Enantioselective synthesis of novel pyranopyrazoles and pyranocoumarins using a quinine-derived primary amine salt catalyst

Sai Yang, Liu-lan Shen, Yoon-Jung Kim and Jin-Hyun Jeong*

College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University Incheon 406-840, Republic of Korea organicjeong@gmail.com

Supporting Information

Contents

Copies of ¹ H and ¹³ C NMR spectra of new compounds	1
Copies of HPLC chromatograms of new compounds1	.7
Copy of x-ray diffraction report (3c)	3

Copies of ¹H and ¹³C NMR spectra of new compounds

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

^{150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} fl (ppm)

Copies of HPLC chromatograms of new compounds

Totals : 1.19339e4 1022.65469

Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	8.911	VB	0.1709	1262	.13257	111.	93694	4.4876
2	10.507	VB	0.2559	2.68	624e4	1672.	10815	95.5124
Tota	s:			2.813	246e4	1784.	04510	

Totals: 2.08687e4 1747.57157

Totals: 2.58628e4 1616.99777

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	29.770	VB	0.6571	8418.92383	198.80583	49.8935
2	36.108	BV	0.7324	8454.87305	180.65617	50.1065
Total	.s :			1.68738e4	379.46201	

3C

Table 1 Crystal data and structure refinement for 3C.

Identification code	3C				
Empirical formula	$C_{25}H_{19}CIN_2O$				
Formula weight	398.87				
Temperature/K	303.9				
Crystal system	monoclinic				
Space group	C2				
a/Å	21.832(2)				
b/Å	5.1765(5)				
c/Å	18.5849(19)				
α/°	90				
β/°	103.747(2)				
γ/°	90				
Volume/ų	2040.2(4)				
Z	4				
$\rho_{calc}g/cm^3$	1.299				
µ/mm⁻¹	0.206				
F(000)	832.0				
Crystal size/mm ³	$0.1 \times 0.06 \times 0.04$				
Radiation	ΜοΚα (λ = 0.71073)				
20 range for data collection/°	4.512 to 52.036				
Index ranges	-26 ≤ h ≤ 26, -6 ≤ k ≤ 5, -22 ≤ l ≤ 22				
Reflections collected	18832				
Independent reflections	3766 [R_{int} = 0.0707, R_{sigma} = 0.0606]				
Data/restraints/parameters	3766/73/300				
Goodness-of-fit on F ²	1.064				
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0650$, $wR_2 = 0.1376$				
Final R indexes [all data]	R ₁ = 0.1098, wR ₂ = 0.1556				
Largest diff. peak/hole / e Å ⁻³	0.18/-0.20				
Flack parameter	0.14(5)				

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3C. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Ato m	x	У	Ζ	U(eq)
CI1	3533.0(9)	9493(6)	6560.2(8)	111.3(9)
01	2766.2(15)	6258(8)	2019.9(17)	51.7(10)
N1	3773.9(17)	4284(11)	2207(2)	51.5(13)
N2	4359.8(19)	4553(14)	2689(2)	66.6(15)
C1	3376(2)	6034(12)	2401(2)	45.6(14)
C2	4298(3)	6438(15)	3149(3)	64.7(18)
C3	3681(2)	7416(13)	2989(3)	50.7(15)
C4	3382(2)	9628(13)	3286(2)	50.4(13)
C5	2714(2)	9741(14)	2839(2)	54.4(14)
C6	2444(2)	8276(11)	2277(2)	47.1(14)
C7	4858(3)	7290(20)	3727(4)	99(3)
C8	3424(2)	9553(12)	4113(2)	46.0(13)
C9	3770(3)	11313(14)	4577(3)	66.0(17)
C10	3809(3)	11317(16)	5332(3)	76.1(19)
C11	3491(3)	9505(17)	5615(3)	66.0(18)
C12	3140(3)	7657(15)	5174(3)	67.4(18)
C13	3105(3)	7708(14)	4422(3)	60.9(16)
C14	1792(2)	8410(12)	1841(3)	50.3(13)
C17	559(3)	8821(15)	1024(3)	75.6(18)
C20	3684(2)	2386(12)	1635(3)	49.2(14)
C21	3118(3)	2089(14)	1134(3)	61.9(17)
C22	3050(3)	221(15)	601(4)	74(2)
C23	3542(3)	-1362(15)	554(4)	77(2)
C24	4106(3)	-1065(16)	1060(4)	85(2)
C25	4182(3)	787(16)	1600(4)	74(2)
C15	1522(6)	10790(30)	1725(7)	65(3)
C16	899(7)	11010(40)	1335(9)	80(4)
C18	876(7)	6420(40)	1093(10)	84(5)
C19	1507(6)	6190(40)	1505(8)	64(3)
C26	1292(4)	9290(30)	2169(5)	62(3)
C27	677(5)	9420(30)	1762(6)	70(4)
C28	990(5)	7980(30)	712(6)	66(4)
C29	1604(5)	7800(30)	1118(5)	62(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3C. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b}U_{12}+\cdots]$.

