bu), 1.44 \text{ (s, 6H, 2 x CH}_3 (Pbf))$ 1.47-1.56 (m, 2H, CH₂), 1.54-1.65 (m, 1H, CH₂ (H_a[#])), 1.71-1.81 (m, 1H, CH₂ (H_b[#])), 1.87-1.97 (m, 2H, CH₂), 2.09 (s, 3H, CH₃ (Pbf)), 2.53 (s, 3H, CH₃ (Pbf)), 2.60 (s, 3H, CH₃ (Pbf)), 2.83-3.02 (m, 7H, CH₂ (Pbf), CH₂N (Lys) and NCH₃), 3.08-3.21 (m, 1H, CH₂N (Arg, H_a)), 3.22-3.39 (m, 1H, CH₂N (Arg, H_b)), 3.47 (s, 3H, OCH₃), 3.80-3.90 (m, 1H, CH), 3.89-3.93 (m, 1H CH₂O (H_a)), 4.00-4.08 (m, 1H CH₂O (H_b)), 4.43-4.57 (m, 4H, CH, OCH₂CO and NHBoc), 4.51 (s, 2H, oxazole-CH₂), 4.81-4.90 (m, 0.7H, CH), 5.06-5.12 (m, 0.3H, CH), 5.98 (dd, $J_1 = 6.0$, $J_2 = 10.0$ Hz, 1H, CH), 6.08 (d, J = 6.5 Hz, 1H, NH), 6.15 (br s, 2H, 2 x NH), 6.91 (d, J = 6.5 Hz, 1H, NH), 7.14-7.15 (m, 2H, ArH), 7.22-7.26 (m, 2H, ArH), 7.29-7.38 (m, 3H, ArH), 7.45 (d, J = 9.0 Hz, 2H, ArH), 7.69-7.72 (m, 2H, ArH), 7.76-7.78 (m, 2H, ArH), 7.84-7.89 (m, 2H, ArH), 7.95-7.98 (m, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): δ 12.5, 18.0, 19.3 (CH₃ (Pbf)), 21.6, 22.1, 22.3, 23.2 (CH₃), 22.6, 24.2, 29.2, 29.7, 30.6, 38.0, 38.4 (CH₂), 24.6, 24.8, 49.2, 53.4 (CH), 28.4 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 30.2 (NCH₃), 40.1 (CH₂N (Lys)), 40.6 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 58.4 (OCH₃), 66.5 (oxazole-CH₂), 67.9 (OCH₂CO), 68.4 (CH₂O), 79.2 (C(CH₃)₃), 86.3 (C (Pbf)), 114.1, 115.9, 124.0, 124.3, 125.1, 125.5, 125.9, 126.2, 126.4, 126.7, 126.8, 128.0, 129.7, 129.9 (ArCH), 117.3, 119.6, 120.3, 124.5, 129.2, 129.9, 131.1, 132.3, 133.4, 133.7, 133.9, 134.1, 138.4, 148.0, 152.1, 154.4, 156.2, 161.0 (ArC), 123.9 (q, J = 273 Hz, CF₃), 130.4 (q, J = 33 Hz, <u>C</u>CF₃), 156.0 (C=O (Boc)), 158.6 (C=N), 169.1, 170.9, 171.6 (C=O). MS (ESI, +ve) m/z 1390 (5%) [M+H]⁺; 1412 (100%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₇₅H₉₅N₈O₁₂F₃NaS 1411.6640, found 1411.6703 [M+Na]⁺.

 $tert-Butyl \qquad ((R)-6-(((R)-1-(((S)-1-(5-(2,4-difluorophenyl)-4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)-N-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (115)$

This compound was prepared according to General Procedure 1 using carboxylic acid A (49 mg, 0.047 mmol) and Type C amine TFA salt 83 (22 mg, 0.047 mmol), with added NEt(i-Pr)₂ (7.2 mg, 0.056 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave 115 (55 mg, 86%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.50 (d, J = 6.0 Hz, 3H, CH₃), 0.55 (d, J = 6.0Hz, 3H, CH₃), 0.70-0.90 (m, 2H, CH₂), 0.91-0.98 (m, 1H, CH₂ (H_a^{*})), 0.94 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 0.98 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 1.11-1.17 (m, 1H, CH), 1.18-1.28 (m, 4H, 2 x CH₂), 1.29-1.36 (m, 1H, CH₂ (H_b^{*})), 1.38-1.48 (m, 1H, CH), 1.42 (s, 9H, ^tBu), 1.44 (s, 6H, 2 x CH₃ (Pbf)), 1.45-1.55 (m, 2H, CH₂), 1.52-1.63 (m, 1H, CH₂ (H_a[#])), 1.74-1.76 (m, 1H, CH₂ (H_b[#])), 1.88-1.95 (m, 2H, CH₂), 2.08 (s, 3H, CH₃ (Pbf)), 2.53 (s, 3H, CH₃ (Pbf)), 2.59 (s, 3H, CH₃ (Pbf)), 2.87-2.99 (m, 2H, CH₂N (Lys)), 2.926 (s, 3H, NCH₃), 2.93 (s, 2H, CH₂ (Pbf)), 3.07-3.19 (m, 1H, CH₂N (Arg, H_a)), 3.20-3.33 (m, 1H, CH₂N (Arg, H_b)), 3.40 (s, 3H, OCH₃), 3.89-3.93 (m, 2H, CH and CH₂O (H_a)), 4.34-4.08 (m, 1H, CH₂O (H_b)), 4.38 (s, 2H, oxazole-CH₂), 4.47 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.57-4.66 (m, 1H, NHBoc), 4.81-4.85 (m, 0.7H, CH), 5.01-5.12 (m, 0.3H, CH), 5.96 (dd, $J_1 = 6.0, J_2$ = 9.5 Hz, 1H, CH), 6.10 (d, J = 6.5 Hz, 1H, NH), 6.14-6.23 (m, 3H, 3 x NH), 6.89-7.00 (m, 2H, ArH), 7.13-7.16 (m, 2H, ArH), 1.22-7.27 (m, 2H, ArH), 7.29-7.37 (m, 2H, ArH), 7.46 (d, J = 8.5 Hz, 1H, ArH), 7.49-7.54 (m, 2H, ArH), 7.84-7.88 (m, 2H, ArH), 7.95-7.98 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.6, 22.1, 22.3, 23.2 (CH₃), 22.6, 24.3 29.2, 29.7, 30.7, 37.9, 38.3 (CH₂), 24.5, 24.8, 49.2, 49.4, 53.2 (CH), 28.4 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.6 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 58.5 (OCH₃), 66.1 (oxazole-CH₂), 67.9 (OCH_2CO) , 68.3 (CH_2O) , 79.1 $(C(CH_3)_3)$, 86.2 (C (Pbf)), 104.8 (t, J = 26 Hz, ArCH), 112.0 $(dd, J_1 = 26 \text{ Hz})$ 4, $J_2 = 22$ Hz, ArCH), 112.4 (d, J = 4 Hz, ArC), 114.1, 115.9, 123.9, 124.2, 125.0, 125.5, 126.6, 126.8, 128.0, 128.1, 129.7, 129.9, (ArCH), 131.4 (dd, *J*₁ = 4, *J*₂ = 14 Hz, ArCH), 117.3, 119.5, 120.3, 124.5, 129.2, 129.8, 132.3, 133.4, 133.7, 134.6, 138.3, 143.2, 152.1, 154.4, 156.2, 161.8 (ArC), 156.0 (C=O (Boc)), 158.5 (C=N), 159.5 (dd, $J_1 = 12$, $J_2 = 254$ Hz, ArC), 163.5 (dd, $J_1 = 12$ $J_2 = 253$ Hz, ArC), 169.1, 170.8, 171.5 (C=O). MS (ESI, +ve) m/z 1358 (5%) $[M+H]^+$; 1380 (100%) $[M+Na]^+$. (ESI, for $C_{74}H_{95}N_8O_{12}F_2S$ 1357.6758, found HRMS +ve) calcd 1357.6742 $[M+H]^+$; $C_{74}H_{94}N_8O_{12}F_2SNa 1379.6578$, found 1379.6573 [M+Na]⁺.

tert-Butyl ((*R*)-6-(((*R*)-1-(((*S*)-1-(4-(methoxymethyl)-5-(3,5-dimethylisoxazol-4-yl)oxazol-2-yl)-3-methylbutyl)-*N*-methylamino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (116)

This compound was prepared according to *General Procedure 1* using carboxylic acid A (38 mg, 0.036 mmol) and Type C amine TFA salt 84 (15 mg, 0.036 mmol), with added NEt(i-Pr)₂ (5.6 mg, 0.043 mmol). Flash chromatography (100% CH₂Cl₂ to 4% MeOH/CH₂Cl₂) gave **116** (36 mg, 75%) as an off white solid. ¹H NMR (500 MHz, CDCl₃): δ 0.50 (d, J = 6.5 Hz, 3H, CH₃), 0.55 (d, J = 7.0Hz, 3H, CH₃), 0.75-0.81 (m, 2H, CH₂), 0.92-0.99 (m, 1H, CH₂ (H_a^{*})), 0.93 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.98 (d, J = 7.0 Hz, 3H, CH₃ (Leu)), 1.11-1.16 (m, 1H, CH), 1.18-1.26 (m, 4H, 2 x CH₂), 1.24-1.36 (m, 1H, CH₂ (H_b^{*})), 1.36-1.48 (m, 16H, CH, 2 x CH₃ (Pbf) and ^tBu), 1.47-1.56 (m, 2H, CH₂), 1.56-1.60 (m, 1H, CH₂ (H_a[#])), 1.69-1.78 (m, 1H, CH₂ (H_b[#])), 1.87-1.95 (m, 2H, CH₂), 2.08 (s, 3H, CH₃ (Pbf)), 2.22 (s, 3H, isoxazole-CH₃), 2.41 (s, 3H, isoxazole-CH₃), 2.52 (s, 3H, CH₃ (Pbf)), 2.58 (s, 3H, CH₃ (Pbf)), 2.86-2.93 (m, 7H, CH₂ (Pbf), CH₂N (Lys) and NCH₃), 3.08-3.19 (m, 1H, CH₂N (Arg, H_a)), 3.22-3.32 (m, 1H, CH₂N (Arg, H_b)), 3.40 (s, 3H, OCH₃), 3.79-3.87 (m, 1H, CH), 3.89-3.94 (m, 1H CH₂O (H_a)), 4.04-4.08 (m, 1H CH₂O (H_b)), 4.23 (s, 2H, oxazole-CH₂), 4.46 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.60-4.62 (m, 1H, NHBoc), 4.82-4.85 (m, 0.7H, CH), 5.01-5.08 (m, 0.3H, CH), 5.93 (dd, $J_1 = 5.5$, $J_2 = 9.5$ Hz, 1H, CH), 6.07 (d, J = 6.0 Hz, 1H, NH), 6.15 (br s, 2H, 2 x NH), 6.88 (d, J = 7.5 Hz, 1H, NH), 7.13-7.16 (m, 2H, ArH), 7.22-7.24 (m, 2H, ArH), 7.29-7.37 (m, 2H, ArH), 7.47 (d, J = 9.0 Hz, 2H, ArH), 7.86-7.88 (m, 2H, ArH), 7.96-7.99 (m, 2H, ArH); ¹³C NMR (126 MHz, CDCl₃): § 10.6, 11.7, 12.5 (CH₃ (isoxazole)), 12.5, 17.9, 19.3 (CH₃ (Pbf)), 21.5, 22.1, 22.3, 23.2 (CH₃), 22.6, 24.2, 29.2, 30.1, 30.6, 38.0, 38.1 (CH₂), 24.6, 24.8, 49.4, 53.4 (CH), 28.5 (C(CH₃)₃), 28.6 (2 x CH₃ (Pbf)), 40.1 (CH₂N (Lys)), 40.6 (CH₂N (Arg)), 43.3 (CH₂ (Pbf)), 58.9 (OCH₃), 65.8 (oxazole-<u>C</u>H₂), 67.8 (O<u>C</u>H₂CO), 68.4 (CH₂O), 79.1 (<u>C</u>(CH₃)₃), 86.3 (C (Pbf)), 114.1, 115.9, 124.0, 124.3, 125.0, 125.5, 126.7, 126.8, 128.0, 128.1, 129.7, 129.9 (ArCH), 104.8, 117.3, 119.5, 120.3, 124.5, 129.2, 129.9, 132.3, 133.4, 133.7, 133.9, 135.1, 138.3, 139.6, 152.1, 154.4, 156.2, 159.1, 162.5 (ArC), 156.0 (C=O (Boc)), 158.6 (C=N), 168.7, 169.1, 171.7 (C=O). MS (ESI, +ve) m/z 1340 (5%) $[M+H]^+$; 1362 (100%) $[M+Na]^+$. HRMS (ESI, +ve) calcd for $C_{73}H_{98}N_9O_{13}S$ 1340.7005, found 1340.7030 $[M+H]^+$; calcd for $C_{73}H_{97}N_9O_{13}SNa$ 1362.6824, found 1362.6810 $[M+Na]^+$.

Synthesis of Type E Final Compounds

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-benzyloxazol-2-yl)-3-methylbutyl)amino)-1oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (117)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **85** (80 mg, 0.06 mmol) to give **117** (30 mg, 50%) as a white solid. ¹H NMR (500 MHz, CD₃OD) δ 8.03 – 7.97 (m, 2H), 7.90 (d, *J* = 7.8 Hz, 2H), 7.53 – 7.46 (m, 2H), 7.40 – 7.16 (m, 10H), 7.11 – 7.03 (m, 2H), 5.14 – 5.06 (m, 1H), 4.51 (ABq, $\Delta \delta_{AB} = 0.05$, *J* = 15.2 Hz, 2H), 4.31 – 4.23 (m, 1H), 4.17 – 4.05 (m, 2H), 4.01 – 3.90 (m, 1H), 3.80 (s, 2H), 3.23 – 3.06 (m, 2H), 2.90 – 2.76 (m, 2H), 1.89 – 1.44 (m, 11H), 1.32 – 1.10 (m, 3H), 1.07 – 0.87 (m, 8H), 0.56 (d, *J* = 6.7 Hz, 3H), 0.52 (d, *J* = 6.4 Hz, 3H); MS (ESI +ve) *m*/*z* 925 ([M+H]⁺, <5%), 463 ([M+2H]²⁺, 100%).

