Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

for

Elemental Step Thermodynamics of Various Analogues of Indazolium Alkaloids to Obtain Hydride in Acetonitrile

Nan-Ping Lei,* Yan-Hua Fu, and Xiao-Qing Zhu*

The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China

Table of Contents:

SI-1.	General methods	S2
SI-2.	Synthetic routes of indazolium analogues (X^{+}) and their conjugated amines	
	(XH).	S3-S10
SI-3.	References	S11
SI-4.	Copies of the typical ¹ H MNR, ¹³ C NMR spectra of X ⁺ and XH	S12-S31
SI-5.	Plots of $\Delta H_{\text{HA}}(\mathbf{X}^{+})$, $\Delta H_{\text{PA}}(\mathbf{X}^{\bullet})$, $\Delta H_{\text{HA}}(\mathbf{X}^{\bullet})$, $E(\mathbf{X}^{+/0})$ as well as $E(\mathbf{X}\mathbf{H}^{+/0})$ against	
	the Hammett substituent parameters σ_p or σ_m	S31-S34

SI-1. General Methods

Solvents and reagents were obtained from commercial sources and used as received. HNMR spectra were recorded in CD_3CN , $CDCl_3$ or DMSO on 400 MHz NMR spectrometer. The Chemical shift (δ) were described in parts per million (ppm) downfield from tetramethylsilane (TMS, 0.00 ppm) as an internal standard.

All reagents were of commercial quality from freshly opened containers or were purified according to the standard methods before use. 1*H*-indazole was bought from Alfa Company. Reagent grade acetonitrile was refluxed over KMnO₄ and K₂CO₃ for several hours and was doubly distilled over P_2O_5 under argon before use. Anhydrous THF was distilled over sodium before use.^{S1} Commercial tetrabutylammonium hexafluorophosphate (n-Bu₄NPF₆, Aldrich) was recrystallized from CH₂Cl₂/ether and was vacuum-dried at 110 °C overnight before the preparation of supporting electrolyte solution.

Acetonitrile containing 0.1 M n-Bu₄NPF₆ was used as the solvent in electrochemical measuremetns. The ferrocenium/ferrocene redox couple (Fc⁺/Fc) was used as an internal reference for all measurements. All electrochemical measurements were performed under dry nitrogen atmosphere using a sweeping rate of 0.1 V/s, unless otherwise specified, the concentration of each sample was 10^{-3} M.

SI-2. Synthetic Routes of Indazolium Analogues (X⁺) and Their Conjugated Amines (XH)

SI-2-1. Synthetic Routes of 1⁺ and 1H ^{S2, S3}

1,2-dimethyl-*1H***-indazol-2-ium perchlorate (1⁺)**: To a solution of 1*H*-indazole (1.2 g, 10 mmol) in methanol was added NaOH (0.40 g, 10 mmol) and CH₃I (3.1 ml, 50 mmol), the mixture was allowed to reflux overnight, after cooling to room temperature, the precipitate was collected by filtration and washed by ethanol to give the iodide salt as yellow solid. The iodide salt was suspended in a dilute solution of HClO₄, and stirred overnight at room temperature to yield perchlorate salt as a precipitate. The perchlorate salt was collected by filtration and recrystallized from ethanol to give 1.3 g of 1,2-dimethyl-*1H*-indazol-2-ium perchlorate (1⁺) as white solid.

1+ClO₄-:

¹H NMR (DMSO, 400 M): δ 9.25 (s, 1H), 8.12 (d, 1H), 8.04 (d, 1H), 7.88 (t, 1H), 7.62 (t, 1H), 4.44 (s, 3H), 4.31 (s, 3H); ESI-MS/M-99 = 147.1; Anal. Calcd for C₉H₁₁N₂O₄Cl: C, 43.83; H, 4.51; N, 11.36. Found: C, 43.81; H, 4.50; N, 11.34.