Ato m	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
CI1	103.0(13)	185(3)	48.0(7)	0.7(12)	21.6(8)	14.0(16)
01	48.2(19)	59(3)	46.4(17)	1.1(17)	7.4(15)	6.9(19)
N1	44(2)	65(4)	48(2)	15(2)	17.9(18)	10(2)
N2	44(2)	92(5)	64(3)	13(3)	13(2)	5(3)
C1	50(3)	52(4)	37(2)	13(2)	15(2)	5(3)
C2	54(3)	87(6)	55(3)	8(3)	16(3)	-1(3)
C3	48(3)	61(5)	44(3)	8(3)	13(2)	-6(3)
C4	57(3)	49(4)	45(2)	11(3)	10(2)	-4(3)
C5	68(3)	55(4)	40(2)	12(3)	13(2)	15(3)
C6	59(3)	47(4)	37(2)	12(2)	16(2)	14(3)
C7	56(4)	138(9)	92(5)	-15(5)	-5(3)	0(5)
C8	50(3)	40(4)	45(2)	6(3)	6(2)	0(3)
C9	75(4)	59(5)	62(3)	3(3)	14(3)	-15(4)
C10	83(4)	82(6)	58(3)	-12(4)	4(3)	-9(4)
C11	59(3)	91(6)	44(3)	6(4)	5(2)	18(4)
C12	71(4)	79(5)	56(3)	19(3)	22(3)	-5(4)
C13	67(3)	61(5)	53(3)	2(3)	11(3)	-13(3)
C14	54(2)	56(4)	41(2)	8(2)	11.4(18)	8(2)
C17	61(3)	88(5)	72(3)	-7(3)	5(2)	17(3)
C20	59(3)	43(4)	52(3)	13(3)	26(2)	6(3)
C21	61(4)	62(5)	63(3)	4(3)	16(3)	11(3)
C22	78(4)	66(6)	78(4)	-8(4)	18(3)	9(4)
C23	93(5)	69(6)	79(4)	-8(4)	41(4)	2(4)
C24	85(5)	79(7)	106(5)	7(5)	52(4)	23(4)
C25	63(4)	79(6)	87(4)	10(4)	31(3)	20(4)
C15	65(5)	67(6)	59(7)	4(4)	5(4)	14(4)
C16	68(5)	77(6)	84(9)	-3(5)	-7(5)	18(4)
C18	61(5)	79(6)	100(10)	-11(6)	-5(5)	10(4)
C19	53(5)	67(6)	68(7)	0(4)	10(4)	9(4)
C26	57(4)	75(9)	54(4)	-7(4)	16(3)	7(4)
C27	55(4)	91(10)	64(4)	-9(5)	12(3)	14(4)
C28	59(4)	82(10)	50(4)	-4(4)	1(3)	19(4)
C29	57(4)	83(10)	44(4)	-2(5)	8(3)	21(4)