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-phenyloxazol-2-yl)-3-methylbutyl)amino)-1oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (118)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **86** (60 mg, 0.047 mmol) to give **118** (30 mg, 65%) as a white solid. ¹H NMR (500 MHz, CD₃OD) δ 8.12 (s, 1H), 8.02 – 7.94 (m, 2H), 7.93 – 7.84 (m, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 9.0 Hz, 1H), 7.45 (d, J = 9.3 Hz, 1H), 7.42 – 7.27 (m, 5H), 7.23 (s, 2H), 7.11 – 7.01 (m, 2H), 5.24 – 5.17 (m, 1H), 4.52 (ABq, $\Delta \delta_{AB} = 0.07$, J = 14.5 Hz, 2H), 4.35 – 4.27 (m, 1H), 4.16 – 4.04 (m, 2H), 3.97 – 3.88 (m, 1H), 3.27 – 3.08 (m, 2H), 2.88 – 2.72 (m, 2H), 1.93 – 1.41 (m, 11H), 1.33 – 1.09 (m, 5H), 1.00 (d, J = 6.0 Hz, 3H), 0.96 (d, J = 6.2 Hz, 3H), 0.56 (d, J = 6.3 Hz, 3H), 0.51 (d, J = 6.2 Hz, 3H); MS (ESI +ve) *m*/z 911 ([M+H]⁺, <5%), 456 ([M+2H]²⁺, 100%). HRMS (ESI +ve) calcd for C₅₃H₆₇N₈O₆ 911.5184 [M+H]⁺, found 911.5207.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(oxazol-2-yl)-3-methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (119)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **87** (31.1 mg, 0.026 mmol, a *ca.* 90:10 mixture of diastereomers, epimeric at leucine) to give **119** (15.2 mg, 64%, a *ca.* 90:10 mixture of diastereomers, epimeric at leucine) as a white solid. $[\alpha]_{D}^{25}$ -33.1 (*c* 0.48, MeOH); ¹H NMR (500 MHz, CD₃OD, major diastereomer only) δ 8.07 – 8.00 (m, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.90 (s, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 9.0 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.24 (t, *J* = 7.5 Hz, 2H), 7.17 (s, 1H), 7.10 – 7.04 (m, 2H), 5.21 – 5.15 (m, 1H), 4.51 (ABq, $\Delta\delta_{AB}$ = 0.09, *J* = 14.8 Hz, 2H), 4.37 (dd, *J* = 9.0, 4.8 Hz, 1H), 4.19 – 4.07 (m, 2H), 4.01 – 3.93 (m, 1H), 3.23 – 3.13 (m, 2H), 2.83 – 2.73 (m, 2H), 1.91 – 1.37 (m, 11H), 1.33 – 1.07 (m, 5H), 0.98 (d, *J* = 6.5 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.53 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD, major diastereomer only) δ 173.5, 173.1, 171.0, 165.9, 158.6, 156.0, 154.1, 141.1, 135.3, 135.1, 131.4, 130.9, 130.7, 129.3, 129.1, 127.6, 127.5, 127.3, 126.4, 126.0, 125.2, 124.8, 121.9, 120.6, 117.0, 116.0, 69.3, 69.1, 54.0, 53.7, 47.2, 42.8, 41.9, 40.4, 39.3, 32.1, 30.3, 27.8, 26.3, 25.9, 25.6, 23.13, 23.07, 22.8, 22.5, 22.0; MS (ES⁺) *m*/*z* 418 (100%, M+2H); HRMS (ES⁺) Calcd. for C₄₇H₆₃N₈O₆: 835.4871 (M+H), Found: 835.4872.

(*R*)-6-Amino-*N*-((*R*)-1-(((*S*)-1-(4-(methyl)oxazol-2-yl)-3-methylbutyl)amino)-5-guanidino-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (120)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **88** (yield was not determined in the previous step) to give **120** (25.8 mg, 35% over three steps from Type **B** oxazole **18**) as a tan solid. $[\alpha]_D^{25} = -4.7$ (*c* 0.86, MeOH). ¹H NMR (500 MHz, CD₃OD) δ 0.51 (3H, d, J = 6.3 Hz), 0.56 (3H, d, J = 6.3 Hz), 0.94 (3H, d, J = 6.2 Hz), 0.99 (3H, d, J = 6.0 Hz), 1.09 - 1.24 (6H, m), 1.44 - 1.73 (10H, m), 1.80 - 1.96 (3H, m), 2.19 (3H, s), 2.77 (3H, bs), 3.16 (2H, bs), 3.27 (3H, s), 3.31 (3H, s), 3.91 - 3.94 (2H, bm), 4.09 (3H, bm), 4.30 - 4.32 (2H, m), 4.44 - 4.54 (2H, m),

5.16 - 5.18 (1H, m), 7.00 - 7.04 (2H, m), 7.16 - 7.19 (3H, m), 7.31 (3H, t, J = 7.2 Hz), 7.45 (1H, d, J = 8.9 Hz), 7.51 (1H, d, J = 8.9 Hz), 7.83 - 7.90 (4H, m), 7.99 (3H, t, J = 8.3 Hz). ¹³C NMR (126 MHz, CD₃OD) 9.62, 21.6, 22.5, 22.8, 23.2, 25.6, 25.7, 26.3, 27.8, 30.0, 32.1, 39.3, 40.4, 41.5, 41.9, 47.1, 47.2, 53.8, 54.2, 69.1, 69.4, 116.1, 117.0, 120.7, 121.9, 124.8, 125.2, 125.9, 126.3, 127.5, 127.6, 129.1, 129.3, 130.7, 130.8, 131.4, 134.2, 135.1, 135.2, 138.5, 154.1, 155.9, 158.6, 167.0, 171.0, 173.5, 173.8. IR (neat) v [cm⁻¹] = 3852 (s), 3735 (s), 2968 (m), 2307 (w), 1684 (s), 1505 (s), 1250 (m), 1042 (m), 608 (s). MS (ESI⁺) m/2 = 425 (100 %, [M+2H]²⁺), m/z = 849 (2 %, [M+H]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₄₈H₆₅N₈O₆: 849.5027, Found: 849.5037.

(*R*)-6-Amino-*N*-((*R*)-1-(((*S*)-1-(4-(fluoromethyl)oxazol-2-yl)-3-methylbutyl)amino)-5-guanidino-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (121)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **89** (60.3 mg, 0.05 mmol) to give **121** (36.3 mg, 79%) as a tan solid. $[\alpha]_D^{25} = -4.7$ (*c* 0.083, MeOH). ¹H NMR (500 MHz, CD₃OD) δ 0.53 (3H, d, J = 6.4 Hz), 0.59 (3H, d, J = 6.4 Hz), 0.94 - 1.00 (6H, m), 1.11 - 1.28 (4H, m), 1.43 - 1.86 (7H, m), 2.80 (2H, bs), 3.16 - 3.24 (2H, bm), 3.32 (1H, s), 3.36 (1H, s), 3.97 - 4.15 (3H, m), 4.43 - 4.59 (3H, m), 5.14 - 5.19 (1H, m), 5.27 (2H, d, $J_{H-F} = 47.5$ Hz), 7.09 (2H, t), 7.24 (2H, t), 7.36 (2H, m), 7.48 - 7.56 (2H, d, J = 9.0 Hz), 7.60 (1H, bs), 7.93 (2H, t, J = 8.0 Hz), 8.01 - 8.03 (2H, m). ¹³C NMR (126 MHz, CD₃OD) δ 22.0, 22.5, 22.7, 23.0, 23.1, 25.6, 25.7, 25.9, 26.3, 27.7, 30.2, 32.1, 39.3, 40.4, 41.9, 42.5, 42.7, 47.1, 47.2, 53.7, 54.0, 69.1, 69.3, 71.9 ($J_{C-F} = 163.0$ Hz), 116.0, 117.0, 120.6, 121.8, 124.8, 125.2, 125.9, 126.3, 126.5, 127.6, 129.1, 129.3, 130.7, 130.8, 131.4, 135.0, 135.2, 137.3, 137.4, 140.1, 154.0, 155.9, 158.5, 166.3, 171.0, 173.1, 173.4. IR (neat) ν [cm⁻¹] = 3382 (s), 2955 (m), 2360 (m), 1653 (s), 1540 (s), 1230 (w), 1077 (m), 805 (w), 745 (w). MS (ESI⁺) m/2 < = 434 (100 %, $[M+2H]^{2+}$), m/z = 867 (2 %, $[M+H]^+$). HRMS (ESI⁺) $[M+Na]^+$ Calcd. for C₄₈H₆₃FN₈NaO₆: 889.4752, Found: 889.4753.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(hydroxymethyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (122)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **90** (54.9 mg, 0.045 mmol), with added H₂O (16.2 mg, 0.90 mmol) to prevent *O*-sulfonation (which occurred otherwise), giving **122** (39.3 mg, 93%) as a tan solid. $[\alpha]_D^{25}$ –21.3 (*c* 0.28, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.04 (d, *J* = 8.9 Hz, 2H), 7.92 (d, *J* = 7.9 Hz, 2H), 7.80 (s, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.49 (d, *J* = 8.9 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.24 (t, *J* = 7.5 Hz, 2H), 7.11 – 7.03 (m, 2H), 5.17 – 5.11 (m, 1H), 4.61 – 4.43 (m, 4H), 4.38 (dd, *J* = 8.5, 5.0 Hz, 1H), 4.19 – 4.06 (m, 2H), 4.00 – 3.93 (m, 1H), 3.25 – 3.12 (m, 2H), 2.84 – 2.73 (m, 2H), 1.92 – 1.47 (m, 10H), 1.46 – 1.36 (m, 1H), 1.33 – 1.07 (m, 5H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.94 (d, *J* = 6.3 Hz, 3H), 0.58 (d, *J* = 6.4 Hz, 3H), 0.53 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 173.6, 173.2, 170.9, 166.5, 158.5, 155.9, 154.0, 140.5, 138.0, 137.9, 135.2, 135.0, 131.4, 130.9, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 125.9, 125.2, 124.8, 121.8, 120.6, 117.0, 116.0, 69.3, 69.1, 56.2, 54.1, 53.7, 47.3, 42.3, 41.9, 40.4, 39.3, 32.1, 30.2, 27.7, 26.3, 25.8, 25.6, 23.11, 23.07, 22.8, 22.5, 21.9; MS (ES⁺) *m/z* 866 (1%, M+H), 433 (100%, M+2H); HRMS (ES⁺) Calcd. for C₄₈H₆₅N₈O₇: 865.4976 (M+H), Found: 865.5018.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(methoxymethyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (123)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **91** (90 mg, 0.073 mmol) to yield **123** (66 mg, 95%) as an off-white solid. $[\alpha]_D^{25}$ –27.50 (*c* 3.1, MeOH). ¹H NMR (300 MHz, CD₃OD): δ 0.48 (d, *J* = 6.0 Hz, 3H, CH₃), 0.53 (d, *J* = 6.3 Hz, 3H, CH₃), 0.88-0.95 (m, 2H, CH₂), 0.89 (d, *J* = 6.3 Hz, 3H, CH₃ (Leu)), 0.93 (d, *J* = 6.3 Hz, 3H, CH₃ (Leu)), 1.06-1.26 (m, 4H), 1.32-1.95 (m, 11H), 2.68-2.88 (m, 2H, CH₂N (Lys)), 3.08-3.23 (m, 2H, CH₂N (Arg)), 3.88-3.95 (m, 1H CH₂O (H_a)), 4.06-4.11 (m, 2H, CH and CH₂O (H_b)), 4.24-4.39 (m, 1H, CH), 4.30 (s, 2H, oxazole-C<u>H</u>₂), 4.49 (ABq, *J* = 14.7 Hz, 2H, OCH₂CO), 5.05-5.17 (m, 1H, CH), 7.01-7.06 (m, 2H, ArH), 7.15-7.20 (m, 2H, ArH), 7.28-7.33 (m, 2H, ArH), 7.44 (d, *J* = 8.7 Hz, 1H, ArH), 7.52 (d, *J* = 8.7 Hz, 1H, ArH), 7.80 (s, 1H, ArH (oxazole)), 7.85-7.91 (m, 2H, ArH), 7.96-8.01 (m, 2H, ArH); ¹³C NMR (75 MHz, CD₃OD): δ 22.0, 22.5, 22.8, 23.1 (CH₃), 23.0, 26.3, 27.7, 30.1, 32.0, 39.3, 40.4 (CH₂), 25.5, 25.8, 47.1, 53.8, 54.0 (CH), 41.9 (CH₂N (Lys)), 42.7 (CH₂N (Arg)), 58.5 (OCH₃), 66.6 (oxazole-<u>C</u>H₂), 68.9 (O<u>C</u>H₂CO), 69.2 (CH₂O), 115.9, 116.8, 124.8, 125.2, 125.9, 126.4, 127.5, 127.6, 129.1, 129.3, 130.8, 130.9 (ArCH), 120.4, 121.7, 130.7, 131.3, 135.0, 135.2, 138.5, 154.0, 155.9 (ArC), 158.5 (C=N), 171.0, 173.2, 173.5 (C=O). MS (ESI, +ve) *m/z* 879 (5%) [M+H]⁺, 440 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for C₄₉H₆₇N₈O₇ 879.5133, found 879.5466.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(methoxymethyl)thiazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (124)

This compound was prepared according to General Procedure 4 using Type D protected peptide 92 (101 mg, 0.08 mmol) to give **124** (55.9 mg, 71%) as an off-white solid. mp 88–92 °C. $[\alpha]_D^{25} = -14.63$ (c 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CD₃OD, major rotamer only) δ 0.51 (3H, d, J = 6.5 Hz, (CH_{3a}) $(^{i}Pent)$), 0.51 (3H, d, J = 6.5 Hz, (CH_{3b} $(^{i}Pent)$),) 0.92 - 1.07 (8H, m, H4", 3"-CH₃, CH₂ (Lys)), 1.09 -2.15 (14H, m, <u>CH₂CH(^{*i*}Pent), H3''), 2.75 - 2.87 (2H, m, H6), 3.21 (2H, q, J = 6.7 Hz, H5'), 3.40 (1H,</u> s, OCH₃), 3.89 - 4.02 (1H, m, OCH_{2a} (ⁱPent)), 4.06 - 4.23 (2H, m, OCH_{2b} (ⁱPent), H2), 4.36 (1H, dt, J = 8.9, 3.9 Hz, H2'), 4.44 - 4.65 (4H, m, OCH₂CO, 4'''-CH₂), 5.36 (1H, dd, J = 10.8, 3.9 Hz, H1"), 7.03 - 7.11 (2H, m, ArH), 7.17 - 7.24 (2H, m, ArH), 7.33 (2H, t, J = 7.5 Hz, ArH), 7.48 (1H, d, J = 9.0 Hz, ArH), 7.55 (1H, dd, J = 9.0, 5.6 Hz, ArH), 7.64 (1H, s, H5"), 7.87 - 7.96 (2H, m, ArH), 7.98 - 8.07 (2H, m, ArH). ¹³C NMR (126 MHz, CD₃OD, major rotamer only) δ 21.4, 21.7, 22.5, 22.8, 23.1, 23.4, 25.6 (C4'), 26.1, 26.4, 27.7, 29.8, 32.1, 39.2, 40.4 (C5'), 41.8 (C6), 44.5 (C2"), 50.7 (C1"), 54.5 (C5, C2'), 58.9 (OCH₃), 68.9 (OCH₂CO), 69.0 (OCH₂ (^{*i*}Pent)), 69.3 (4"'-CH₂), 116.1, 116.9, 119.7 (C5"'), 120.5, 121.8, 124.8, 125.2, 125.9, 126.3, 127.5, 127.6, 129.1, 129.3, 130.7, 130.8, 131.4, 135.0, 135.2, 150.9 (C2"" or C2""), 154.1 (C4""), 155.9 (C2"" or C2""), 158.5 (guanidino),, 170.9 (C=O), 173.3 (C=O), 174.1 (C=O), 178.7. IR (neat) $v [cm^{-1}] = 3179$ (w), 3053 (w), 2953 (w), 2360 (w), 1654 (s), 1533 (m), 1507 (m), 1466 (m), 1431 (w), 1327 (w), 1215 (m), 1093 (m), 1047 (m), 1009 (w), 958 (w), 862 (w), 808 (m), 746 (m), 577 (w). MS (ESI⁺) $m/2 = 448 (100\%, [M+2H]^{2+}), m/z = 895 (2\%, 10\%)$ $[M+H]^+$). HRMS (ESI⁺) $[M+H]^+$ Calcd. for C₄₉H₆₇N₈O₆S: 895.4904, Found: 895.4935.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isopropoxymethyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (125)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **93** (54 mg, 0.043 mmol) to yield **125** (40 mg, 95%) as an off-white solid. $[\alpha]_D^{25}$ -47.50 (*c* 1.9, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.51 (d, *J* = 6.5 Hz, 3H, CH₃), 0.56 (d, *J* = 6.5 Hz, 3H, CH₃), 0.91-0.97 (m, 2H, CH₂), 0.92 (d, *J* = 6.5 Hz, 3H, CH₃ (Leu)), 0.96 (d, *J* = 7.0 Hz, 3H, CH₃ (Leu)), 1.12-1.28 (m, 10H), 1.41-1.48 (m, 1H), 1.50-1.78 (m, 7H), 1.81-1.87 (m, 2H), 2.73-2.86 (m, 2H, CH₂N