1,2-dimethyl-2,3-dihydro-*1H***-indazole (1H)**: Under an inert atmosphere, NaBH₄ (0.38 g, 10 mmol) was added batchwise to a solution of 1^+ (1.2 g, 5 mmol) in methanol (30 ml) at 0 °C. After stirring for two additional hours at room temperature, the mixture was quickly quenched by water, exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was quickly applied to a flash chromatography to give 0.38 g of 1,2-dimethyl-2,3-dihydro-*1H*-indazole (**1H**) as semi-solid, which was kept under an inert atmosphere and stored in the fridge before use.

1H:

¹HNMR (CD₃CN, 400 M): δ 7.26 (t, 1H), 7.19 (d, 2H), 6.95 (t, 1H), 6.65 (d, 1H), 4.61 (d, 1H), 4.34 (d, 1H), 3.04 (s, 3H), 2.91 (s, 3H); ESI-MS/M+1 = 149.0; Anal. Calcd for C₉H₁₂N₂: C, 72.94; H, 8.16; N, 18.90. Found: C, 72.92; H, 8.14; N, 18.91.

SI-2-2. Synthetic Routes of 2+-4+ and 2H-4H ^{S2,S4}

2,3-dihydro-*1H***-pyrazolo**[**1,2-***a*]**indazol-10-ium perchlorate** (**2**⁺): To a mixture of 1*H*-indazole (1.2 g, 10 mmol), 1,3-dibromopropane (5.0 g) and THF (30 ml) was added NaH (40% in mineral oil, 1 g) and then stirred at room temperature overnight. The reaction was quenched by water and extracted by EA for three times. The organic phased were combined, dried over Na₂SO₄ and evaporated under vacuum. The residue was heated at 100 °C overnight. After cooling, the resulting solid was suspended in a dilute solution of HClO₄ and stirred overnight at room temperature to yield perchlorate salt as a precipitate. The precipitate was collected by filtration and recrystallized from ethanol to give 1.0 g of 2,3-dihydro-*1H***-**pyrazolo[1,2-*a*]indazol -10-ium perchlorate (**2**⁺) as white solid. **3**⁺**-4**⁺ were synthesized accordingly.

2+ClO₄-:

¹HNMR (CD₃CN, 400 M): δ 8.73 (s, 1H), 8.06 (d, 1H), 7.86 (t, 1H), 7.77 (d, 1H), 7.53 (t, 1H), 4.79 (t, 2H), 4.66 (t, 2H), 3.08 (m, 2H); ESI-MS/M-99 = 159.2; ¹³C NMR (DMSO, 100 M): δ 135.64, 132.68, 127.12, 125.17, 124.42, 123.27, 111.67, 50.5, 46.87, 27.30; Anal. Calcd for C₁₀H₁₁N₂O₄Cl: C, 46.43; H, 4.29; N, 10.83. Found: C, 46.42; H, 4.30; N, 10.82.

6,7,8,9-tetrahydropyridazino[**1,2**-*a*]**indazol-10-ium perchlorate** (**3**⁺): ¹HNMR (CD₃CN, 400 M): δ 8.71 (s, 1H), 8.07 (d, 1H), 7.89 (t, 1H), 7.77 (d, 1H), 7.56 (t, 1H), 4.73 (t, 2H), 4.56 (t, 2H), 2.26 (m, 4H); ESI-MS/M-99 = 173.1; ¹³CNMR (DMSO, 100 M): δ 140.37, 133.15, 133.06, 125.71, 123.40, 119.40, 111.12, 50.81, 47.05, 19.80, 19.41; Anal. Calcd for C₁₁H₁₃N₂O₄Cl: C, 48.45; H, 4.81; N, 10.27. Found: C, 48.44; H, 4.80; N, 10.27.

7,8,9,10-tetrahydro-*6H*-[**1,2**]**diazepino**[**1,2-***a*]**indazol-11-ium perchlorate (4**⁺): ¹HNMR (CD₃⁻ CN, 400 M): δ 8.72 (s, 1H), 8.06 (d, 1H), 7.89 (t, 1H), 7.78 (m, 2H), 4.74 (t, 2H), 4.62 (t, 2H), 2.00 (m, 6H); ESI-MS/M-99 = 187.2; Anal. Calcd for C₁₂H₁₅N₂O₄Cl: C, 50.27; H, 5.27; N, 9.77. Found: C, 50.25; H, 5.26; N, 9.76.

