Synthesis and anti-cancer activity of 1, 4-disubstituted imidazo[4,5-c]quinolines

Yadagiri Thigulla, ${ }^{a}$ Mahesh Akula, ${ }^{a}$ Prakruti Trivedi, ${ }^{\mathrm{b}}$ Balaram Ghosh, ${ }^{\mathrm{b}}$ Mukund Jha ${ }^{\mathrm{c}}$ and Anupam Bhattacharya ${ }^{* a}$
a. Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
b. Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
c. Department of Biology and Chemistry, Nipissing University, North Bay, ON, P1B 8L7, Canada.
e-mail: anupam@hyderabad.bits-pilani.ac.in

SUPPORTING INFORMATION

Contents:

Pages 2-4: Procedures for preparation of compounds 3 and 4
Pages 5-72: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR for the compounds
Page 73: Overlay of ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra
Pages 74-75: MTT assay

Page 76: References

Procedures for preparation of compounds 3 and 4

Synthesis of (\boldsymbol{E})-N-(2-nitrobenzylidene)aniline: To a mixture of 2-nitrobenzaldehyde ($2 \mathrm{~g}, 0.0132 \mathrm{~mol}$) and aniline $(1.478 \mathrm{~g}, 0.0158 \mathrm{~mol})$ in 30 ml of toluene, catalytic amount of acetic acid was added. The solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 8 hrs . The reaction mixture was cooled to room temperature on completion and solvent was removed under reduced pressure. The residue obtained, was diluted with water and extracted with ethyl acetate. The separated organic layer was then washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Subsequently, organic layer was concentrated in vacuo and resulting residue purified by column chromatography using 15% ethylacetate/hexane as eluent.

Yield: $83 \%(2.4 \mathrm{~g})$; yellow solid, m.p. $60-62{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.7$ (Hexane / Ethyl acetate $=8: 2$). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3056,2332,1569$, $1522,1346,1189 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 121.2$, $124.5,127,129.3,129.7,131.1,131.2,133.6,149.3,151,155.9$; ESI (m / z): $227.05[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of 5-(2-nitrophenyl)-1-phenyl-1H-imidazole (3): To a mixture of (E)- N -(2-nitrobenzylidene)aniline (2g, 0.088 mol) and tosylmethylisocyanide ($2.07 \mathrm{~g}, 0.0106 \mathrm{~mol}$) in 30 ml of $\mathrm{ACN}: \mathrm{DMSO}(3: 1), \mathrm{K}_{2} \mathrm{CO}_{3}(3.669 \mathrm{~g}, 0.0265 \mathrm{~mol})$ was added. The solution was then stirred at $80^{\circ} \mathrm{C}$ for 6 hrs . On completion of the reaction as indicated by TLC, the reaction mixture was poured into water and extracted with ethyl acetate. The separated organic layer was then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Organic layer was subsequently concentrated in vacuo and residue was purified by column chromatography using 40% ethyl acetate/ hexane as eluent.

Yield: $78 \%(1.84 \mathrm{~g})$. Light brown solid, m.p. $107-110{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.3$ (Hexane $/$ Ethyl acetate $=5: 5$). $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3118$, $1520,1349,1159 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09(\mathrm{dd}, J=6.3,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{dd}$, $J=15.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 124.4$, $124.6,125,128.3,128.4,128.4,129.5,129.6,133,133.1,135.6,138.7,148.6$; ESI (m/z): 266[M+H] .