(Lys)), 3.13-3.23 (m, 2H, CH₂N (Arg)), 3.71 (septet, J = 6.0 Hz, 1H, OCH), 3.92-3.97 (m, 1H CH₂O (H_a)), 4.08-4.14 (m, 2H, CH and CH₂O (H_b)), 4.36 (dd, $J_I = 4.5$, $J_2 = 9.5$ Hz, 1H, CH), 4.39 (s, 2H, oxazole-C<u>H₂</u>), 4.50 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 5.14 (dd, $J_I = 6.5$, $J_2 = 9.5$ Hz, 1H, CH), 7.04-7.08 (m, 2H, ArH), 7.19-7.23 (m, 2H, ArH), 7.32-7.35 (m, 2H, ArH), 7.47 (d, J = 9.5 Hz, 1H, ArH), 7.53 (d, J = 8.5 Hz, 1H, ArH), 7.81 (s, 1H, ArH (oxazole)), 7.89-7.92 (m, 2H, ArH), 8.00 (d, J = 9.0 Hz, 1H, ArH), 8.01 (d, J = 9.5 Hz, 1H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 22.0, 22.3, 22.4, 22.6, 22.8, 23.1 (CH₃), 23.06, 26.3, 27.7, 30.2, 32.0, 39.3, 40.4 (CH₂), 25.6, 25.9, 47.2, 53.7, 54.0 (CH), 41.9 (CH₂N (Lys)), 42.7 (CH₂N (Arg)), 64.4 (oxazole-CH₂), 69.0 (OCH₂CO), 69.3 (CH₂O), 72.9 (OCH), 116.0, 117.0, 124.8, 125.2, 126.0, 126.4, 127.5, 127.6, 129.1, 129.3, 130.85, 130.89, (ArCH), 120.5, 121.8, 130.7, 131.4, 135.1, 135.2, 139.1, 154.0, 155.9, 163.0 (ArC), 158.5 (C=N), 171.0, 173.1, 173.5 (C=O). MS (ESI, +ve) m/z 908 (5%) [M+H]⁺, 455 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for C₅₁H₇₁N₈O₇ 907.5446, found 907.5490.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isopropoxymethyl)thiazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (126)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **94** (61.4 mg, 0.05 mmol) to give **126** (42.1 mg, 88%) as a tan solid. $[\alpha]_D^{25} = -13.1$ (*c* 0.11, MeOH). ¹H NMR (500 MHz, CD₃OD) δ 0.50 (3H, d, J = 6.5 Hz), 0.51 (3H, d, J = 6.5 Hz), 0.96 - 1.00 (8H, m), 1.13 - 1.26 (6H, m), 1.51 - 1.87 (7H, m), 2.75 - 2.86 (2H, bm), 3.15 - 3.23 (2H, m), 3.34 (1H, s), 3.72 - 3.78 (1H, m), 3.96 - 4.12 (2H, m), 4.31 - 4.36 (1H, m), 4.47 - 4.60 (4H, m), 5.36 (1H, m), 7.04 (2H, t, J = 9.2 Hz), 7.21 (2H, t, J = 7.6 Hz), 7.33 (2H, q, J = 7.2 Hz), 7.48 (1H, d, J = 8.8 Hz), 7.53 - 7.59 (1H,m), 7.65 (1H, bs), 7.91 (2H, t, J = 7.7 Hz), 8.01 - 8.04 (2H, m). ¹³C NMR (126 MHz, CD₃OD) δ 21.4, 21.7, 22.5, 22.8, 23.1, 23.4, 25.6, 26.1, 26.4, 27.7, 29.8, 32.1, 39.2, 40.4, 41.8, 44.5, 50.7, 54.5, 58.9, 68.9, 69.0, 69.3, 116.1, 116.9, 119.7, 120.5, 121.8, 124.8, 125.2, 125.9, 126.3, 127.5, 127.6, 129.1, 129.3, 130.7, 130.8, 131.4, 135.0, 135.2, 150.9, 154.1, 155.9, 158.5, 170.9, 173.3, 174.1, 178.7. IR (neat) ν [cm⁻¹] = 3650 (s), 3446 (s), 1654 (s), 1507 (s), 1212 (m), 1048 (m), 804 (m), 668 (s). MS (ESI⁺) m/2 = 462 (100 %, [M+2H]²⁺), m/z = 996 (1 %, [M+H]⁺). HRMS (ESI⁺) [M+H]⁺ Calcd. for C₅₁H₇₁N₈O₆S: 923.5217, Found: 923.5212.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isobutoxymethyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (127)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **95** (77.4 mg, 0.061 mmol) to give **127** (60.2 mg, 100%) as a white solid. $[\alpha]_D^{25}$ –24.9 (*c* 2.51, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.06 – 7.99 (m, 2H), 7.91 (d, *J* = 8.1 Hz, 2H), 7.78 (s, 1H), 7.54 (d, *J* = 9.0 Hz, 1H), 7.49 (d, *J* = 8.9 Hz, 1H), 7.40 – 7.30 (m, 2H), 7.27 – 7.20 (m, 2H), 7.11 – 7.04 (m, 2H), 5.18 – 5.11 (m, 1H), 4.52 (ABq, $\Delta\delta_{AB}$ = 0.08, *J* = 14.8 Hz, 2H), 4.41 – 4.31 (m, 3H), 4.17 – 4.07 (m, 2H), 4.01 – 3.92 (m, 1H), 3.25 (d, *J* = 6.6 Hz, 2H), 3.22 – 3.11 (m, 2H), 2.85 – 2.75 (m, 2H), 1.91 – 1.40 (m, 12H), 1.33 – 1.09 (m, 5H), 0.97 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H), 0.57 (d, *J* = 6.5 Hz, 3H), 0.52 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 173.7, 173.3, 171.0, 165.8, 158.5, 155.9, 154.0, 138.9, 138.3, 135.2, 135.0, 131.3, 130.8, 130.6, 129.3, 129.1, 127.6, 127.5, 126.4, 125.9, 125.1, 124.8, 121.6, 120.5, 116.8, 115.9, 78.5, 69.2, 68.9, 65.2, 54.3, 53.9, 47.1, 42.8, 41.9, 40.3, 39.2, 32.0, 30.0, 29.5, 27.6, 26.4, 25.8, 25.6, 23.2, 23.0, 22.8, 22.6, 22.1, 19.7; MS (ES⁺) *m/z* 921 (<5%, M+H), 461 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₂H₇₃N₈O₇: 921.5602 (M+H), Found: 921.5599.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isopentyloxymethyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (128)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **96** (78.9 mg, 0.061 mmol) to give **128** (50.1 mg, 81%) as an off-white solid. $[\alpha]_D^{25} -17.5$ (*c* 1.82, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.02 (t, *J* = 8.5 Hz, 2H), 7.92 (d, *J* = 8.1 Hz, 2H), 7.82 (s, 1H), 7.55 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 8.9 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.24 (t, *J* = 7.5 Hz, 2H), 7.07 (t, *J* = 9.7 Hz, 2H), 5.18 – 5.12 (m, 1H), 4.52 (ABq, $\Delta \delta_{AB} = 0.10$, *J* = 14.7 Hz, 2H), 4.41 – 4.34 (m, 3H), 4.18 – 4.06 (m, 2H), 4.01 – 3.92 (m, 1H), 3.52 (t, *J* = 6.3 Hz, 2H), 3.24 – 3.13 (m, 2H), 2.84 – 2.74 (m, 2H), 1.92 – 1.38 (m, 14H), 1.34 – 1.07 (m, 5H), 0.97 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.0 Hz, 3H), 0.89 (d, *J* = 6.4 Hz, 6H), 0.58 (d, *J* = 5.9 Hz, 3H), 0.52 (d, *J* = 5.9 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 173.5, 173.1, 170.9, 166.1, 158.5, 155.8, 154.0, 138.5, 135.2, 135.0, 131.3, 130.9, 130.8, 130.6, 129.3, 129.1, 127.6, 127.4, 126.3, 125.9, 125.1, 124.8, 121.7, 120.5, 116.9, 115.9, 70.1,

69.2, 69.0, 64.8, 54.1, 53.7, 47.1, 42.7, 41.9, 40.4, 39.5, 39.2, 32.0, 30.1, 27.7, 26.3, 26.1, 25.8, 25.6, 23.1, 23.0, 22.8, 22.6, 22.0; MS (ES⁺) m/z 935 (<5%, M+H), 468 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₃H₇₅N₈O₇: 935.5759 (M+H), Found: 935.5788.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(phenoxymethyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (129)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **97** (20 mg, 0.014 mmol) to yield **129** (14 mg, 92%) as an off-white solid. $[\alpha]_D^{25}$ +13.57 (*c* 0.6, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.52 (d, *J* = 6.0 Hz, 3H, CH₃), 0.57 (d, *J* = 6.0 Hz, 3H, CH₃), 0.95-1.02 (m, 8H, CH₂ and 2 x CH₃ (Leu)), 1.15-1.32 (m, 4H), 1.46-1.89 (m, 10H), 2.74-2.86 (m, 2H, CH₂N (Lys)), 3.14-3.27 (m, 2H, CH₂N (Arg)), 3.92-4.01 (m, 1H CH₂O (H_a)), 4.06-4.18 (m, 2H, CH and CH₂O (H_b)), 4.36-4.44 (m, 1H, CH), 4.53 (ABq, *J* = 14.5 Hz, 2H, OCH₂CO), 4.97 (s, 1H, oxazole-CH₂ (H_a)), 5.05 (s, 1H, oxazole-CH₂ (H_b)), 5.17-5.20 (m, 1H, CH), 6.95-7.01 (m, 3H, ArH), 7.06-7.10 (m, 2H, ArH), 7.23-7.29 (m, 4H, ArH), 7.34-7.38 (m, 2H, ArH), 7.48 (d, *J* = 9.0 Hz, 1H, ArH), 7.92-7.94 (m, 2H, ArH), 8.02-8.03 (m, 2H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 22.0, 22.5, 22.8, 23.1 (CH₃), 23.1, 26.3, 27.8, 30.2, 32.1, 39.3, 40.4 (CH₂), 25.6, 25.9, 47.2, 53.8, 54.0 (CH), 41.9 (CH₂N (Lys)), 42.8 (CH₂N (Arg)), 62.8 (oxazole-CH₂), 69.0 (OCH₂CO), 69.3 (CH₂O), 115.9, 117.0, 122.3, 124.8, 125.2, 126.0, 126.4, 127.5, 127.6, 129.1, 129.3, 130.5, 130.6, 130.9 (ArCH), 120.6, 121.8, 130.7, 131.4, 135.1, 135.2, 138.0, 154.0, 155.9, 159.7, 166.1 (ArC), 158.6 (C=N), 171.1, 173.2, 173.5 (C=O). MS (ESI, +ve) *m/z* 942 (5%) [M+H]⁺, 471 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for C₅₄H₆₉N₈O₇ 941.5289, found 941.5305.

```
(R)-6-Amino-N-((R)-5-guanidino-1-(((S)-1-(4-(benzyloxymethyl)oxazol-2-yl)-3-
methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-
yl)oxy)acetamido)hexanamide·dihydrochloride (130)
```


This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **98** (17 mg, 0.013 mmol) to yield **130** (12 mg, 90%) as an off-white solid. $[\alpha]_D^{25}$ –28.44 (*c* 0.5, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.52-0.57 (m, 6H), 0.95-2.01 (m, 22H), 2.62-3.00 (m, 2H), 3.10-3.39 (m, 2H), 3.83-4.04 (m, 3H), 4.06-5.20 (m, 8H), 6.69-7.18 (m, 2H), 7.19-7.70 (m, 9H), 7.92-8.02

(m, 5H); ¹³C NMR (75 MHz, CD₃OD): δ 22.1, 22.5, 22.8, 23.2, 25.4, 25.8, 39.2, 42.8, 47.0, 53.9, 64.8, 69.2, 73.7, 116.0, 117.2, 120.3, 121.5, 124.9, 125.1, 125.8, 126.2, 127.4, 127.6, 128.8, 129.0, 129.1, 129.4, 130.5, 130.9, 131.2, 134.9, 135.5, 138.6, 138.9, 153.8, 155.7, 158.4. MS (ESI, +ve) *m/z* 955 (5%) [M+H]⁺, 478 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for C₅₅H₇₁N₈O₇ 955.5446, found 955.5489.

(R)-6-Amino-N-((R)-5-guanidino-1-(((S)-1-(4-(A-chlorobenzyloxymethyl)oxazol-2-yl)-3-methylbutyl) amino)-1-oxopentan-2-yl)-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy) acetamido) hexanamide·dihydrochloride (131)

This compound was prepared according to General Procedure 4 using Type D protected peptide 99 (77 mg, 0.057 mmol) to yield **131** (60 mg, 97%) as an off-white solid. $[\alpha]_D^{25}$ -34.72 (*c* 2.0, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.50 (d, J = 6.5 Hz, 3H, CH₃), 0.55 (d, J = 6.5 Hz, 3H, CH₃), 0.88-1.02 (m, 2H, CH₂), 0.93 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.97 (d, J = 7.0 Hz, 3H, CH₃ (Leu)), 1.10-1.30 (m, 4H), 1.42-1.46 (m, 1H), 1.48-1.79 (m, 7H), 1.81-1.93 (m, 2H), 2.72-2.84 (m, 2H, CH₂N (Lys)), 3.12-3.24 (m, 2H, CH₂N (Arg)), 3.91-3.96 (m, 1H CH₂O (H_a)), 4.06-4.13 (m, 2H, CH and CH_2O (H_b), 4.35-4.37 (m, 1H, CH), 4.44 (s, 2H, oxazole-CH₂), 4.51 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.52 (s, 2H, CH₂ArCl), 5.13-5.16 (m, 1H, CH), 6.67 (d, J = 6.5 Hz, 1H, NH), 7.05-7.08 (m, 2H, ArH), 7.19-7.22 (m, 2H, ArH), 7.28-7.34 (m, 4H, ArH), 7.46 (d, J = 9.0 Hz, 1H, ArH), 7.52 (d, J = 9.0 Hz, 1H, ArH), 7.83 (s, 1H, ArH (oxazole)), 7.89-7.92 (m, 2H, ArH), 8.00 (d, J = 9.0 Hz,2H, ArH), 8.15 (d, J = 7.5 Hz, 1H, NH), 8.45 (d, J = 8.0 Hz, 1H, NH); ¹³C NMR (75 MHz, CD₃OD): δ 22.0, 22.5, 22.8, 23.1 (CH₃), 23.0, 26.3, 27.7, 30.2, 32.0, 39.3, 40.4 (CH₂), 25.6, 25.9, 47.2, 53.8, 54.0 (CH), 41.9 (CH₂N (Lys)), 42.8 (CH₂N (Arg)), 64.5 (oxazole-CH₂), 69.0 (OCH₂CO), 69.2 (CH₂O), 72.5 (CH₂ArCl), 115.9, 116.9, 124.8, 125.2, 125.9, 126.4, 127.5, 127.6, 129.1, 129.3, 129.5, 130.5, 130.7, 130.9 (ArCH), 120.5, 121.8, 130.9, 131.4, 134.5, 135.1, 135.2, 138.1, 154.0, 155.9 (ArC), 158.5 (C=N), 171.0, 173.1, 173.5 (C=O). MS (ESI, +ve) m/z 989 (5%) $[M+H]^+$, 495 (100%) $[M+2H]^+$. HRMS (ESI, +ve) calcd for C₅₅H₇₀N₈O₇Cl 989.5056, found 989.5065.