Syntheses of 2H-4H

Under an inert atmosphere, NaBH₄ (0.38 g, 10 mmol) was added batchwise to a solution of 2^+ (0.52 g, 2 mmol) in MeOH (20 ml) at 0 °C. After stirring for two additional hours at room temperature, the mixture was quickly quenched by water, exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was quickly applied to a flash chromatography to give 0.20 g of 1,2,3,9-tetrahydropyrazolo[1,2-*a*]indazole (2H) as a white solid, which was kept under an inert atmosphere and stored in the fridge before use. **3H-4H** were synthesized accordingly.

2H: ¹HNMR (CD₃CN, 400 M): δ 7.23 (m, 2H), 7.03 (t, 1H), 6.80 (d, 1H), 4.64 (dd, 2H), 3.70 (m, 2H), 3.46 (m, 1H), 3.05 (m, 1H), 2.17 (m, 1H), 2.02 (m, 1H); ESI-MS/M+1 = 161.1; ¹³C NMR (CDCl₃, 100 M):

 $\delta \ 149.58, \ 129.23, \ 123.41, \ 123.28, \ 123.02, \ 110.70, \ 65.16, \ 58.82, \ 50.68, \ 25.05; \ Anal. \ Calcd \ for \\ C_{10}H_{12}N_2: \ C, \ 74.97; \ H, \ 7.55; \ N, \ 17.48. \ Found: \ C, \ 74.96; \ H, \ 7.56; \ N, \ 17.47.$

3H: ¹HNMR (CD₃CN, 400 M): δ 7.22 (m, 2H), 6.90 (t, 1H), 6.61 (d, 1H), 4.38 (d, 1H), 4.10 (d, 2H), 3.92 (m, 1H), 3.82 (m, 1H), 3.14 (m, 1H), 2.93 (m, 1H), 2.43 (m, 1H), 1.57 (m, 3H); ESI-MS/M+1 = 175.1; Anal. Calcd for C₁₁H₁₄N₂: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.81; H, 8.11; N, 16.09.

4H: ¹HNMR (CD₃CN, 400 M): δ 7.13 (m, 2H), 6.80 (t, 1H), 6.52 (d, 1H), 4.72 (d, 1H), 4.47 (d,

2H), 3.74 (m, 2H), 3.38 (m, 2H), 2.14 (m, 1H), 1.95 (m, 5H); ESI-MS/M+1 = 189.1; ¹³C NMR (DMSO, 100 M):

$$\begin{split} &\delta \ 151.48, \ 128.10, \ 127.60, \ 122.64, \ 120.64, \ 110.78, \ 60.58, \ 59.89, \ 56.31, \ 29.23, \ 28.66, \ 25.02; \ Anal. \\ & Calcd \ for \ C_{12}H_{16}N_2: \ C, \ 76.55; \ H, \ 8.57; \ N, \ 14.88. \\ & Found: \ C, \ 76.56; \ H, \ 8.58; \ N, \ 14.87. \end{split}$$

SI-2-3. Synthetic Routes of 5⁺ and 5H ^{S2,S5}

Preparation of substituted phenylmagnesium bromides (A1)

Under an inert atmosphere, magnesium chips (20 mmol) and a small amount of appropriate bromobenzene (0.25 mmol) were suspended in anhydrous THF (40 ml) and heated to reflux, and the solution turned dark red after several drops of iodine were added. Once the reaction was initiated, the color of the solution turned colorless, at which point, the left bromobenzene (10 mmol) in THF (10 ml) were added dropwise, and the resulting mixture was allowed to reflux for an additional hour. The gray solution of corresponding phenylmagnesium bromide was used directly in next step.

Preparation of (2-fluorophenyl)(phenyl)methanols (A2)

Into a solution of 2-fluorobenzaldehyde (10 mmol) in anhydrous THF (40 ml) with an inert atmosphere at 0 °C, the appropriate A1 solution (12 mmol) was added dropwise. The mixture was stirred at room temperature for three hours. The reaction was quenched by chilled solution of NH₄Cl, exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was applied to silica gel column chromatography (PE : EA = 2 : 1) to give the title compound as colorless oil.