Table 4	4 Bond Le	engths for 3C.			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
CI1	C11	1.737(5)	C12	C13	1.383(7)
01	C1	1.356(5)	C14	C15	1.361(16)
01	C6	1.405(6)	C14	C19	1.384(18)
N1	N2	1.383(6)	C14	C26	1.445(11)
N1	C1	1.362(7)	C14	C29	1.346(10)
N1	C20	1.426(8)	C17	C16	1.403(19)
N2	C2	1.325(9)	C17	C18	1.42(2)
C1	C3	1.342(7)	C17	C27	1.370(12)
C2	C3	1.403(8)	C17	C28	1.293(12)
C2	C7	1.488(8)	C20	C21	1.369(7)
C3	C4	1.489(9)	C20	C25	1.379(8)
C4	C5	1.500(7)	C21	C22	1.367(9)
C4	C8	1.518(6)	C22	C23	1.369(9)
C5	C6	1.312(8)	C23	C24	1.370(9)
C6	C14	1.461(7)	C24	C25	1.370(10)
C8	C9	1.355(8)	C15	C16	1.385(18)
C8	C13	1.384(8)	C18	C19	1.415(18)
C9	C10	1.385(8)	C26	C27	1.377(13)
C10	C11	1.347(10)	C28	C29	1.378(14)
C11	C12	1.369(10)			

Table 5 Bond Angles for 3C.

Ato	Ato	Ato	Angle/°	Ato	Ato	Ato	Angle/°
m	m	m		m	m	m	Aligie/
C1	01	C6	113.3(4)	C12	C11	CI1	119.4(6)
N2	N1	C20	119.6(4)	C11	C12	C13	118.7(6)
C1	N1	N2	108.1(5)	C12	C13	C8	121.3(6)
C1	N1	C20	132.3(4)	C15	C14	C6	117.4(7)
C2	N2	N1	105.8(5)	C15	C14	C19	123.3(9)
O1	C1	N1	121.8(5)	C19	C14	C6	118.9(7)
C3	C1	O1	128.0(5)	C26	C14	C6	121.0(5)
C3	C1	N1	110.2(4)	C29	C14	C6	124.6(6)
N2	C2	C3	111.6(5)	C29	C14	C26	114.4(7)
N2	C2	C7	119.5(6)	C16	C17	C18	118.2(10)
C3	C2	C7	128.9(7)	C28	C17	C27	122.8(8)
C1	C3	C2	104.3(5)	C21	C20	N1	121.7(5)
C1	C3	C4	122.3(5)	C21	C20	C25	119.6(6)

C2	C3	C4	133.0(5)	C25	C20	N1	118.6(5)
C3	C4	C5	106.2(5)	C22	C21	C20	119.8(6)
C3	C4	C8	115.5(5)	C21	C22	C23	121.2(6)
C5	C4	C8	112.3(4)	C22	C23	C24	118.7(7)
C6	C5	C4	127.8(6)	C25	C24	C23	120.9(6)
O1	C6	C14	110.3(4)	C24	C25	C20	119.7(6)
C5	C6	O1	122.2(5)	C14	C15	C16	119.5(14)
C5	C6	C14	127.4(5)	C15	C16	C17	120.5(15)
C9	C8	C4	121.2(5)	C19	C18	C17	121.1(15)
C9	C8	C13	117.4(5)	C14	C19	C18	116.7(14)
C13	C8	C4	121.5(5)	C27	C26	C14	121.3(8)
C8	C9	C10	122.4(6)	C17	C27	C26	117.8(9)
C11	C10	C9	118.8(6)	C17	C28	C29	119.7(9)
C10	C11	CI1	119.3(6)	C14	C29	C28	123.9(9)
C10	C11	C12	121.4(5)				

Table 6 Torsion Angles for 3C.