(R)-6-Amino-N-((R)-5-guanidino-1-(((S)-1-(4-(4-fluorobenzyloxymethyl)oxazol-2-yl)-3-methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (132)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **100** (36.4 mg, 0.027 mmol) to give **132** (29.1 mg, 100%) as a white solid. $[\alpha]_{\rm D}^{25}$ -23.3 (*c* 1.13, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.04 - 7.97 (m, 2H), 7.91 (d, *J* = 7.0 Hz, 2H), 7.80 (s, 1H), 7.52 (d, *J* = 8.9 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.39 - 7.30 (m, 4H), 7.27 - 7.19 (m, 2H), 7.11 - 7.00 (m, 4H), 5.14 (t, *J* = 6.9 Hz, 1H), 4.60 - 4.45 (m, 4H), 4.43 (s, 2H), 4.38 - 4.30 (m, 1H), 4.16 - 4.05 (m, 2H), 3.99 - 3.90 (m, 1H), 3.25 - 3.10 (m, 2H), 2.86 - 2.71 (m, 2H), 1.90 - 1.39 (m, 11H), 1.31 - 1.09 (m, 5H), 0.97 (d, *J* = 5.9 Hz, 3H), 0.93 (d, *J* = 6.0 Hz, 3H), 0.56 (d, *J* = 5.6 Hz, 3H), 0.51 (d, *J* = 5.4 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 173.8, 173.5, 171.1, 166.0, 163.8 (d, *J*_{C-F} = 244.1 Hz), 158.6, 155.9, 154.1, 138.6, 135.2, 135.0, 131.3, 131.08, 130.98, 130.9, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 126.0, 125.2, 124.8, 121.7, 120.5, 116.9, 116.2, 116.0, 72.6, 69.2, 68.9, 64.4, 54.4, 53.9, 47.2, 42.8, 41.9, 40.2, 39.3, 32.0, 30.0, 27.6, 26.4, 25.9, 25.6, 23.2, 22.9, 22.8, 22.6, 22.0; MS (ES⁺) *m*/*z* 973 (<5%, M+H), 487 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₅H₇₀FN₈O₇: 973.5352 (M+H), Found: 973.5367.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-((pyridin-4-ylmethoxy)methyl)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide-trihydrochloride (133)

This compound was prepared according to General Procedure 4 using Type D protected peptide 101 (35 mg, 0.027 mmol) to yield **133** (21 mg, 76%) as an off white solid. $[\alpha]_D^{25}$ +14.85 (*c* 0.8, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.51 (d, J = 6.0 Hz, 3H, CH₃), 0.56 (d, J = 6.5 Hz, 3H, CH₃), 0.92- $0.98 \text{ (m, 2H, CH}_2), 0.93 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{ H}, \text{CH}_3 \text{ (Leu)}), 0.97 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{ H}, \text{CH}_3 \text{ (Leu)}), 1.14$ 1.33 (m, 4H), 1.44-1.80 (m, 8H), 1.81-1.94 (m, 2H), 2.75-2.86 (m, 2H, CH₂N (Lys)), 3.14-3.25 (m, 2H, CH₂N (Arg)), 3.93-3.97 (m, 1H CH₂O (H_a)), 4.08-4.18 (m, 2H, CH and CH₂O (H_b)), 4.33-4.42 (m, 1H, CH), 4.52 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.62 (s, 2H, oxazole-CH₂), 4.93 (s, 2H, CH₂-Py), 5.14-5.17 (m, 1H, CH), 7.02-7.07 (m, 3H, ArH), 7.20-7.23 (m, 2H, ArH), 7.31-7.36 (m, 2H, ArH), 7.48 (d, J = 9.0 Hz, 1H, ArH), 7.53 (d, J = 8.5 Hz, 1H, ArH), 7.90-7.91 (m, 2H, ArH), 7.95 (s, 1H, ArH (oxazole)), 8.01-8.04 (m, 3H, ArH), 8.75-8.75 (m, 2H, ArH); ¹³C NMR (75 MHz, CD₃OD): δ 22.0, 22.8, 23.2 (CH₃), 25.8, 27.8, 30.3, 32.1, 39.3, 40.4 (CH₂), 25.6, 25.9, 47.1, 53.8, 54.1 (CH), 41.9 (CH₂N (Lys)), 42.8 (CH₂N (Arg)), 65.5 (oxazole-CH₂), 69.0 (OCH₂CO), 69.3 (CH₂O), 70.7 (CH₂-Py), 116.0, 117.0, 124.8, 125.2, 125.8, 126.0, 126.4, 127.5, 127.6, 129.1, 129.3, 130.88, 130.9, 140.3 (ArCH), 120.5, 121.8, 130.7, 131.4, 135.0, 135.2, 154.1, 155.9, 162.4 (ArC), 158.5 (C=N), 171.0, 173.2, 173.5 (C=O). MS (ESI, +ve) m/z 957 (<5%) $[M+H]^+$, 479 (100%) $[M+2H]^+$. HRMS (ESI, +ve) calcd for $C_{54}H_{70}N_9O_7$ 956.5398, found 956.5434.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isobutoxymethyl)oxazol-2-yl)-3-methylbutyl)-*N*-methylamino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (134)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **102** (13.2 mg, 0.010 mmol) to give **134** (9.0 mg, 87%) as an off-white solid. $[\alpha]_D^{25} -17.8$ (*c* 0.25, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.06 – 7.98 (m, 2H), 7.91 (d, *J* = 8.1 Hz, 2H), 7.84 (s, 1H), 7.54 (d, *J* = 8.9 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.27 – 7.19 (m, 2H), 7.07 (t, *J* = 8.0 Hz, 2H), 5.93 – 5.87 (m, 1H), 4.81 – 4.74 (m, 1H), 4.50 (ABq, $\Delta\delta_{AB} = 0.09$, *J* = 14.4 Hz, 2H), 4.41 (s, 2H), 4.23 – 4.09 (m, 2H), 4.02 – 3.92 (m, 1H), 3.27 (d, *J* = 6.2 Hz, 2H), 3.25 – 3.13 (m, 2H), 3.01 (s, 3H), 2.87 – 2.74 (m, 2H), 1.98 – 1.35 (m, 12H), 1.33 – 1.07 (m, 5H), 1.00 (d, *J* = 6.4 Hz, 3H), 0.95 (d, *J* = 6.0 Hz, 3H), 0.90 (d, *J* = 6.5 Hz, 6H), 0.57 (d, *J* = 6.3 Hz, 3H), 0.52 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 174.0, 172.9, 170.7, 164.2, 158.6, 155.9, 154.0, 139.3, 138.7, 135.2, 135.1, 131.4, 130.9, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 126.0, 125.3, 124.8, 121.8, 120.5, 116.9, 116.0, 78.6, 69.3, 69.0, 65.3, 53.3, 50.9, 50.8, 41.9, 40.4, 39.3, 32.3, 31.0, 29.7, 29.6, 27.7, 26.2, 25.9, 25.6, 23.4, 23.0, 22.8, 22.6, 22.1, 19.7; MS (ES⁺) *m*/*z* 935 (<5%, M+H), 468 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₃H₇₅N₈O₇: 935.5759 (M+H), Found: 935.5782.

(R)-6-Amino-N-((R)-5-guanidino-1-(((S)-1-(4-(isobutoxymethyl)-5-phenyloxazol-2-yl)-3-methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (135)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **103** (45.8 mg, 0.034 mmol) to give **135** (24.3 mg, 67%) as an off-white solid. $[\alpha]_D^{25}$ -30.5 (*c* 0.63, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.01 (d, *J* = 8.9 Hz, 1H), 7.95 (d, *J* = 9.0 Hz, 1H), 7.93 – 7.86 (m, 2H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.51 – 7.38 (m, 5H), 7.38 – 7.28 (m, 2H), 7.27 – 7.18 (m, 2H), 7.05 (t, *J* = 9.5 Hz, 2H), 5.24 – 5.19 (m, 1H), 4.58 – 4.41 (m, 4H), 4.41 – 4.35 (m, 1H), 4.14 – 4.05 (m, 2H), 3.93 – 3.85 (m, 1H), 3.36 – 3.33 (m, 2H), 3.24 – 3.13 (m, 2H), 2.81 – 2.69 (m, 2H), 1.96 – 1.05 (m, 17H), 1.01 (d, *J* = 6.0 Hz, 3H), 0.97 (d, *J* = 6.2 Hz, 3H), 0.91 (d, *J* = 6.0 Hz, 6H), 0.55 (d, *J* = 5.7 Hz, 3H), 0.49 (d, *J* = 5.6 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 173.7, 173.2, 171.0, 163.6, 158.5, 155.9, 154.0, 150.5, 135.2, 125.0, 133.4, 131.4, 130.9, 130.6, 130.1, 129.3, 129.1, 129.0, 127.6, 127.5, 127.3, 126.4, 125.9, 125.2, 124.8, 121.7, 120.4, 116.9, 115.9, 78.5, 69.2, 68.9, 65.8,

54.2, 53.7, 47.2, 42.9, 41.9, 40.3, 39.2, 32.1, 30.2, 29.7, 27.6, 26.4, 26.0, 25.6, 23.2, 23.0, 22.8, 22.5, 22.1, 19.8; MS (ES⁺) m/z 997 (<5%, M+H), 499 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₈H₇₇N₈O₇: 997.5915 (M+H), Found: 997.5913.

(R)-6-Amino-N-((R)-5-guanidino-1-(((S)-1-(4-(isobutoxymethyl)-5-bromooxazol-2-yl)-3-methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (136)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **104** (37.8 mg, 0.028 mmol) to give **136** (21.6 mg, 72%) as an off-white solid. $[\alpha]_{\rm D}^{25}$ -29.3 (*c* 0.51, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.02 (t, *J* = 8.3 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.9 Hz, 1H), 7.48 (d, *J* = 8.9 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.27 – 7.19 (m, 2H), 7.11 – 7.03 (m, 2H), 5.14 – 5.08 (m, 1H), 4.52 (ABq, $\Delta \delta_{AB} = 0.09$, *J* = 14.7 Hz, 2H), 4.36 – 4.28 (m, 3H), 4.17 – 4.07 (m, 2H), 4.00 – 3.92 (m, 1H), 3.23 (d, *J* = 5.7 Hz, 2H), 3.21 – 3.12 (m, 2H), 2.86 – 2.75 (m, 2H), 1.90 – 1.39 (m, 12H), 1.33 – 1.09 (m, 5H), 0.97 (d, *J* = 5.8 Hz, 3H), 0.93 (d, *J* = 6.2 Hz, 3H), 0.89 (d, *J* = 6.1 Hz, 6H), 0.57 (d, *J* = 5.8 Hz, 3H), 0.52 (d, *J* = 5.7 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 173.7, 173.3, 171.0, 166.6, 158.5, 155.9, 154.0, 137.0, 135.2, 135.1, 131.4, 130.9, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 126.0, 125.2, 124.8, 122.3, 121.7, 120.5, 116.9, 115.9, 78.5, 69.2, 69.0, 64.3, 54.2, 53.8, 47.3, 42.5, 41.9, 40.4, 39.3, 32.1, 30.1, 29.5, 27.7, 26.3, 25.9, 25.6, 23.14, 23.07, 22.8, 22.6, 22.0, 19.7; MS (ES⁺) *m/z* 1001 (<5%, M+H, ⁸¹Br), 999 (<5%, M+H, ⁷⁹Br), 501 (100%, M+2H, ⁸¹Br), 500 (59%, M+2H, ⁷⁹Br); HRMS (ES⁺) Calcd. for C₅₂H₇₂⁷⁹BrN₈O₇: 999.4707 (M+H), Found: 999.4697.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isobutylcarboxy)oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (137)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **105** (26.7 mg, 0.021 mmol) to give **137** (19.1 mg, 91%) as an off-white solid. $[\alpha]_{D}^{25}$ -34.1 (*c* 0.40, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.48 (s, 1H), 8.00 (t, *J* = 9.4 Hz, 2H), 7.95 – 7.87 (m, 2H), 7.52 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 9.0 Hz, 1H), 7.39 – 7.29 (m, 2H), 7.27 – 7.18 (m, 2H), 7.06 (t, *J* = 8.8 Hz, 2H), 5.17 (dd, *J* = 9.2, 6.0 Hz, 1H), 4.52 (ABq, $\Delta\delta_{AB}$ = 0.10, *J* = 14.7 Hz, 2H), 4.35 – 4.29
(m, 1H), 4.16 - 4.05 (m, 4H), 3.95 (dd, J = 15.3, 6.4 Hz, 1H), 3.24 - 3.11 (m, 2H), 2.91 - 2.79 (m, 2H), 2.02 (sep, J = 6.6 Hz, 1H), 1.92 - 1.36 (m, 11H), 1.32 - 1.09 (m, 5H), 1.03 - 0.91 (m, 12H), 0.57 (d, J = 6.5 Hz, 3H), 0.52 (d, J = 6.5 Hz, 3H); 13 C NMR (75 MHz, CD₃OD) δ 173.9, 173.4, 171.1, 166.7, 162.7, 158.6, 155.9, 154.0, 146.1, 135.2, 135.0, 134.0, 131.4, 130.8, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 126.0, 125.2, 124.8, 121.7, 120.5, 116.9, 115.9, 72.2, 69.2, 68.9, 54.4, 53.9, 47.1, 42.4, 41.9, 40.3, 39.3, 32.0, 29.9, 29.1, 27.6, 26.4, 25.9, 25.6, 23.2, 22.9, 22.8, 22.6, 21.9, 19.4; MS (ES⁺) m/z 935 (<5%, M+H), 468 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₂H₇₂N₈O₈ (M+2H): 468.2737, Found: 468.2749.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(isobutylcarbamoyl)-oxazol-2-yl)-3methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamide·dihydrochloride (138)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **106** (52.5 mg, 0.041 mmol) to give **138** (41.5 mg, 100%) as an off-white solid. $[\alpha]_{D}^{25}$ -22.9 (*c* 1.45, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.31 (s, 1H), 8.02 (t, *J* = 10.0 Hz, 2H), 7.91 (d, *J* = 7.9 Hz, 2H), 7.54 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 9.0 Hz, 1H), 7.39 – 7.30 (m, 2H), 7.23 (t, *J* = 7.4 Hz, 2H), 7.11 – 7.03 (m, 2H), 5.21 – 5.13 (m, 1H), 4.50 (ABq, $\Delta\delta_{AB}$ = 0.09, *J* = 14.7 Hz, 2H), 4.38 – 4.30 (m, 1H), 4.18 – 4.07 (m, 2H), 3.95 (dd, *J* = 15.5, 6.4 Hz, 1H), 3.25 – 3.12 (m, 4H), 2.85 – 2.71 (m, 2H), 1.95 – 1.36 (m, 12H), 1.33 – 1.05 (m, 5H), 1.00 (d, *J* = 6.4 Hz, 3H), 0.98 – 0.87 (m, 9H), 0.57 (d, *J* = 6.4 Hz, 3H), 0.52 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 173.8, 173.1, 170.8, 165.6, 162.9, 158.5, 155.9, 154.0, 142.6, 137.2, 135.2, 135.0, 131.4, 130.8, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 125.9, 125.2, 124.8, 121.8, 120.5, 116.9, 116.0, 69.3, 69.0, 54.3, 53.6, 47.6, 47.1, 42.5, 41.9, 40.4, 39.3, 32.1, 30.2, 29.8, 27.7, 26.4, 25.9, 25.6, 23.2, 23.0, 22.8, 22.6, 22.0, 20.5; MS (ES⁺) *m*/z 934 (<5%, M+H), 468 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₂H₇₂N₉O₇: 934.5555 (M+H), Found: 934.5567.