Preparation of (2-fluorophenyl)(phenyl)methanones (A3)

Into a solution of appropriate (2-fluorophenyl)(phenyl)methanol (8 mmol) in acetone (30 ml) at 0 °C, Jones reagent was added dropwise (16 mmol). The mixture was stirred for one additional hour. The reaction was quenched by chilled solution of Na₂SO₃, exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was applied to

silica gel column chromatography (PE : EA = 10 : 1) to give the title compound as white solid or colorless oil.

Preparation of substituted 3-phenyl-1H-indazoles (A4)

To a solution of appropriate (2-fluorophenyl)(phenyl)methanone (5 mmol) and DMAP (5 mmol) in pyridine (30 ml) was added hydrazine monohydrate (50 mmmol). The mixture was stirred at 110 °C overnight. After pyridine was evaporated in vacuo, the residue was applied to silica gel column chromatography (PE : EA = 5 : 1) to give the title compound as white or light yellow solid.

Preparation of substituted 1,2-dimethyl-3-phenyl-1H-indazol-2-ium methyl sulfates (A5)

The appropriate 3-phenyl-1H-indazole (3 mmol) was dissolved in dimethyl sulfate (20 ml). The mixture was stirred at 130 °C overnight. After cooling down to room temperature, dimethyl sulfate (highly toxic) was carefully evaporated in vacuo, and the residue was used in next step.

Preparation of substituted 1,2-dimethyl-3-phenyl-1H-indazol-2-ium perchlorates (5(a-i)⁺)

The appropriate 1,2-dimethyl-3-phenyl-1H-indazol-2-ium methyl sulfate was suspended in a dilute solution of HClO₄, and stirred overnight at room temperature to yield perchlorate salt as a precipitate. The perchlorate salt was collected by filtration and recrystallized from ethanol to give the title compound as white solid.

3-(4-methoxyphenyl)-1,2-dimethyl-*1H***-indazol-2-ium perchlorate (5a**⁺): ¹HNMR (CDCl₃, 400 M): δ 7.78 (m, 4H), 7.67 (m, 1H), 7.46 (d, 1H), 7.19 (m, 2H), 4.62 (d, 6H), 3.94 (s, 3H); ESI-MS/-99 = 253.3.

1,2-dimethyl-3-(p-tolyl)*-1H***-indazol-2-ium perchlorate (5b**⁺): ¹HNMR (CDCl₃, 400 M): δ 7.77 (m, 3H), 7.66 (m, 2H), 7.48 (m, 3H), 4.64 (d, 6H), 2.51 (s, 3H); ESI-MS/M-99 = 237.2.

1,2-dimethyl-3-phenyl-*1H***-indazol-2-ium perchlorate (5c⁺):** ¹HNMR (DMSO, 400 M): δ 8.11 (m, 1H), 7.89 (m, 7H), 7.55 (m, 1H), 4.38 (s, 3H), 4.26 (s, 3H); ESI-MS/M-99 = 223.8; ¹³C NMR (DMSO, 100 M): δ 142.67, 139.82, 133.62, 132.05, 130.65, 130.19, 125.89, 125.27, 122.54, 119.04, 111.65, 36.33, 34.17; Anal. Calcd for C₁₅H₁₅N₂O₄Cl: C, 55.82; H, 4.68; N, 8.68. Found: C, 55.81; H, 4.69; N, 8.67.

3-(4-chlorophenyl)-1,2-dimethyl-*1H***-indazol-2-ium perchlorate (5d**⁺): ¹HNMR (CDCl₃, 400 M): δ 7.82 (m, 3H), 7.68 (m, 4H), 7.50 (m, 1H), 4.60 (brs, 6H); ESI-MS/M-99 = 257.1.

