Supplementary Information

A Pyrene-bridged Macrocage Showing No Excimer Fluorescence

Hirokuni Shionari,^a Yusuke Inagaki,^a Kentaro Yamaguchi,^b and Wataru Setaka^{*,a}

 ^a Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
 ^b Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1

Paculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Buhri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan

1. Copies of Spectra for All New Compounds	
Fig. S1. ¹ H NMR spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2) in CDCl ₃ .	S2
Fig. S2. ¹³ C NMR spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2) in CDCl ₃ .	S2
Fig. S3. 1 H- 13 C hsqc NMR spectrum of (2) in CDCl ₃ .	S3
Fig. S4. 1 H- 13 C hmbc NMR spectrum of (2) in CDCl ₃ .	S3
Fig. S5. HRMS(ESI, positive) spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2)	S4
Fig. S6. ¹ H NMR spectrum of Molecular Gyrotop (1) in CDCl ₃ .	S5
Fig. S7. ¹³ C NMR spectrum of Molecular Gyrotop (1) in CDCl ₃ .	S5
Fig. S8. ¹ H- ¹³ C hsqc NMR spectrum of Molecular Gyrotop (1) in CDCl ₃ .	S6
Fig. S9. 1 H- 13 C hmbc NMR spectrum of Molecular Gyrotop (1) in CDCl ₃ .	S6
Fig. S10. HRMS(ESI, positive) spectrum of Molecular Gyrotop (1)	S7
Fig. S11. ¹ H NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl ₃ .	S8
Fig. S12. ¹³ C NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl ₃ .	S8
Fig. S13. ¹ H- ¹³ C hsqc NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl ₃ .	S9
Fig. S14. ¹ H- ¹³ C hmbc NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl ₃ .	S9
Fig. S15. HRMS(ESI, positive) spectrum of Molecular Gyrotop Isomer (1i)	S10
Fig. S16. ¹ H NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl ₃ .	S11
Fig. S17. ¹³ C NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl ₃ .	S11
Fig. S18. ¹ H- ¹³ C hsqc NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl ₃ .	S12
Fig. S19. ¹ H- ¹³ C hmbc NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl ₃ .	S12
Fig. S20. HRMS(ESI, positive) spectrum of 2,7-bis(menylsilyl)pyrene (3)	S13
2. Details of X-ray Crystallography	014
Table S1. Crystal Data of L and 3	514
Table S2. Parameters for weighted Least-Squares Planes inrough the Starred Atoms for T	815
3. Details of Fluorescence lifetime measurements study	
Fig. S21. Normalized fluorescence decay traces of naphthalenes: (a) pyrene; (b) 3; (c) 1; (d) 1i.	S16
Fig. S22. Fluorescence spectra of pyrenes in the presence of nitrobenzene: (a) pyrene, (b) 3, (c) 1, (d) 1i.	S17
Fig. S23. Normalized fluorescence decay traces of pyrenes in the presence of nitrobenzene: (a) pyrene, (b) 3, (c) 1, (d	a) 11 S18

1. Copies of Spectra for All New Compounds

Fig. S1. ¹H NMR spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2) in CDCl₃.

Fig. S2. ¹³C NMR spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2) in CDCl₃.

Fig. S3. ¹H-¹³C hsqc NMR spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2) in CDCl₃.

Fig. S4. ¹H-¹³C hmbc NMR spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2) in CDCl₃.

Fig. S5. HRMS(ESI, positive) spectrum of 2,7-bis(tri-9-decenylsilyl)pyrene (2): top; obsd., bottom; calcd.

b. Spectra of Molecular Gyrotop (1)

Fig. S6. ¹H NMR spectrum of Molecular Gyrotop (1) in CDCl₃.

Fig. S7. ¹³C NMR spectrum of Molecular Gyrotop (1) in CDCl₃.

Fig. S8. ¹H-¹³C hsqc NMR spectrum of Molecular Gyrotop (1) in CDCl₃.

Fig. S9. ¹H-¹³C hmbc NMR spectrum of Molecular Gyrotop (1) in CDCl₃.

Fig. S10. HRMS(ESI, positive) spectrum of Molecular Gyrotop (1): top; obsd., bottom; calcd.

c. Spectra of Molecular Gyrotop Isomer (1i)

Fig. S11. ¹H NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl₃.

Fig. S12. ¹³C NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl₃.

Fig. S13. ¹H-¹³C hsqc NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl₃.

Fig. S14. ¹H-¹³C hmbc NMR spectrum of Molecular Gyrotop Isomer (1i) in CDCl₃.

Fig. S15. HRMS(ESI, positive) spectrum of Molecular Gyrotop Isomer (1i): top; obsd., bottom; calcd.

d. Spectra of 2,7-bis(menylsilyl)pyrene (3)

Fig. S16. ¹H NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl₃.

Fig. S17. ¹³C NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl₃.

Fig. S18. ¹H-¹³C hsqc NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl₃.

Fig. S19. ¹H-¹³C hmbc NMR spectrum of 2,7-bis(menylsilyl)pyrene (3) in CDCl₃.