2-((S)-1-((R)-2-((R)-6-Amino-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2yl)oxy)acetamido)hexanamido)-5-guanidinopentanamido)-3-methylbutyl)-N-methoxy-Nmethyloxazole-4-carboxamide·dihydrochloride (139)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **107** (27.5 mg, 0.02 mmol) to give **139** (20.2 mg, 97%) as a tan solid. $[\alpha]_D^{25} = -24.4$ (*c* 0.67, MeOH). ¹H NMR (500 MHz, CD₃OD) δ 0.54 (3H, d, J = 6.5 Hz), 0.59 (3H, d, J = 6.5 Hz), 0.96 (3H, d, J = 6.3 Hz), 1.01 (3H, d, J = 6.2 Hz), 1.15 - 1.35 (5H, m), 1.54 - 1.89 (9H, m), 2.89 (2H, t, J = 6.0 Hz), 3.22 (2H, bs), 3.33 (3H, s), 3.37 (3H, s), 3.41 (3H, s), 3.81 (3H, s), 3.94 - 3.99 (2H, bm), 4.09 - 4.14 (2H, m), 4.36 (1H, bs), 4.53 (AB_q, 4H, $\Delta \sigma_{AB} = 0.15$, $J_{AB} = 14.7$ Hz), 5.20 (1H, bs), 7.08 (2H, t, J = 7.8 Hz), 7.22 - 7.26 (2H, m), 7.34 - 7.39 (2H, m), 7.49 (1H, d, J = 8.9 Hz), 7.54 (1H, d, J = 8.9 Hz), 7.91 (2H, t, J = 7.8 Hz), 7.99 - 8.05 (2H, q), 8.53 (1H, bs). ¹³C NMR (126 MHz, CD₃OD) δ 22.0, 22.5, 22.8, 23.0, 25.6, 25.9, 26.4, 27.7, 30.0, 32.0, 39.3, 40.4, 41.9, 53.6, 54.1, 69.0, 69.2, 116.0, 116.9, 120.5, 121.8, 124.8, 125.3, 125.9, 126.4, 127.5, 127.6, 129.1, 129.2, 130.7, 130.8, 131.4, 135.0, 135.2, 154.0, 155.9, 158.6, 167.1, 170.8, 173.8. IR (neat) ν [cm⁻¹] = 3870 (s), 3336 (s), 3012 (m), 2296 (w), 1695 (s), 1505 (s), 1078 (w). MS (ESI⁺) m/2 = 462 (100 %, [M+2H]²⁺).

```
(R)-6-Amino-N-((R)-5-guanidino-1-(((S)-1-(4-(4-methylpentanoyl)-oxazol-2-yl)-3-
methylbutyl)amino)-1-oxopentan-2-yl)-2-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-
yl)oxy)acetamido)hexanamide·dihydrochloride (140)
```


This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **108** (41.9 mg, 0.033 mmol) to give **140** (26.9 mg, 82%) as an off-white solid. $[\alpha]_{D}^{25}$ -19.9 (*c* 0.59, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 8.63 (s, 1H), 8.07 - 7.96 (m, 2H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 8.9 Hz, 1H), 7.41 - 7.30 (m, 2H), 7.28 - 7.18 (m, 2H), 7.07 (t, *J* = 8.8 Hz, 2H), 5.22 - 5.15 (m, 1H), 4.51 (ABq, $\Delta\delta_{AB}$ = 0.10, *J* = 14.8 Hz, 2H), 4.38 - 4.30 (m, 1H), 4.18 - 4.04 (m, 2H), 3.95 (dd, *J* = 15.4, 6.5 Hz, 1H), 3.25 - 3.12 (m, 2H), 2.91 - 2.75 (m, 4H), 1.93 - 1.36 (m, 14H), 1.34 - 1.08 (m, 5H), 0.98 (d, *J* = 6.5 Hz, 3H), 0.97 - 0.87 (m, 9H), 0.57 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 196.3, 173.7, 173.2, 171.0, 166.4, 158.6, 155.9, 154.1, 145.8, 141.2, 135.2, 135.1, 131.4, 130.8, 130.7, 129.3, 129.1, 127.6, 127.5, 126.4, 126.0, 125.2, 124.8, 121.7, 120.6, 116.9, 116.0, 69.3, 69.0, 54.2, 53.8, 47.1, 42.4, 41.9, 40.4, 39.3, 38.7, 34.0, 32.0, 30.1, 28.9, 27.7, 26.4, 25.9, 25.6, 23.1, 23.0, 22.82, 22.79, 22.78, 22.6, 22.0; MS (ES⁺) *m/z* 933 (<5%, M+H), 467 (100%, M+2H); HRMS (ES⁺) Calcd. for C₅₃H₇₃N₈O₇: 933.5602 (M+H), Found: 933.5605.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)-*N*-methylamino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (141)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **109** (17 mg, 0.014 mmol) to yield **141** (13 mg, 97%) as an off-white solid. $[\alpha]_D^{25}$ –39.32 (c 0.5, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.52 (d, J = 6.0 Hz, 3H, CH₃), 0.57 (d, J = 6.5 Hz, 3H, CH₃), 0.94-1.02 (m, 2H, CH₂), 0.95 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 0.99 (d, J = 7.0 Hz, 3H, CH₃ (Leu)), 1.07-1.21 (m, 2H), 1.22-1.30 (m, 2H), 1.38-1.83 (m, 8H), 1.83-1.98 (m, 2H), 2.76-2.87 (m, 2H, CH₂N (Lys)), 3.01 (s, 3H, NCH₃), 3.11-3.26 (m, 2H, CH₂N (Arg)), 3.38 (s, 3H, OCH₃), 3.94-3.98 (m, 1H CH_2O (H_a)), 4.12-4.21 (m, 2H, CH and CH_2O (H_b)), 4.36 (s, 2H, oxazole-CH₂), 4.50 (ABq, J = 15.0Hz, 2H, OCH₂CO), 4.74-4.82 (m, 1H, CH), 5.85-5.93 (m, 1H, CH), 7.05-7.08 (m, 2H, ArH), 7.22-7.24 (m, 2H, ArH), 7.32-7.37 (m, 2H, ArH), 7.47 (d, J = 8.5 Hz, 1H, ArH), 7.54 (d, J = 9.5 Hz, 1H, ArH), 7.86 (s, 1H, ArH (oxazole)), 7.90-7.92 (m, 2H, ArH), 8.00-8.04 (m, 2H, ArH); ¹³C NMR (126) MHz, CD₃OD): δ 22.1, 22.6, 22.8, 23.4 (CH₃), 23.0, 26.2, 27.7, 29.7, 32.3, 39.3 (CH₂), 25.7, 25.9, 50.8, 50.9, 53.3 (CH), 31.1 (NCH₃), 41.4 (CH₂N (Lys)), 42.0 (CH₂N (Arg)), 58.5 (OCH₃), 66.7 (oxazole-CH₂), 69.0 (OCH₂CO), 69.3 (CH₂O), 116.1, 117.0, 124.9, 125.3, 126.0, 126.4, 127.6, 129.1, 129.2, 129.3, 130.8, 130.9 (ArCH), 120.6, 121.9, 130.8, 131.5, 135.1, 135.3, 154.1, 156.0 (ArC), 158.6 (C=N), 172.9, 174.0 (C=O). MS (ESI, +ve) m/z 893 (5%) $[M+H]^+$, 447 (100%) $[M+2H]^+$. HRMS (ESI, +ve) calcd for C₅₀H₆₉N₈O₇ 893.5289, found 893.5322.

(R) - 6-Amino - N - ((R) - 5-guanidino - 1 - (((S) - 1 - (4 - (methoxymethyl) - 5-methyloxazol - 2-yl) - 3-methylbutyl) - N - methylamino) - 1 - oxopentan - 2-yl) - 2 - (2 - (((S) - 2' - (isopentyloxy) - [1, 1' - binaphthalen] - 2-yl)oxy) acetamido) hexanamide dihydrochloride (142)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **110** (37 mg, 0.029 mmol) to yield **142** (27 mg, 95%) as an off-white solid. $[\alpha]_D^{25}$ –74.29 (*c* 0.8, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.53 (d, *J* = 6.5 Hz, 3H, CH₃), 0.59 (d, *J* = 6.5 Hz, 3H, CH₃), 0.91-1.03 (m, 2H, CH₂), 0.96 (d, *J* = 6.5 Hz, 3H, CH₃ (Leu)), 1.00 (d, *J* = 6.5 Hz, 3H, CH₃ (Leu)), 1.15-1.31 (m, 4H), 1.43-1.83 (m, 8H), 1.77-1.98 (m, 2H), 2.33 (s, 3H, CH₃-oxazole), 2.76-2.88 (m, 2H, CH₂N (Lys)), 3.03 (s, 3H, NCH₃), 3.13-3.28 (m, 2H, CH₂N (Arg)), 3.36 (s, 3H, OCH₃), 3.96-3.99 (m, 1H CH₂O (H_a)), 4.13-4.23 (m, 2H, CH and CH₂O (H_b)), 4.31 (s, 2H, oxazole-C<u>H</u>₂), 4.52 (ABq, *J* = 15.0 Hz, 2H, OCH₂CO), 4.75-4.84 (m, 1H, CH), 5.81-5.89 (m, 1H, CH), 7.06-7.10 (m, 2H, ArH),

7.20-7.28 (m, 2H, ArH), 7.33-7.38 (m, 2H, ArH), 7.49 (d, J = 9.0 Hz, 1H, ArH), 7.55 (d, J = 9.0 Hz, 1H, ArH), 7.92-7.93 (m, 2H, ArH), 8.02-8.05 (m, 2H, ArH); ¹³C NMR (75 MHz, CD₃OD): δ 22.1, 22.6, 22.8, 23.4 (CH₃), 23.0, 26.1, 27.8, 29.7, 32.3, 39.2, 39.3 (CH₂), 25.6, 25.9, 50.8, 53.3 (CH), 31.1 (NCH₃), 41.4 (CH₂N (Lys)), 41.9 (CH₂N (Arg)), 58.3 (OCH₃), 66.1 (oxazole-<u>C</u>H₂), 69.0 (O<u>C</u>H₂CO), 69.3 (CH₂O), 116.0, 116.9, 124.8, 125.2, 126.0, 126.4, 127.5, 127.6, 129.1, 129.3, 130.9 (ArCH), 120.6, 121.8, 130.7, 131.4, 132.5, 135.1, 135.2, 154.0, 155.9 (ArC), 158.6 (C=N), 170.7, 172.8, 174.0 (C=O). MS (ESI, +ve) m/z 908 (5%) [M+H]⁺, 545 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for C₅₁H₇₁N₈O₇ 907.5446, found 907.5458.

 $(R) - 6-Amino - N - ((R) - 5-guanidino - 1 - (((S) - 1 - (4 - (methoxymethyl) - 5 - iodooxazol - 2 - yl) - 3 - methylbutyl) - N - methylamino) - 1 - oxopentan - 2 - yl) - 2 - (2 - (((S) - 2' - (isopentyloxy) - [1, 1' - binaphthalen] - 2 - yl) oxy) acetamido) hexanamide \cdot dihydrochloride (143)$

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **111** (15.3 mg, 0.01 mmol) to yield **143** (6.8 mg, 52%) as a white solid. $[\alpha]_D^{25} = -21.4$ (*c* 0.21, MeOH). ¹H NMR (500 MHz, CD₃OD) δ 0.56 (3H, d, J = 6.5 Hz), 0.62 (3H, d, J = 6.5 Hz), 0.98 - 1.04 (6H, m), 1.14 - 1.33 (5H, m), 1.47 - 2.04 (11H, m), 2.77 - 2.84 (2H, m), 3.06 (3H, s), 3.20 - 3.24 (2H, m), 3.34 - 3.35 (6H, m), 3.39 (3H, t, J = 10.0 Hz), 3.98 - 4.02 (1H, bm), 4.17 - 4.21 (2H, m), 4.32 (2H, s), 4.34 (1H, bs), 4.48 - 4.60 (3H, m), 5.90 - 5.93 (1H, m), 7.10 (2H, t, J = 7.7 Hz), 7.24 - 7.28 (2H, m), 7.35 - 7.41 (2H, m), 7.51 (1H, d, J = 9.0 Hz), 7.58 (1H, d, J = 8.2 Hz), 7.95 (2H, d, J = 8.2 Hz), 8.06 (2H, t, J = 9.2 Hz), 8.30 (1H, d, J = 7.9 Hz). ¹³C NMR (126 MHz, CD₃OD) δ 22.0, 22.6, 22.8, 23.1, 23.4, 25.7, 25.9, 26.1, 27.8, 29.7, 31.2, 32.4, 39.1, 40.5, 41.9, 50.7, 51.0, 58.6, 66.6, 69.1, 69.3, 103.4, 116.0, 117.0, 120.6, 121.9, 124.8, 125.2, 126.0, 126.4, 127.5, 127.6, 129.1, 129.3, 130.7, 130.8, 131.4, 135.1, 135.3, 143.8, 154.0, 155.9, 158.6, 161.4, 168.4, 171.0, 172.77 174.0. IR (neat) ν [cm⁻¹] = 3874 (s), 3752 (s), 2975 (w), 2289 (w), 1700 (s), 1587 (s), 1083 (w), 608 (s). MS (ESI⁺) m/2 = 510 (100 %, $[M+2H]^{2+}$), m/z = 1019 (2 %, $[M+H]^+$). HRMS (ESI⁺) $[M+H]^+$ Calcd. for C₅₀H₆₈IN₈O₇: 1019.4256, Found: 1019.4280.