Synthesis of 2-(1-phenyl-1H-imidazol-5-yl)aniline (4a): To a solution of 5-(2-nitrophenyl)-1-phenyl-1H-imidazole (1.8g, $0.0067 \mathrm{~mol})$ in $\mathrm{ACN} /$ water $(1: 0.1)$ at $0{ }^{\circ} \mathrm{C}, \mathrm{NiCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}(0.318 \mathrm{~g}, 0.00134 \mathrm{~mol})$ and $\mathrm{NaBH}_{4}(1.0138 \mathrm{~g}, 0.027 \mathrm{~mol})$ were added. The reaction mixture was then stirred for 20 minutes, initially at $0{ }^{\circ} \mathrm{C}$ for 10 min and then at room temperature for the remaining duration. On completion of the reaction, resulting mixture was diluted with cold water and passed through celite pad. The solution obtained was then diluted with water and extracted with ethyl acetate. The organic layer was subsequently washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Dried organic layer was concentrated in vacuo and residue was purified by column chromatography with 50% ethylacetate/ hexane as eluent.
Yield: $75 \%\left(1.19 \mathrm{~g}\right.$); colourless liquid, $\mathrm{R}_{\mathrm{f}}=0.2$ (Hexane $/$ Ethyl acetate $=3: 7$). $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3475,3370,3206,2359$, $1613,1495,1460,1251 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.81(\mathrm{~s}, 2 \mathrm{H}), 6.62(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.1,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=8.1,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.37$ (m, 3H), $7.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 114.4,115.3,118,124.6,127.8,129.3,129.4,129.6,129.7,131.7$, 136.4, 138.3, 145.4; ESI (m/z): 236.05[M+H] ${ }^{+}$.
(\boldsymbol{E})-4-chloro-N-(2-nitrobenzylidene)aniline: To a mixture of 2-nitrobenzaldehyde ($1.1 \mathrm{~g}, 0.0085 \mathrm{~mol}$) and p-chloro aniline $(1.5 \mathrm{~g}, 0.010 \mathrm{~mol})$ in 15 ml of toluene, catalytic amount of acetic acid was added. The solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 8 hrs. The reaction mixture was cooled to room temperature on completion and solvent was removed under reduced pressure. The residue obtained, was diluted with water and extracted with ethyl acetate. The separated organic layer was then washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Subsequently, organic layer was concentrated in vacuo and resulting residue purified by column chromatography using 15% ethylacetate/hexane as eluent.

Yield: 87%; yellow solid; m.p. $67-70{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.9$ (Hexane / Ethyl acetate $=9: 1$). $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2998,2359,1569,1523$, $1485,1339,1186,1090 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=122.5,124.6,129.4,129.7,130.8,131.4,132.5,133.6,149.2,149.4,156.2 ; \mathrm{ESI}(\mathrm{m} / \mathrm{z}): 261.05[\mathrm{M}+\mathrm{H}]^{+}$.

1-(4-chlorophenyl)-5-(2-nitrophenyl)-1H-imidazole: Yield:79\%; yellow solid; m.p. 165-170 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.9$ (Hexane / Ethyl acetate $=9: 1)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3123,3064,1687,1523,1495,1353,1091,1018 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.03-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=$ $7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 124.2,124.7$, $126.3,128.3,129.7,129.8,130,133,133.2,134.2,134.3,138.7,148.7$; ESI (m/z): 300.05[M+H] ${ }^{+}$.

2-(1-(4-chlorophenyl)- \mathbf{H}-imidazol-5-yl)aniline (4b): Yield: 84%; yellow solid; m.p. $111-114{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.9$ (Hexane / Ethyl acetate $=9: 1$). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3460,3373,3331,3216,2360,1624,1495,1311,1092 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.80(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.11(\mathrm{~m}$, $1 \mathrm{H}), 7.13(\mathrm{dt}, J=4.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 114,115.4,118.2,125.8,129.3,129.5,129.8,130,131.7,133.7,135,138.1,145.5 ; \mathrm{ESI}(\mathrm{m} / \mathrm{z}): 270.05[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) (E)-N-(2-nitrobenzylidene)aniline

${ }^{13} \mathbf{C}$ NMR(75 MHz, CDCl_{3}) (E)-N-(2-nitrobenzylidene)aniline

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 5-(2-nitrophenyl)-1-phenyl-1H-imidazole (3)

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 5-(2-nitrophenyl)-1-phenyl-1H-imidazole (3)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2-(1-phenyl-1H-imidazol-5-yl)aniline (4a)

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 2-(1-phenyl-1 \boldsymbol{H}-imidazol-5-yl)aniline (4a)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1,4-diphenyl-1H-imidazo[4,5-c]quinoline (6a)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1,4-diphenyl-1H-imidazo[4,5-c]quinoline (6a)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-phenyl-4-(4-(trifluoromethyl)phenyl)-1H-imidazo[4,5-c]quinoline (6b)

${ }^{13}$ C-NMR (75 MHz, CDCl 3): 1-phenyl-4-(4-(trifluoromethyl)phenyl)-1H-imidazo[4,5-c]quinoline (6b)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)benzonitrile (6c)

${ }^{13}$ C-NMR (75 MHz, CDCl 3): 4-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)benzonitrile (6c)

${ }^{1}$ H NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): 4-(4-methoxyphenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6d)