Fig. S20. HRMS(ESI, positive) spectrum of 2,7-bis(menylsilyl)pyrene (3): top; obsd., bottom; calcd.

3. Details of X-ray Crystallography

		1	3	
CCDC #		1415849	1415850	
Compound Name		C18 Pyrene-gyrotop	2,7-Bis(trimethylsilyl)pyrene	
Empirical formula		C70 H116 Si2	$\mathrm{C}_{22}\mathrm{H}_{26}\mathrm{Si}_2$	
Cryst shape		prism	prism	
Cryst color		colorless	colorless	
Cryst size		0.30 x 0.20 x 0.20 mm ³	0.50 x 0.30 x 0.20 mm ³	
Formula weight / g mol ⁻¹		1013.8	346.61	
Crystal system		Triclinic	Monoclinic	
Space group		<i>P</i> -1	$P2_{1}/c$	
Z		2	2	
Temperature / K		100	100	
	а	12.173(3) Å	6.3540(12) Å	
Cell parameter	b	17.375(4) Å	16.626(3) Å	
	с	18.275(4) Å	9.3688(17) Å	
	α	61.920(3)°	90°	
	β	71.547(3)°	100.456(2)°	
	γ	87.263(3)°	90°	
	V	3211.3(14) Å ³	973.3(3) Å ³	
Calculated density		1.048 Mg/m ³	1.183 Mg/m ³	
F(000)		1128	372	
Absorption coefficient		0.093 mm ⁻¹	0.183 mm ⁻¹	
θ range for collecn (deg)		1.34 to 28.71°	2.45 to 28.06°	
Index ranges		-14<=h<=16, -17<=k<=22, - 19<=l<=23	-7<=h<=8, -15<=k<=21, - 9<=l<=11	
Reflections collected		18533	5274	
Independent reflections		14243 [R(int) = 0.0210]	2118 [R(int) = 0.0188]	
Completeness		97.8 %	99.7 %	
Goodness-of-fit on F ²		1.043	1.056	
Final R indices [I>2sigma(I)]		R1 = 0.0575, wR2 = 0.1454	R1 = 0.0331, $wR2 = 0.0875$	
R indices (all data)		R1 = 0.0688, wR2 = 0.1553	R1 = 0.0375, wR2 = 0.0905	
Largest diff. peak and hole		0.602 and -0.356 e.Å ⁻³	0.361 and -0.195 e.Å ⁻³	

Table S1. Crystal Data of 1 and 3

Table S2. Parameters for Weighted Least-Squares Planes through the Starred Atoms for 1

(Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II-A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1

-0.99836(0.00000)
0.04105(0.00031)
-0.04002(0.00007)
-8.69372(0.00246)

Atom		d	S	d/s	(d/s)**2
C01	*	0.0032	0.0017	1.882	3.544
C02	*	0.0327	0.0018	17.854	318.761
C03	*	0.0546	0.0018	29.838	890.302
C04	*	0.0536	0.0017	31.210	974.078
C05	*	0.0324	0.0018	17.692	313.012
C06	*	-0.0012	0.0018	-0.669	0.448
C07	*	0.0533	0.0017	31.067	965.153
C08	*	0.0356	0.0018	19.464	378.842
C09	*	-0.0087	0.0020	-4.430	19.628
C10	*	-0.0293	0.0018	-16.016	256.498
C11	*	0.0142	0.0018	7.689	59.123
C12	*	0.0507	0.0018	27.719	768.343
C13	*	0.0596	0.0022	27.206	740.184
C14	*	0.0472	0.0022	21.569	465.230
C15	*	0.0573	0.0021	27.632	763.513
C16	*	0.0399	0.0021	19.222	369.478
Si01	*	-0.0272	0.0006	-44.650	1993.658
Si02	*	-0.0234	0.0006	-38.429	1476.806

 $Sum((d/s)^{**2})$ for starred atoms

10756.598

Chi-squared at 95% for 15 degrees of freedom: 25.00 The group of atoms deviates significantly from planarity

4. Details of Fluorescence Study

(a) (c) log(count) / au log(count) / au 1 1000 2000 3000 1000 0 4000 0 2000 time / ns time / ns (b) (d) log(count) / au log(count) / au 1000 1000 2000 0 2000 0 time / ns time / ns

a. Fluorescence lifetime measurement

Fig. S21. Normalized fluorescence decay traces of pyrenes [red line; observed intensity, green line; light pulse, blue line, line fitting] (conditions: 1 μ M, 296 K, ex. 340 nm, obs. 383 - 385 nm) : (a) pyrene; (b) **3**; (c) **1**; (d) **1i**.

b. Fluorescence quenching by nitrobenzene

Fig. S22. Fluorescence spectra of 10×10^{-6} M pyrenes in hexane at rt in the presence of increasing concentrations of nitrobenzene: (a) pyrene, (b) **3**, (c) **1**, (d) **1i**.

Fig. S23. Normalized fluorescence decay traces of pyrenes in the presence of nitrobenzene as a quencher [black line; light pulse] (concentrations of substrates 1 μ M): (a) pyrene, (b) **3**, (c) **1**, (d) **1i**.