(R) - 6-Amino - N - ((R) - 5-guanidino - 1 - (((S) - 1 - (4 - (methoxymethyl) - 5-phenyloxazol - 2-yl) - 3-methylbutyl) - N-methylamino) - 1 - oxopentan - 2-yl) - 2 - (2 - (((S) - 2' - (isopentyloxy) - [1, 1' - binaphthalen] - 2-yl) oxy) acetamido) hexanamide - dihydrochloride (144)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **112** (33 mg, 0.025 mmol) to yield 144 (25 mg, 96%) as an off-white solid. $[\alpha]_D^{25}$ –21.26 (c 1.0, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.48 (d, J = 6.5 Hz, 3H, CH₃), 0.54 (d, J = 6.0 Hz, 3H, CH₃), 0.88-0.97 (m. 2H, CH₂), 0.98 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.03 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.11-1.30 (m, 4H), 1.42-1.82 (m, 8H), 1.90-2.04 (m, 2H), 2.68-2.84 (m, 2H, CH₂N (Lys)), 3.10 (s, 3H, NCH₃), 3.15-3.27 (m, 2H, CH₂N (Arg)), 3.43 (s, 3H, OCH₃), 3.86-3.90 (m, 1H CH₂O (H_a)), 4.05-4.09 (m, 1H, CH₂O (H_b)), 4.13-4.22 (m, 1H, CH), 4.48 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.51 (s, 2H, oxazole-CH₂), 4.75-4.84 (m, 1H, CH), 5.94-5.97 (m, 1H, CH), 7.02-7.06 (m, 2H, ArH), 7.16-7.23 (m, 2H, ArH), 7.27-7.30 (m, 1H, ArH), 7.33-7.40 (m, 2H, ArH), 7.44-7.46 (m, 4H, ArH), 7.67-7.68 (m, 2H, ArH), 7.85 (d, J = 8.0 Hz, 1H, ArH), 7.90 (d, J = 8.0 Hz, 1H, ArH), 7.93 (d, J = 9.0 Hz, 1H, ArH), 8.01 (d, J = 9.5 Hz, 1H, ArH); ¹³C NMR (75 MHz, CD₃OD): δ 22.1, 22.5, 22.8, 23.4 (CH₃), 23.0, 26.2, 27.7, 29.6, 32.3, 39.2 (CH₂), 25.6, 26.0, 50.9, 53.1 (CH), 31.2 (NCH₃), 40.4 (CH₂N (Lys)), 42.0 (CH₂N (Arg)), 58.5 (OCH₃), 67.3 (oxazole-CH₂), 69.0 (OCH₂CO), 69.4 (CH₂O), 116.0, 116.9, 124.8, 125.2, 125.9, 126.4, 127.4, 127.5, 127.6, 129.1, 129.2, 130.1, 130.2, 130.9 (ArCH), 120.5, 121.9, 128.9, 130.7, 131.4, 133.4, 135.1, 135.2, 154.1, 155.9 (ArC), 158.6 (C=N), 170.7, 172.8, 174.3 (C=O). MS (ESI, +ve) m/z 969 (5%) [M+H]⁺, 485 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for $C_{56}H_{73}N_8O_7$ 969.5602, found 969.5620; HPLC $t_R = 28.4$ min, see the HPLC trace provided for the specific gradient elution profile.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(5-(4-isopropylphenyl)-4-(methoxymethyl)oxazol-2yl)-3-methylbutyl)-*N*-methylamino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (145)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **113** (36 mg, 0.026 mmol) to yield **145** (27 mg, 96%) as an off-white solid. $[\alpha]_D^{25}$ -3.78 (c 0.7, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.47 (d, J = 6.5 Hz, 3H, CH₃), 0.53 (d, J = 6.5 Hz, 3H, CH₃), 0.87-0.98 (m, 2H, CH₂), 0.98 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 1.03 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.10-1.30 (m, 10H), 1.40-1.87 (m, 8H), 1.88-2.06 (m, 2H), 2.69-2.84 (m, 2H, CH₂N (Lys)), 2.86-3.74 (m, 1H, C₆H₄CH(CH₃)₂), 3.12 (s, 3H, NCH₃), 3.14-3.27 (m, 2H, CH₂N (Arg)), 3.43 (s, 3H, OCH₃), 3.83- $3.87 (m, 1H CH_2O (H_a)), 4.05-4.09 (m, 2H, CH_2O (H_b)), 4.12-4.25 (m, 1H, CH), 4.48 (ABq, J = 15.0)$ Hz, 2H, OCH₂CO), 4.49 (s, 2H, oxazole-CH₂), 4.74-4.84 (m, 1H, CH), 5.92-5.99 (m, 1H, CH), 7.02-7.04 (m, 2H, ArH), 7.14-7.28 (m, 3H, ArH), 7.32-7.34 (m, 3H, ArH), 7.43 (d, J = 9.0 Hz, 1H, ArH), 7.45 (d, *J* = 9.0 Hz, 1H, ArH), 7.58-7.59 (m, 2H, ArH), 7.83 (d, *J* = 7.5 Hz, 1H, ArH), 7.89 (d, *J* = 8.5 Hz, 1H, ArH), 7.92 (d, J = 9.0 Hz, 1H, ArH), 8.01 (d, J = 8.5 Hz, 1H, ArH); ¹³C NMR (75 MHz, CD₃OD): § 22.1, 22.5, 22.8, 23.4 (CH₃), 22.9, 26.3, 27.6, 29.6, 32.3, 39.2, 39.4 (CH₂), 24.2, 24.3, 50.9, 51.0, 53.1 (CH), 31.2 (NCH₃), 40.4 (CH₂N (Lys)), 42.0 (CH₂N (Arg)), 58.5 (OCH₃), 67.3 (oxazole-CH₂), 68.9 (OCH₂CO), 69.4 (CH₂O), 116.1, 116.9, 124.7, 125.2, 126.0, 126.4, 127.6, 128.2, 129.1, 129.2, 130.8 (ArCH), 120.4, 122.0, 130.7, 131.4, 132.8, 135.1, 135.2, 151.4, 154.1, 155.9 (ArC), 158.6 (C=N), 170.7, 172.7, 174.3 (C=O). MS (ESI, +ve) *m/z* 1012 (5%) [M+H]⁺, 506 (100%)

 $[M+2H]^+$. HRMS (ESI, +ve) calcd for C₅₉H₇₉N₈O₇ 1011.6072, found 1011.6098; HPLC $t_R = 14.2$ min, see the HPLC trace provided for the specific gradient elution profile.

(*R*)-6-Amino-*N*-((*R*)-5-guanidino-1-(((*S*)-1-(5-(4-trifluoromethylphenyl)-4-(methoxymethyl)oxazol-2-yl)-3-methylbutyl)-*N*-methylamino)-1-oxopentan-2-yl)-2-(2-(((*S*)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (146)

This compound was prepared according to *General Procedure 4* using Type **D** protected peptide **114** (21 mg, 0.015 mmol) to yield **146** (14 mg, 86%) as an off-white solid. $[\alpha]_D^{25}$ +15.44 (c 0.7, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.51 (d, J = 6.5 Hz, 3H, CH₃), 0.57 (d, J = 6.5 Hz, 3H, CH₃), 0.96- $0.98 \text{ (m, 2H, CH}_2\text{)}, 1.01 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H}, \text{CH}_3 \text{ (Leu)}\text{)}, 1.06 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H}, \text{CH}_3 \text{ (Leu)}\text{)}, 1.12$ -1.34 (m, 4H), 1.44-1.89 (m, 8H), 1.94-2.09 (m, 2H), 2.70-2.82 (m, 2H, CH₂N (Lys)), 3.15 (s, 3H, NCH₃), 3.17-3.30 (m, 2H, CH₂N (Arg)), 3.47 (s, 3H, OCH₃), 3.89-3.93 (m, 1H CH₂O (H_a)), 4.08-4.13 (m, 1H, CH₂O (H_b)), 4.15-4.24 (m, 1H, CH), 4.52 (ABq, J = 14.5 Hz, 2H, OCH₂CO), 4.55-4.59 (m, 2H, oxazole-CH₂), 4.79-4.86 (m, 1H, CH), 5.97-5.99 (m, 1H, CH), 7.03-7.06 (m, 2H, ArH), 7.17-7.20 (m, 1H, ArH), 7.22-7.30 (m, 2H, ArH), 7.36-7.38 (m, 2H, ArH), 7.47-7.48 (m, 2H, ArH), 7.78-7.79 (m, 2H, ArH), 7.84-7.89 (m, 2H, ArH), 7.92 (d, J = 8.0 Hz, 1H, ArH), 7.95 (d, J = 9.0 Hz, 1H, ArH), 8.04 (d, J = 9.5 Hz, 1H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 22.1, 22.5, 22.8, 23.5 (CH₃), 23.0, 26.3, 27.7, 29.6, 32.3, 39.3 (CH₂), 25.6, 26.0, 51.1, 53.2 (CH), 31.3 (NCH₃), 40.4 (CH₂N (Lys)), 42.0 (CH₂N (Arg)), 58.6 (OCH₃), 67.3 (oxazole-CH₂), 69.0 (OCH₂CO), 69.5 (CH₂O), 116.1, 116.9, 124.8, 125.3, 126.0, 126.4, 126.4, 127.0, 127.6, 127.8, 129.1, 129.2, 130.8, 130.9 (ArCH), 120.6, 121.9, 130.7, 131.5, 132.5, 135.1, 135.2, 135.5, 154.1, 155.9 (ArC), 158.6 (C=N), 172.8, 174.4 (C=O). MS (ESI, +ve) m/z 1038 (5%) $[M+H]^+$, 520 (100%) $[M+2H]^+$. HRMS (ESI, +ve) calcd for $C_{57}H_{72}N_8O_7F_3$ 1037.5476, found 1037.5470; HPLC $t_R = 31.8$ min, see the HPLC trace provided for the specific gradient elution profile.

(R) - 6-Amino - N - ((R) - 5-guanidino - 1 - (((S) - 1 - (5 - (2, 4 - difluorophenyl) - 4 - (methoxymethyl) oxazol - 2-yl) - 3-methylbutyl) - N-methylamino) - 1 - oxopentan - 2-yl) - 2 - (2 - (((S) - 2' - (isopentyloxy) - [1, 1' - binaphthalen] - 2-yl) oxy) acetamido) hexanamide - dihydrochloride (147)

This compound was prepared according to General Procedure 4 using Type D protected peptide 115 (63 mg, 0.046 mmol) to yield **147** (48 mg, 97%) as an off-white solid. $[\alpha]_{D}^{25}$ -369.7 (*c* 0.88, MeOH); ¹H NMR (500 MHz, CD₃OD): δ 0.49 (d, J = 6.0 Hz, 3H, CH₃), 0.54 (d, J = 6.5 Hz, 3H, CH₃), 0.90-1.04 (m, 2H, CH₂), 0.96 (d, J = 6.0 Hz, 3H, CH₃ (Leu)), 1.01 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.10-1.31 (m, 4H), 1.44-1.78 (m, 8H), 1.89-2.02 (m, 2H), 2.74-2.85 (m, 2H, CH₂N (Lys)), 3.10 (s, 3H, NCH₃), 3.14-3.27 (m, 2H, CH₂N (Arg)), 3.35 (s, 3H, OCH₃), 3.87-3.92 (m, 1H CH₂O (H_a)), 4.07-4.12 (m, 1H, CH₂O (H_b)), 4.11-4.26 (m, 1H, CH), 4.37-4.41 (m, 2H, oxazole-CH₂), 4.49 (ABq, J =14.5 Hz, 2H, OCH₂CO), 4.75-4.84 (m, 1H, CH), 5.92-5.95 (m, 1H, CH), 7.03-7.08 (m, 3H, ArH), 7.11-7.22 (m, 3H, ArH), 7.27-7.30 (m, 1H, ArH), 7.32-7.35 (m, 1H, ArH), 7.44-7.48 (m, 2H, ArH), 7.57-7.62 (m, 2H, ArH), 7.85 (d, J = 8.0 Hz, 1H, ArH), 7.89 (d, J = 8.0 Hz, 1H, ArH), 7.95 (d, J = 9.0 Hz, 1H, ArH), 8.00 (d, J = 9.0 Hz, 1H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 22.1, 22.5, 22.8, 23.4 (CH₃), 22.9, 26.2, 27.6, 29.6, 32.2, 39.3, 39.4 (CH₂), 25.6, 26.0, 51.0, 53.2 (CH), 31.3 (NCH₃), 40.4 (CH₂N (Lys)), 42.0 (CH₂N (Arg)), 58.6 (OCH₃), 66.8 (oxazole-CH₂), 69.0 (OCH₂CO), 69.4 (CH₂O), 105.7 (t, J = 26 Hz, ArCH), 113.2 (dd, $J_1 = 4$, $J_2 = 22$ Hz, ArCH), 116.1, 116.9, 125.2, 125.9, 126.4, 127.5, 127.6, 129.1, 129.2, 130.8, 130.9 (ArCH), 132.9 (dd, $J_1 = 3$, $J_2 = 10$ Hz, ArCH), 120.5, 121.9, 130.7, 131.4, 135.1, 135.2, 135.8, 154.1, 155.9 (ArC), 158.6 (C=N), 161.0 (d, J = 250 Hz, ArC), 165.1 (d, J = 250 Hz, ArC), 170.7, 172.8, 174.3 (C=O). MS (ESI, +ve) m/z 1006 (5%) [M+H]⁺, 504 (100%) [M+2H]⁺. HRMS (ESI, +ve) calcd for C₅₆H₇₁N₈O₇F₂ 1005.5414, found 1005.5453; HPLC t_R = 29.1 min, see the HPLC trace provided for the specific gradient elution profile.

(R) - 6-Amino - N - ((R) - 5-guanidino - 1 - (((S) - 1 - (4 - (methoxymethyl) - 5 - (3, 5 - dimethylisoxazol - 4 - yl) - oxazol - 2 - yl) - 3 - methylbutyl) - N - methylamino) - 1 - oxopentan - 2 - yl) - 2 - (2 - (((S) - 2' - (isopentyloxy) - [1, 1' - binaphthalen] - 2 - yl) oxy) acetamido) hexanamide - dihydrochloride (148)

This compound was prepared according to General Procedure 4 using Type D protected peptide 116 (32 mg, 0.024 mmol) to yield **148** (25 mg, 98%) as an off-white solid. $[\alpha]_D^{25}$ -61.35 (c 1.1, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 0.53 (d, J = 6.5 Hz, 3H, CH₃), 0.59 (d, J = 6.0 Hz, 3H, CH₃), 0.92-1.08 (m, 2H, CH₂), 0.99 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.04 (d, J = 6.5 Hz, 3H, CH₃ (Leu)), 1.14-1.33 (m, 4H), 1.37-1.83 (m, 8H), 1.86-2.06 (m, 2H), 2.24 (s, 3H, isoxazole-CH₃), 2.42 (s, 3H, isoxazole-CH₃), 2.75-2.86 (m, 2H, CH₂N (Lys)), 3.08 (s, 3H, NCH₃), 3.16-3.28 (m, 2H, CH₂N (Arg)), 3.39 (s, 3H, OCH₃), 3.94-3.99 (m, 1H CH₂O (H_a)), 4.13-4.21 (m, 2H, CH and CH₂O (H_b)), 4.30-4.33 (m, 2H, oxazole-CH₂), 4.52 (ABq, J = 15.0 Hz, 2H, OCH₂CO), 4.73-4.85 (m, 1H, CH), 5.94 (dd, *J*₁ = 6.0, *J*₂ = 9.5 Hz, 1H, CH), 7.07-7.10 (m, 2H, ArH), 7.22-7.26 (m, 2H, ArH), 7.33-7.39 (m, 2H, ArH), 7.49 (d, J = 9.0 Hz, 1H, ArH), 7.55 (d, J = 8.5 Hz, 1H, ArH), 7.93 (d, J = 8.0 Hz, 2H, ArH), 8.02-8.06 (m, 2H, ArH); ¹³C NMR (126 MHz, CD₃OD): δ 10.8, 11.7 (2 x isoxazole-CH₃), 22.0, 22.5, 22.8, 23.4 (CH₃), 23.1, 26.2, 27.7, 29.7, 32.3, 39.1, 39.3 (CH₂), 25.6, 29.9, 50.9, 51.0, 53.3 (CH), 31.2 (NCH₃), 40.4 (CH₂N (Lys)), 41.9 (CH₂N (Arg)), 58.9 (OCH₃), 66.6 (oxazole-<u>C</u>H₂), 69.0 (OCH₂CO), 69.3 (CH₂O), 116.0, 117.0, 124.8, 125.2, 126.0, 126.4, 127.5, 127.6, 129.1, 129.3, 130.9 (ArCH), 105.9, 120.6, 121.9, 130.7, 131.5, 135.1, 135.2, 136.5, 154.1, 155.9, 160.5 (ArC), 158.6 (C=N), 170.6, 172.8, 174.3 (C=O). MS (ESI, +ve) m/z 989 (5%) $[M+H]^+$, 495 (100%) $[M+2H]^+$.