${ }^{13}$ C NMR (75 MHz, CDCl 3): 4-(4-methoxyphenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6d)
$\underset{\substack{7 \\ \stackrel{\sim}{4} \\ i}}{\sim}$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)phenol (6e)

${ }^{13} \mathrm{C}$ NMR(75 MHz, CDCl_{3}): 2-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)phenol (6e)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 3-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)phenol (6f)

${ }^{13}$ C NMR(101 MHz, CDCl $_{3}$): 3-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)phenol (6f)

${ }^{1}$ H NMR (400 MHz, DMSO-d ${ }_{6}$): 4-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)phenol (6g)

${ }^{13} \mathrm{C}$ NMR(101 MHz, CDCl $)_{3}$): 4-(1-phenyl-1H-imidazo[4,5-c]quinolin-4-yl)phenol (6g)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-phenyl-4-p-tolyl-1H-imidazo[4,5-c]quinoline (6h)

$\underset{\substack{\text { à }}}{\substack{i}}$
\qquad

${ }^{13} \mathrm{C}$ NMR(75 MHz, CDCl 3): 1-phenyl-4-p-tolyl-1H-imidazo[4,5-c]quinoline (6h)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(4-fluorophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6i)

$\mid\| \| \|$

${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): 4-(4-fluorophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6i)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(4-chlorophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline ($\mathbf{6 j}$)

1,1

${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(4-chlorophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline ($\mathbf{6 j}$)

```
%~N
```


${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): 4-(4-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6 k)

${ }^{13} \mathrm{C}$-NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(4-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6 k)

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): 4-(3-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (61)

$1111 / 1 / 1$

${ }^{13} \mathrm{C}$ NMR(75 MHz, CDCl_{3}): 4-(3-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (61)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(2-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6m)

${ }^{13} \mathrm{C}$ NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(2-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6 m)

${ }^{1} \mathrm{H}$ NMR($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(2,4-dichlorophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6n)

${ }^{13} \mathrm{C}$ NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(2,4-dichlorophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6n)

1	1	1	1	1	+	,	T	1	1	1	+	1	1	+	
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): 4-(naphthalen-1-yl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6o)

${ }^{13} \mathrm{C}$ NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4-(naphthalen-1-yl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6o)

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): 4-(naphthalen-2-yl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6p)

${ }^{13} \mathrm{C}$ NMR(75 MHz, CDCl_{3}): 4-(naphthalen-2-yl)-1-phenyl-1H-imidazo[4,5-c]quinoline (6p)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-phenyl-4-(thiophen-2-yl)-1H-imidazo[4,5-c]quinoline (6q)

${ }^{13} \mathrm{C}$-NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-phenyl-4-(thiophen-2-yl)-1H-imidazo[4,5-c]quinoline ($\mathbf{6 q}$)

							,									
160	150	140	130	120	110	100	90	${ }_{\text {f1 }} 80$	70	60	50	40	30	20	10	0

${ }^{1}$ H NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): (E)-4-chloro-N-(2-nitrobenzylidene)aniline

${ }^{13} \mathrm{C}$ NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (E)-4-chloro-N-(2-nitrobenzylidene)aniline

${ }^{1}$ H NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$): 5-(2-nitrophenyl)-1-phenyl-1H-imidazole

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5-(2-nitrophenyl)-1-phenyl-1H-imidazole

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 2-(1-(4-chlorophenyl)-1H-imidazol-5-yl)aniline (4b)

${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$): 2-(1-(4-chlorophenyl)-1H-imidazol-5-yl)aniline (4b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (E)-N-(2-nitro-4-(trifluoromethyl)benzylidene)aniline

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (E)-N-(2-nitro-4-(trifluoromethyl)benzylidene)aniline
/

| 160 | 1 | | | | | | | | | | | | | | | |
| :--- |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 5-(2-nitro-4-(trifluoromethyl)phenyl)-1-phenyl-1H-imidazole

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 5-(2-nitro-4-(trifluoromethyl)phenyl)-1-phenyl-1H-imidazole

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2-(1-phenyl-1H-imidazol-5-yl)-5-(trifluoromethyl)aniline

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2-(1-phenyl-1H-imidazol-5-yl)-5-(trifluoromethyl)aniline

5-(4, 5-dimethoxy-2-nitrophenyl)-1-phenyl-1H-imidazole

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 5-(4, 5-dimethoxy-2-nitrophenyl)-1-phenyl-1H-imidazole