Α	В	С	D	Angle/°		4	В	С	D	Angle/°
CI1 (C11	C12	2C13	179.3(5)	С	5	C6	C14	C26	-30.0(11)
01 (C1	C3	C2	-178.5(5)	С	5	C6	C14	C29	148.8(9)
01 (C1	C3	C4	-4.3(9)	С	6	01	C1	N1	-176.2(5)
01 (C6	C14	1C15	-146.4(8)	С	6	01	C1	C3	2.6(7)
01 0	C6	C14	4C19	27.0(9)	С	6	C14	IC15	5C16	-178.0(11)
01 (C6	C14	1C26	149.0(8)	С	6	C14	+C19	C18	179.7(11)
01 (C6	C14	1C29	-32.2(10)	С	6	C14	1C26	6C27	-179.8(11)
N1 [V2	C2	C3	0.6(7)	С	6	C14	1C29	0C28	-178.6(11)
N1 [V2	C2	C7	-177.7(6)	С	7	C2	C3	C1	177.4(7)
N1 (C1	C3	C2	0.4(6)	С	7	C2	C3	C4	4.1(11)
N1 (C1	C3	C4	174.7(5)	С	8	C4	C5	C6	-129.6(6)
N1 (C20	C21	C22	-179.1(6)	С	8	C9	C10	C11	-0.1(10)
N1 (C20) C25	5C24	179.5(6)	С	9	C8	C13	3C12	-0.2(9)
N2 1	N1	C1	01	179.0(4)	С	9	C10	C11	CI1	-179.8(5)
N2 1	N1	C1	C3	0.0(6)	С	9	C10	C11	C12	0.9(11)
N2 1	N1	C20	C21	-178.4(5)	С	10	C11	C12	2C13	-1.4(10)
N2 1	N1	C20	C25	2.8(8)	С	11	C12	2C13	8 C 8	1.0(9)
N2 (C2	C3	C1	-0.6(7)	С	13	3C8	C9	C10	-0.3(9)
N2 (C2	C3	C4	-174.0(6)	С	12	1C15	5C16	6C17	-4(2)
C1 (D1	C6	C5	-1.1(7)	С	12	1C26	6C27	′C17	-4(2)
C1 (D1	C6	C14	179.8(4)	С	17	7 C18	3C19	C14	1(2)

C1 N1 N2 C2	-0.4(6)	C17C28C29C14	1(2)
C1 N1 C20 C21	1.9(9)	C20N1 N2 C2	179.8(5)
C1 N1 C20 C25	-176.9(6)	C20N1 C1 O1	-1.3(9)
C1 C3 C4 C5	3.6(7)	C20N1 C1 C3	179.7(5)
C1 C3 C4 C8	128.8(5)	C20 C21 C22 C23	-0.4(10)
C2 C3 C4 C5	176.0(6)	C21 C20 C25 C24	0.7(9)
C2 C3 C4 C8	-58.8(8)	C21 C22 C23 C24	0.7(10)
C3 C4 C5 C6	-2.5(7)	C22 C23 C24 C25	-0.4(10)
C3 C4 C8 C9	113.2(7)	C23C24C25C20	-0.3(10)
C3 C4 C8 C13	-67.7(7)	C25 C20 C21 C22	-0.4(9)
C4 C5 C6 O1	1.5(9)	C15C14C19C18	-7.3(18)
C4 C5 C6 C14	-179.6(5)	C16C17C18C19	4(2)
C4 C8 C9 C10	178.9(6)	C18C17C16C15	-3(2)
C4 C8 C13C12	-179.4(5)	C19C14C15C16	8.9(18)
C5 C4 C8 C9	-124.9(6)	C26C14C29C28	0.2(18)
C5 C4 C8 C13	54.3(8)	C27C17C28C29	-3(2)
C5 C6 C14C15	34.6(10)	C28C17C27C26	5(2)
C5 C6 C14C19	-152.1(9)	C29C14C26C27	1.3(17)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3C.

• •				
Atom	X	У	Ζ	U(eq)
H4	3594	11208	3184	61
H5	2460	11002	2976	65
H7A	5226	6395	3661	149
H7B	4793	6904	4208	149
H7C	4916	9115	3684	149

H9	3990	12565	4382	79
H10	4051	12548	5638	91
H12	2929	6393	5377	81
H13	2863	6477	4117	73
H17A	151	9026	735	91
H17	135	8946	779	91
H21	2780	3155	1156	74
H22	2663	22	263	88
H23	3493	-2615	186	92
H24	4443	-2135	1036	102
H25	4567	964	1942	89
H15	1753	12256	1907	78
H16	706	12623	1279	97
H18	666	4965	862	101
H19	1721	4618	1549	76
H26	1388	9790	2664	74
H27	353	9892	1982	84
H28	886	7513	214	79
H29	1907	7208	879	75

Table 8 Atomic Occupancy for 3C.

Atom	Occupancy	Atom	Occupancy	Ato m	Occupancy
H17A	0.5	H17	0.5	C15	0.445(9)
H15	0.445(9)	C16	0.445(9)	H16	0.445(9)
C18	0.445(9)	H18	0.445(9)	C19	0.445(9)
H19	0.445(9)	C26	0.555(9)	H26	0.555(9)
C27	0.555(9)	H27	0.555(9)	C28	0.555(9)
H28	0.555(9)	C29	0.555(9)	H29	0.555(9)