HRMS (ESI, +ve) calcd for $C_{55}H_{74}N_9O_8$ 988.5660, found 988.5681; HPLC $t_R = 25.6$ min, see the HPLC trace provided for the specific gradient elution profile.

Additional Reaction Schemes

Scheme S1 C-5-Arylation studies.

Scheme S2 C-5-Halogenation studies with oxazole 9.

Scheme S3 C-5-Bromination studies with oxazole 16.

Scheme S4 C-5-Bromination studies with oxazole 17.

Scheme S5 Attempted C-5-iodination of oxazole S6.

Scheme S8 Synthesis of Arg-cyclized peptide S13 from the attempted reaction of carboxylic acid A and *N*-Bn oxazole S2.

Additional Experimental Procedures (for Schemes S1–S8)

(±)-Methyl 2-(1-(1,3-dioxoisoindolin-2-yl)-3-methylbutyl)-5-phenyloxazole-4-carboxylate (S3)

Based on a literature C-H arylation method, ^{S11} a dry 10 mL glass reaction tube equipped with a stir bar was charged in the air with 9 (51.4 mg, 0.15 mmol), Pd(OAc)₂ (1.7 mg, 0.0075 mmol), PCy₃ (4.2 mg, 0.015 mmol) and K₂CO₃ (62.2 mg, 0.45 mmol). The contents were dried under high vacuum for 1 h, then PhBr (28.3 mg, 0.18 mmol) and PivOH (6.1 mg, 0.060 mmol) were added. The tube was fitted with a rubber septum, evacuated and refilled with N_2 (two cycles), then DMA (0.75 mL) was introduced and the mixture heated at 110 °C for 22 h. After cooling to rt, the mixture was diluted with EtOAc (20 mL) and water (20 mL). The organic phase was washed with brine (20 mL), dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (15% EtOAc/pet. ether) gave S3 (38.3 mg, 61%) as a pale yellow gum, which was found to be optically inactive, indicating that racemization had occurred under the basic reaction conditions. TLC (25% EtOAc/pet. ether) $R_{\rm F}$ = 0.57; $[\alpha]_{D}^{25}$ 0.0 (c 1.47, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.90 – 7.85 (m, 2H), 7.78 - 7.73 (m, 2H), 7.46 - 7.40 (m, 3H), 5.66 (dd, J = 11.0, 4.5 Hz, 1H), 3.91 (s, 3H), 2.61 (ddd, J = 14.6, 10.9, 4.3 Hz, 1H), 2.26 (ddd, J = 14.1, 9.4, 4.6 Hz, 1H), 1.67 – 1.56 (m, 1H), 1.04 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 162.4, 159.8, 155.8, 134.3, 131.6, 130.3, 128.5, 128.3, 126.9, 126.7, 123.6, 52.3, 46.3, 38.2, 24.8, 23.1, 21.3; MS (ES⁺) m/z 441 (100%, M+Na), 419 (55%, M+H); HRMS (ES⁺) Calcd. for C₂₄H₂₂N₂NaO₅: 441.1426 (M+Na), Found: 441.1405.

(S)-Methyl 2-(1-amino-3-methylbutyl)-5-phenyloxazole-4-carboxylate (S4)

Based on a literature C-H arylation method,^{S11} a dry 10 mL glass reaction tube equipped with a stir bar was charged in the air with 16^{S4} (46.9 mg, 0.15 mmol), Pd(OAc)₂ (1.7 mg, 0.0075 mmol), PCy₃ (4.2 mg, 0.015 mmol) and K₂CO₃ (62.2 mg, 0.45 mmol). The contents were dried under high vacuum for 1 h, then PhBr (28.3 mg, 0.18 mmol) and PivOH (6.1 mg, 0.060 mmol) were added. The tube was fitted with a rubber septum, evacuated and refilled with N_2 (two cycles), then DMA (0.75 mL) was introduced and the mixture heated at 110 °C for 16 h. After cooling to rt, the mixture was diluted with EtOAc (20 mL) and water (20 mL). The organic phase was washed with brine (20 mL), dried (MgSO₄) and concentrated under reduced pressure. ¹H NMR analysis of the residue showed the starting material 16 and the desired product S4 in a ratio of 58:42. A small amount of pure S4 (7.2 mg, 12%, pale yellow gum) was isolated after partial separation from 16 via flash chromatography (10% EtOAc/pet. ether). This sample was found to be optically active, indicating that exchanging the phthalimide (see reaction above) for the Boc protecting group prevented racemization under the basic conditions. TLC (20% EtOAc/pet. ether) $R_{\rm F} = 0.46$; $[\alpha]_{\rm D}^{25} - 39.0$ (c 0.36, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.06 - 8.00 (m, 2H), 7.50 - 7.44 (m, 3H), 5.16 - 4.99 (m, 2H), 3.93 (s, 3H), 1.85 -1.66 (m, 3H), 1.44 (s, 9H), 1.00 – 0.95 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 163.4, 162.5, 155.4, 155.1, 130.4, 128.4, 126.8, 126.6, 80.1, 52.3, 47.3, 43.5, 28.3, 24.7, 22.7, 22.0; MS (ES⁺) m/z 411 (100%, M+Na), 389 (33%, M+H), 333 (33%, M+HCOOH-Boc); HRMS (ES⁺) Calcd. for C₂₁H₂₈N₂NaO₅: 411.1896 (M+Na), Found: 411.1884.

(S)-tert-Butyl (1-(4-(hydroxymethyl)-5-phenyloxazol-2-yl)-3-methylbutyl)carbamate (S5)

Based on a literature C–H arylation method,^{S8} a 15 mL glass vial equipped with a stir bar was charged in the air with **17** (71.1 mg, 0.25 mmol), Pd(dppf)Cl₂·CH₂Cl₂ (10.2 mg, 0.013 mmol), PPh₃ (6.6 mg, 0.025 mmol), Ag₂CO₃ (137.8 mg, 0.50 mmol), PhI (61.2 mg, 0.30 mmol) and water (2.5 mL). The vial was fitted with a rubber septum, evacuated and refilled with N₂ (two cycles), then heated at 70 °C with rapid stirring for 26 h during which time a silver mirror formed on the reaction vial. After cooling to rt, the mixture was filtered through celite with the aid of CH₂Cl₂ (30 mL), then concentrated under reduced pressure. Flash chromatography (20% EtOAc/pet. ether) gave **S5** (58.8 mg, 65%) as a pale yellow gum. TLC (50% EtOAc/pet. ether) $R_{\rm F} = 0.65$; $[\alpha]_{\rm D}^{25}$ -50.3 (*c* 1.15, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.7 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 5.33 (bm, 1H), 5.06 – 4.95 (m, 1H), 4.74 (d, *J* = 4.4 Hz, 2H), 3.67 (bs, 1H), 1.81 – 1.62 (m, 3H), 1.44 (s, 9H), 0.96 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 163.5, 155.1, 147.2, 134.6, 128.8, 128.6, 127.9, 126.1, 79.9, 56.7, 47.4, 43.7, 28.3, 24.7, 22.6, 22.1; MS (ES⁺) *m/z* 383 (62%, M+Na), 361 (100%, M+H), 305 (32%, M+HCOOH–Boc); HRMS (ES⁺) Calcd. for C₂₀H₂₈N₂NaO₄: 383.1947 (M+Na), Found: 383.1949.

(S)-tert-Butyl (1-(4-(triisopropylsilyloxymethyl)oxazol-2-yl)-3-methylbutyl)carbamate (S6)

To a solution of alcohol **17** (284 mg, 1.00 mmol) and imidazole (245 mg, 2.50 mmol) in DMF (5.0 mL) under N₂ was stirred at rt for 10 min, then TIPS–Cl (0.25 mL, 1.20 mmol) was added and the mixture stirred at rt for 5 h. After dilution with water (20 mL) and Et₂O (20 mL), the organic layer was washed sequentially with saturated NaHCO₃ (20 mL), water (20 mL) and brine (20 mL), then dried (MgSO₄) and concentrated. Flash chromatography (0.5% EtOAc/pet. ether) to 4% EtOAc/pet. ether) gave **S6** (375 mg, 85%) as a colorless oil. TLC (5% EtOAc/pet. ether) $R_F = 0.44$; $[\alpha]_D^{25}$ –40.3 (*c* 0.94, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 5.04 – 4.97 (m, 1H), 4.96 – 4.88 (m, 1H), 4.74 (s, 2H), 1.77 – 1.59 (m, 3H), 1.43 (s, 9H), 1.20 – 1.11 (m, 3H), 1.08 (d, *J* = 6.9 Hz, 18H), 0.94 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃ δ) δ 164.6, 155.0, 141.6, 134.6, 79.8, 59.3, 47.4, 43.6, 28.3, 24.6, 22.6, 22.2, 17.9, 11.9; MS (ES⁺) *m/z* 463 (100%, M+Na), 441 (68%, M+H); HRMS (ES⁺) Calcd. for C₂₃H₄₄N₂NaO₄Si: 463.2968 (M+Na), Found: 463.2993.

(S)-3-Methyl-1-(4-carboxyoxazol-2-yl)butan-1-ammonium trifluoroacetate (S7)

This compound was prepared according to *General Procedure 3* using Type **B** protected amine **40** (37.9 mg, 0.13 mmol) and omitting the aqueous work-up to give amine TFA salt **S7** (43.7 mg, 110% of theoretical due to residual TFA) as a light brown gum. ¹H NMR (300 MHz, CD₃OD) δ 8.58 (s, 1H), 4.68 (t, *J* = 6.5 Hz, 1H), 2.10 – 1.96 (m, 1H), 1.93 – 1.79 (m, 1H), 1.62 (sep, *J* = 6.5 Hz, 1H), 0.98 (d, *J* = 6.7 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 163.7, 162.1, 147.1, 135.2, 48.3, 41.9, 25.7, 22.7, 22.0; MS (ES⁺) *m/z* 199 (100%, M+H); HRMS (ES⁺) Calcd. for C₉H₁₄N₂NaO₃: 221.0902 (M+Na), Found: 221.0900. Note that a similar synthetic route to the free amino acid form of **S7** (i.e., not the TFA salt) has been reported using different protecting groups.^{S12}

(*R*)-2-Amino-*N*-((*S*)-1-(4-benzyloxazol-2-yl)-3-methylbutyl)-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamide (S8)

This compound was prepared in two steps. The initial coupling reaction was performed according to *General Procedure 1* using amine **53** (70 mg, 0.29 mmol) and Fmoc-(*R*)-Arg(Pbf)-OH (186 mg, 0.29 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) yielded the Fmoc-protected precursor (100 mg, 40%). The protected amine was then stirred in 1% piperidine/CH₂Cl₂ for 3 h at rt. After removal of the solvent under reduce pressure, the residue was subjected to flash chromatography (2% MeOH/CH₂Cl₂ to 5% MeOH/CH₂Cl₂) to yield the free amine **S8** (50 mg, 69%, or 28% over two steps) as a solid. ¹H NMR (300 MHz, CDCl₃) δ 0.90 (d, *J* = 6.9 Hz, 3H), 0.92 (d, *J* = 7.2 Hz, 3H), 1.47 (s, 6H, 2 x CH₃ (Pbf)), 1.49-1.63 (m, 4H), 1.72-1.77 (m, 3H), 2.08 (s, 3H, CH₃)

(Pbf)), 2.49 (s, 3H, CH₃ (Pbf)), 2.59 (s, 3H, CH₃ (Pbf)), 2.93 (s, 2H, CH₂ (Pbf)), 3.08-3.19 (m, 2H), 3.37-3.46 9m, 1H), 3.78 (s, 2H), 5.08-5.16 (m, 1H), 6.39 (br s, NH), 7.15-7.28 9m, 6H), 7.93 (d, *J* = 8.7 Hz, NH).

(*R*)-2-Amino-*N*-((*S*)-1-(4-phenyloxazol-2-yl)-3-methylbutyl)-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamide (S9)

This compound was prepared in two steps. The initial coupling reaction was performed according to *General Procedure 1* using amine **54** (90 mg, 0.39 mmol) and Fmoc-(*R*)-Arg(Pbf)-OH (253 mg, 0.39 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) yielded the Fmoc-protected precursor (62 mg, 18%). The protected amine was then stirred in 1% piperidine/CH₂Cl₂ for 3 h at rt. After removal of the solvent under reduce pressure, the residue was subjected to flash chromatography (2% MeOH/CH₂Cl₂ to 5% MeOH/CH₂Cl₂) to yield the free amine **S9** (40 mg, 87%, or 16% over two steps) as a solid. ¹H NMR (300 MHz, CDCl₃) δ 0.96 (d, *J* = 6.3 Hz, 3H), 1.00 (d, *J* = 6.3 Hz, 3H), 1.49 (s, 6H, 2 x CH₃ (Pbf)), 1.57-1.78 (m, 4H), 1.86-1.91 (m, 3H), 2.11 (s, 3H, CH₃ (Pbf)), 2.53 (s, 3H, CH₃ (Pbf)), 2.60 (s, 3H, CH₃ (Pbf)), 2.77 (s, 2H, CH₂ (Pbf)), 3.17-3.31 (m, 2H), 3.73-3.82 (m, 1H), 5.20-5.28 (m, 1H), 6.58 (br s, 2H, NH), 6.82 (br s, 1H, NH), 7.28-7.41 (m, 3H), 7.69 (d, *J* = 7.2 Hz, 2H), 8.35 (d, *J* = 7.8 Hz, 1H, NH). See the section "*Synthesis of Type D Protected Peptidomimetics*" for the subsequent preparation of compound **86**.

tert-Butyl ((*R*)-5-amino-6-(((*R*)-1-(((*S*)-1-(4-benzyloxazol-2-yl)-3-methylbutyl)amino)-1-oxo-5-(-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-6-oxohexyl)carbamate (S10)

This compound was prepared in two steps. The initial coupling reaction was performed according to *General Procedure 1* using amine **S8** (50 mg, 0.077 mmol) and Fmoc-(*R*)-Lys(Boc)-OH (36 mg, 0.077 mmol). Flash chromatography (100% CH₂Cl₂ to 3% MeOH/CH₂Cl₂) yielded the Fmoc-protected precursor (70 mg, 82%). The protected amine was then stirred in 1% piperidine/CH₂Cl₂ for 3 h at rt. After removal of the solvent under reduce pressure, the residue was subjected to flash chromatography (2% MeOH/CH₂Cl₂ to 5% MeOH/CH₂Cl₂) to yield the free amine **S10** (50 mg, 90%, or 74% over two steps) as a solid. ¹H NMR (300 MHz, CDCl₃) δ 0.87-0.92 (m, 6H), 1.33-1.86 (m, 13H), 1.40-1.45 (m, 15H, ^{*t*}Bu and 2 x CH₃ (Pbf)), 2.07 (s, 3H, CH₃ (Pbf)), 2.49 (s, 3H, CH₃ (Pbf)), 2.56 (s, 3H, CH₃ (Pbf)), 2.93 (s, 2H, CH₂ (Pbf)), 3.05-3.24 (m, 4H), 3.78 (s, 2H), 4.16-4.55 (m, 2H), 5.04-5.12 (m, 2H), 6.51-6.46 (m, NH), 7.12-7.28 (m, 6H). See the section "*Synthesis of Type D Protected Peptidomimetics*" for the subsequent preparation of compound **85**.