1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

4, 5-dimethoxy-2-(1-phenyl-1 H -imidazol-5-yl)aniline

${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 4, 5-dimethoxy-2-(1-phenyl-1H-imidazol-5-yl)aniline

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) 1-(4-chlorophenyl)-4-phenyl-1 H -imidazo[4,5-c]quinoline (8a)

${ }^{13} \mathrm{C}$ NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-(4-chlorophenyl)-4-phenyl-1H-imidazo[4,5-c]quinoline (8a)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : 1-(4-chlorophenyl)-4-(4-methoxyphenyl)-1H-imidazo[4,5-c]quinoline (8b)

${ }^{13} \mathrm{C}$ NMR(75 MHz, CDCl_{3}) 1-(4-chlorophenyl)-4-(4-methoxyphenyl)-1H-imidazo[4,5-c]quinoline (8b)

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): 1,4-bis(4-chlorophenyl)-1H-imidazo[4,5-c]quinoline (8c)

${ }^{13}$ C NMR(75 MHz, CDCl $_{3}$): 1,4-bis(4-chlorophenyl)-1H-imidazo[4,5-c]quinoline (8c)

	1		1			1	1	1 ,	1	1	1	,	1	1	1	
60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-(4-chlorophenyl)-4-(thiophen-2-yl)-1H-imidazo[4,5-c]quinoline (8d)

${ }^{13} \mathrm{C}$ NMR($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1-(4-chlorophenyl)-4-(thiophen-2-yl)-1H-imidazo[4,5-c]quinoline (8d)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 1, 4-diphenyl-7-(trifluoromethyl)-1H-imidazo[4,5-c]quinoline (8e)

${ }^{13}$ C NMR(101 MHz, CDCl_{3}): 1, 4-diphenyl-7-(trifluoromethyl)-1 H -imidazo[4,5-c]quinoline (8e)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 7, 8-dimethoxy-1, 4-diphenyl-1H-imidazo[4,5-c]quinoline (8f)

${ }^{13} \mathrm{C}$ NMR(101 MHz, CDCl_{3}): 7, 8-dimethoxy-1, 4-diphenyl-1H-imidazo[4,5-c]quinoline (8f)

Overlay of ${ }^{1} \mathbf{H}$ NMR spectra of 1,4 -diphenyl-1 H-imidazo $[4,5-c]$ quinoline ($6 a$) and 2-(1-phenyl-1 H-imidazol-5-yl)aniline (4a)

MTT Assay:

Anticancer activity was determined using MTT assay. ${ }^{1,2}$ Briefly, cells were seeded at $10,000 \mathrm{cells} /$ well in $100 \mu \mathrm{l}$ of medium in 96 -well plates and incubated for 24 hr . Cells were treated with drug compounds at two concentrations (1 mM and $100 \mu \mathrm{M}$) in triplicates and incubated for 24 hrs . Stock solutions were diluted in such a way that final DMSO concentration was $1 \% .50 \mu \mathrm{lof} 5 \mathrm{mg} / \mathrm{mL} 3$-(4,5 -dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT; Himedia Laboratories Pvt. Ltd., Mumbai, India) was added and incubated for 4 hours. Formazan crystals were dissolved in 150μ of DMSO and evaluated spectrophotometrically at 570 nm and 650 nm using Spectramax M4 (Molecular Devices, USA).

2B

Figure A and B: Cytotoxicity of 23 novel compounds was evaluated in murine melanoma cell line (B16F10). Cell viability was measured by in vitro MTT assay. Cells were treated with drug molecules for 24 hours at two concentrations 1 mM and $100 \mu \mathrm{M}(\mathrm{n}=3)$. Data represent mean values of measurements \pm s.d.

References:

1] Johan van Meerloo, Gertjan J.L. Kaspers, Jacqueline Cloos, "Cell Sensitivity Assays: The MTT Assay", Cancer Cell Culture: Methods and Protocols, Second Edition, Methods in Molecular Biology, vol. 731, 237-245

2] Kornelius Kerl, David Ries, Rebecca Unland, Christiane Borchert, Natalia Moreno, Martin Hasselblatt,Heribert Jürgens, Marcel Kool, Dennis Gorlich, Maria Eveslage, Manfred Jung, Michael Meisterernstand, Michael Frühwald, "The histone deacetylase inhibitor SAHA acts insynergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells", BMC Cancer 2013, 13:286