 $tert-Butyl \qquad ((R)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy) acetamido)-6-oxo-6-(((R)-2-oxo-1-(-N'-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl) carbamimidoyl) piperidin-3-yl) amino) hexyl) carbamate (S13)$

This compound was formed as the major product in the attempted coupling of carboxylic acid A (89) mg, 0.085 mmol) and N,O-dibenzylated amine S2 (45 mg, 0.097 mmol) according to General *Procedure 1.* Flash chromatography (100% CH₂Cl₂ to 1% MeOH/CH₂Cl₂) gave **S13** (72 mg, 82%) as a white solid. This compound was also a minor side product of most other coupling reactions with acid A. It has a slightly higher $R_{\rm F}$ value than the desired peptidomimetic oxazoles in a MeOH/CH₂Cl₂ developing system, and is easily separated by flash chromatography from the desired products. TLC (5% MeOH/CH₂Cl₂) $R_{\rm F} = 0.50$; ¹H NMR (500 MHz, CDCl₃): $\delta 0.52$ (d, J = 6.0 Hz, 3H, CH₃), 0.57 $(d, J = 6.5 Hz, 3H, CH_3), 0.84-1.02 (m, 4H), 1.13-1.35 (m, 6H), 1.38-1.59 (m, 2H), 1.43 (s, 9H, ^tBu),$ 1.47 (s, 6H, 2 x CH₃ (Pbf)), 1.65-1.51 (m, 3H), 2.11 (s, 3H, CH₃ (Pbf)), 2.28-2.35 (m, 1H), 2.52 (s, 3H, CH₃ (Pbf)), 2.57 (s, 3H, CH₃ (Pbf)), 2.89-3.01(m, 2H, CH₂N (Lys)), 2.97 (s, 2H, CH₂ (Pbf)), 3.37-3.42 (m, 1H), 3.88-3.93 (m, 1H), 3.99-4.04 (m, 1H), 4.08-4.12 (m, 1H), 4.44-4.60 (m, 5H), 6.19 (d, J = 8.0 Hz, 1H, NH), 6.75 (d, J = 6.0 Hz, 1H, NH), 7.13 (d, J = 8.5 Hz, 1H, ArH), 7.15 (d, J = 9.0 Hz, 1H, 1H, 1H, 1H), 7.15 (d, J = 9.0 Hz, 1H, 1H, 1H, 1H), 7.15 (d, J = 9.0 Hz, 1H, 1H, 1H), 7.15 (d, J = 9.0 Hz, 1H, 1H), 7.15 (d, J = 9.0 Hz, 1H, 1H), 7.15 (d, J = 9.0 Hz, 1Hz, 1Hz), 7.15 (d, J = 9.0 Hz, 1Hz), 7.15 (d, J = 9.0 Hz), 7.Hz, 1H, ArH), 7.22-7.26 (m, 2H, ArH), 7.31-7.38 (m, 3H, ArH), 7.46 (d, J = 9.5 Hz, 1H, ArH), 7.87-7.88 (m, 2H, ArH), 7.97 (d, J = 8.5 Hz, 1H, ArH), 7.98 (d, J = 8.5 Hz, 1H, ArH), 9.38 (br s, 1H, NH); ¹³C NMR (126 MHz, CDCl₃): δ 12.4, 17.9, 19.2, 19.7, 22.1, 22.3, 22.5, 24.6, 24.8, 28.4, 28.6, 29.2, 30.3, 38.0, 42.0, 43.1, 51.0, 52.4, 68.0, 68.5, 86.6, 114.0, 116.1, 117.7, 119.7, 120.5, 124.0, 124.3, 124.8, 125.1, 125.5, 126.7, 126.8, 128.0, 128.1, 129.3, 129.7, 129.8, 132.8, 133.7, 133.9, 138.9, 152.2, 153.8, 154.4, 155.9, 159.3, 168.8, 170.8, 175.2 MS (ESI, +ve) m/z 1034 (20%) [M+H]⁺; 1056 (100%) [M+Na]⁺. HRMS (ESI, +ve) calcd for C₅₇H₇₃N₆O₁₀S 1033.5109, found 1033.5081.

Antibacterial Testing Methods

S. aureus, E. faecalis, S. pneumoniae, E. coli, A. baumannii, VISA and VRE

The test organisms for all compounds were *Staphylococcus aureus* ATCC 29213, *Staphylococcus aureus* NCTC 10442, *Enterococcus faecalis* ATCC 29212, *Streptococcus pneumoniae* ATCC 49619 and *Escherichia coli* ATCC 25922. The test organisms for selected compounds were *Acinetobacter baumannii* ATCC 19606, *Acinetobacter baumannii* ATCC 15308, *Staphylococcus aureus* Mu50 (VISA), *Enterococcus faecalis* ATCC 51299 (VRE) and *Enterococcus faecalis* clinical (VRE).

Each compound was dissolved in DMSO at a concentration of 5 mg mL⁻¹. These solutions were further diluted to 512 μ g mL⁻¹ in sterile distilled water, resulting in a final DMSO concentration of 10.25%. The broth microdilution method was used to determine susceptibility.^{S13} Briefly, each compound was serially diluted in 100 μ L volumes of sterile distilled water in a 96-well microtiter tray. Wells were then inoculated with 100 μ L volumes of each test organism in double-strength growth medium and incubated as described in Table S1. Final concentrations of compound ranged from 0.25–256 μ g mL⁻¹. A positive growth control with no compound was included.

Table S1. Growth medium and incubation conditions for microorganisms tested in this study.

Organism(s)	Growth medium	Incubation conditions		
S. aureus, E. faecalis, E. coli , A. baumannii	Mueller Hinton broth	24 h at 35 °C in ambient air		
S. pneumoniae	Mueller Hinton broth supplemented with 2.5% lysed horse blood	24 h at 35 °C with 5% CO ₂		

The entire assay was repeated 3–4 times per organism. MICs were determined visually as the lowest concentration of compound inhibiting growth. Modal MICs were then selected. A DMSO control was included with the first test to ensure that the solvent was not growth inhibitory. Vancomycin, chloramphenicol and ciprofloxacin were included when testing Gram positive organisms *E. coli* and *A. baumannii*, respectively, as positive controls. Concentrations of \leq 5% DMSO were not inhibitory to growth. MICs for all antibiotics were within acceptable QC ranges.

C. difficile

Selected compounds were tested for their minimum inhibitory concentration (MIC) against three *Clostridium difficile* strains (Table S2). All strains are human isolates.^{S14}

 Table S2. C. difficile strains used in this study.

C. diff. Strain	Description
M7404	Canadian toxinotype III/ribotype 027
R20291	UK toxinotype III/ribotype 027
1470	Toxinotype VIII/ribotype 017

The compounds were solubilized in DMSO at a concentration of 5 mg mL⁻¹. The MIC for each compound was determined utilizing the broth microdilution method described previously.^{S13} Briefly, the compounds were diluted 1:2 in Heart Infusion (HI) medium (Oxiod) in 96-well polypropylene trays. The final concentration range was $1-128 \ \mu g \ mL^{-1}$. The *C. difficile* strains were grown to mid-exponential growth phase, the cell number standardized by optical density and added to the microtiter trays. The cells were incubated anaerobically at 37 °C for 24 h. Each strain was tested in biological duplicate.

Hemolysis Data

The hemolytic activity of each compound was assessed by the lysis of sheep erythrocytes (Table S3). Briefly, 500 μ L volumes of each compound in phosphate buffered saline (PBS) was combined with 480 μ L PBS and 20 μ L washed sheep erythrocytes (100%) in microcentrifuge tubes. The final concentration of erythrocytes was 2% and of each compound was 50 μ g mL⁻¹ and 5 μ g mL⁻¹. Controls included a positive control (100% hemolysis) with 980 μ L sterile distilled water and 20 μ L erythrocytes and a negative control with 980 μ L PBS and 20 μ L erythrocytes. Tubes were incubated at 37 °C for 2 h on a rocker then centrifuged at 12 000 g for 5 min. Volumes of 100 μ L of supernatant were transferred to the wells of a microtiter tray and the optical density was determined at 540 nm. The negative control value (blank) was subtracted from all other values and the resulting optical density values were expressed as a proportion of the positive control (100% hemolysis). This assay was repeated twice on separate occasions and the mean and standard deviation (SD) was calculated.

Table S3. Hemolysis	assay for	oxa(thia)zole	peptidomimetics.
---------------------	-----------	---------------	------------------

						% hemolysis (control = 100%		100%)	
						$5 \mu g m L^{-1}$		50 µg mL ⁻¹	
entry	compound	Х	R^1	R ²	R ³	mean	SD	mean	SD
1	1	-	-	-	-	2.8	0.6	107.1	2.7
2	2	-	-	-	-	1.5	0.2	84.7	18.1
3	3	0	н	Н	Bn	1.4	0.4	50.4	7.6
4	117	0	н	Bn	Н	2.3	0.1	99.2	2.4
5	118	0	н	Ph	Н	1.6	0.7	66.1	1.7
6	119	0	Н	Н	Н	-0.1	0.2	65.8	2.2
7	120	0	н	CH ₃	Н	0.0	0.4	60.0	0.9
8	121	0	Н	CH ₂ F	Н	3.5	0.1	88.7	7.5
9	122	0	Н	CH ₂ OH	Н	0.7	1.1	54.3	9.1
10	123	0	Н	CH ₂ OMe	Н	1.2	1.2	72.7	13.9
11	124	S	Н	CH ₂ OMe	Н	1.2	0.2	74.3	7.0
12	125	0	Н	CH ₂ O(i-Pr)	Н	2.2	1.3	95.5	3.4
13	126	S	Н	CH ₂ O(i-Pr)	Н	1.1	0.0	94.6	14.4
14	127	0	Н	CH ₂ O(i-Bu)	Н	4.1	3.7	106.1	0.2
15	128	0	Н	CH ₂ O(i-pent)	Н	1.6	1.1	98.6	4.8
16	129	0	Н	CH ₂ OPh	Н	1.4	0.4	82.1	0.9
17	130	0	Н	CH ₂ OBn	Н	2.2	1.8	101.6	6.6
18	131	0	Н	CH ₂ O(4-Cl-Bn)	Н	4.2	2.2	105.1	1.5
19	132	0	Н	CH ₂ O(4-F-Bn)	Н	0.9	1.2	101.9	6.9
20	133	0	Н	CH ₂ O(4-pyridyl-Me)·HCl	Н	0.8	0.2	56.1	10.0
21	134	0	Me	CH ₂ O(i-Bu)	Н	0.1	0.5	89.2	10.2
22	135	0	Н	CH ₂ O(i-Bu)	Ph	1.1	1.0	97.5	11.9
23	136	0	Н	CH ₂ O(i-Bu)	Br	1.0	0.1	98.7	9.9
24	137	0	Н	CO ₂ (i-Bu)	Н	1.2	0.1	101.8	11.8
25	138	0	Н	CONH(i-Bu)	Н	0.8	0.6	98.8	12.5
26	139	0	Н	CONMe(OMe)	Н	0.0	0.0	39.0	4.7
27	140	0	Н	CO(i-pent)	Н	1.4	1.1	92.0	17.8
28	141	0	Me	CH ₂ OMe	Н	0.3	0.9	50.5	13.2
29	142	0	Me	CH ₂ OMe	Me	1.4	0.2	56.4	8.0
30	143	0	Me	CH ₂ OMe	- E	0.2	0.0	68.0	3.7
31	144	0	Me	CH ₂ OMe	Ph	2.6	2.9	103.6	2.4
32	145	0	Me	CH ₂ OMe	4-(i-Pr)-Ph	0.7	0.4	69.3	12.4
33	146	0	Me	CH ₂ OMe	4-CF ₃ -Ph	0.2	0.0	94.3	1.3
34	147	0	Me	CH ₂ OMe	2,4-F,F-Ph	0.7	0.1	87.8	2.0
35	148	0	Me	CH ₂ OMe	4-(3,5-Me,Me)-isoxazolyl	1.5	0.5	87.3	1.6

References

- S1) S. M. Wales, K. A. Hammer, A. M. King, A. J. Tague, D. Lyras, T. V. Riley, P. A. Keller, S. G. Pyne, Org. Biomol. Chem. 2015, 13, 5743–5756.
- S2) S. V. Pande, P. S. Utale, S. B. Gholse, P. V. Tekade, S. G. Patil, *Pharm. Chem. J.* **2014**, *48*, 29–33.
- S3) M. J. McKennon, A. I. Meyers, J. Org. Chem. 1993, 58, 3568–3571.
- S4) a) S. Murru, A. Nefzi, ACS Comb. Sci. 2014, 16, 39–45. b) S. Murru, C. T. Dooley, A. Nefzi, Tetrahedron Lett. 2013, 54, 7062–7064.
- S5) F. Cavelier, C. Enjalbal, *Tetrahedron Lett.* **1996**, *37*, 5131–5134.
- S6) a) U. Schmidt, P. Gleich, H. Griesser, R. Utz, *Synthesis* 1986, *12*, 992–998. b) Y. Hamada, M. Shibata, T. Sugiura, S. Kato, T. Shioiri, *J. Org. Chem.* 1987, *52*, 1252–1255.
- S7) M. Stanchev, S. Tabakova, G. Videnov, E. Golovinsky, G. Jung, Arch. Pharm. Pharm. Med. Chem. 1999, 332, 297–304.
- S8) S. A. Ohnmacht, P. Mamone, A. J. Culshaw, M. F. Greaney, *Chem. Commun.* 2008, 1241–1243.
- S9) S. C. Watson, J. F. Eastham, J. Organomet. Chem. 1967, 9, 165–168.
- S10) J. B. Bremner, P. A. Keller, S. G. Pyne, T. P. Boyle, Z. Brkic, D. M. David, A. Garas, J. Morgan, M. Robertson, K. Somphol, M. H. Miller, A. S. Howe, P. Ambrose, S. Bhavnani, T. R. Fritsche, D. J. Biedenbach, R. N. Jones, R. W. Buckheit Jr., K. M. Watson, D. Baylis, J. A. Coates, J. Deadman, D. Jeevarajah, A. McCracken, D. I. Rhodes, *Angew. Chem. Int. Ed.* 2010, 49, 537–540.
- S11) N. A. Strotman, H. R. Chobanian, Y. Guo, J. He, J. E. Wilson, Org. Lett. 2010, 12, 3578–3581.
- S12) S. J. Butler, K. A. Jolliffe, Org. Biomol. Chem. 2011, 9, 3471–3483.
- S13) Clinical and Laboratory Standards Institute. 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard–Ninth Edition. CLSI Document M07-A9. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
- S14) G. P. Carter, G. R. Douce, R. Govind, P. M. Howarth, K. E. Mackin, J. Spencer, A. M. Buckley, A. Antunes, D. Kotsanas, G. A. Jenkin, B. Dupuy, J. I. Rood, D. Lyras, *PLoS Pathog.* 2011, 7, e1002317.

NMR Spectra of Selected Type B Oxa(thia)zoles

NMR Spectra of Type C Amino Oxa(thia)zoles 53-84

NMR Spectra of Type E Final Compounds 117–148 and HPLC Traces of 144–148

S153

 $A = H_2O + 0.1\%$ TFA + 10% MeCN B = MeCN + 0.1% TFA

$A = H_2O + 0.1\%$ TFA + 10% MeCN
B = MeCN + 0.1% TFA

B = MeCN + 0.1% TFA

$A = H_2O + 0.1\%$ TFA + 10% MeCN	
B = MeCN + 0.1% TFA	

NMR Spectra of Oxazoles S3-S7