1,2-dimethyl-3-(4-(trifluoromethyl)phenyl)-*1H*-indazol-2-ium perchlorate (5e⁺): ¹HNMR (CD₃CN, 400 M): δ 8.04 (m, 2H), 7.85 (m, 5H), 7.50 (m, 1H), 4.28 (s, 3H), 4.17 (s, 3H); ESI-MS/M-99 = 291.2.

3-(3-methoxyphenyl)-1,2-dimethyl-*IH***-indazol-2-ium perchlorate (5f**⁺): ¹HNMR (CD₃CN, 400 M): δ 7.86 (m, 3H), 7.65 (m, 1H), 7.52 (m, 1H), 7.26 (m, 3H), 4.25 (s, 3H), 4.19 (s, 3H), 3.90 (s, 3H); ESI-MS/M-99 = 253.0.

1,2-dimethyl-3-(m-tolyl)*·1H***-indazol-2-ium perchlorate (5g**⁺)**:** ¹HNMR (CDCl3, 400 M): δ 7.85 (m, 2H), 7.54 (m, 3H), 7.42 (m, 3H), 4.68 (s, 3H), 4.49 (s, 3H), 2.24 (s, 3H); ESI-MS/M-99 = 237.3.

3-(3-chlorophenyl)-1,2-dimethyl-1H-indazol-2-ium perchlorate (5h+): ¹HNMR (CD₃CN, 400

M): δ 7.92 (m, 1H), 7.82 (m, 2H), 7.73 (m, 3H), 7.65 (s, 1H), 7.53 (m, 1H), 4.27 (s, 3H), 4.18 (s, 3H); ESI-MS/M-99 = 257.2.

1,2-dimethyl-3-(3-(trifluoromethyl)phenyl)-*1H*-indazol-2-ium perchlorate (5i⁺): ¹HNMR (CD₃CN, 400 M): δ 8.07 (m, 1H), 7.93 (m, 4H), 7.83 (m, 2H), 7.55 (m, 1H), 4.27 (s, 3H), 4.16 (s, 3H); ESI-MS/M-99 = 291.3.

Preparation of substituted 1,2-dimethyl-3-phenyl-2,3-dihydro-1H-indazoles (5(a-i)H)

Under an inert atmosphere, NaBH₄ (10 mmol) was added batchwise to a solution of appropriate 5^+ (2 mmol) in MeOH (20 ml) at 0 °C. After stirring for two additional hours at room temperature, the mixture was quickly quenched by water, exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was quickly applied to silica gel column flash chromatography to give the title compound as white solid.

3-(4-methoxyphenyl)-1,2-dimethyl-2,3-dihydro*-1H***-indazole (5aH**): ¹HNMR (CD₃CN, 400 M): δ 7.21 (d, 2H), 7.07 (t, 1H), 6.76 (d, 2H), 6.60 (m, 3H), 4.61 (s, 1H), 3.70 (s, 3H), 2.79 (s, 3H), 2.47 (s, 3H); ESI-MS/M+1 = 255.2.

1,2-dimethyl-3-(p-tolyl)-2,3-dihydro-*1H***-indazole (5bH**): ¹HNMR (CD₃CN, 400 M): δ 7.19 (d, 2H), 7.06 (m, 3H), 6.60 (m, 2H), 4.63 (s, 1H), 2.79 (s, 3H), 2.48 (s, 3H), 2.26 (s, 3H); ESI-MS/M+1 = 239.1.

1,2-dimethyl-3-phenyl-2,3-dihydro-*1H*-indazole (5cH): ¹HNMR (CD₃CN, 400 M): δ 7.34 (m, 3H), 7.13 (t, 3H), 6.69 (m, 3H), 4.76 (s, 1H), 2.89 (s, 3H), 2.58 (s, 3H); ESI-MS/M+1 = 225.3; ¹³C NMR (CDCl₃, 100 M):

δ 150.88, 141.43, 131.23, 128.87, 128.58, 128.24, 127.91, 123.12, 121.09, 109.99, 77.35, 42. 06, 41.33; Anal. Calcd for C₁₅H₁₆N₂: C, 80.32; H, 7.19; N, 12.49. Found: C, 80.31; H, 7.17; N, 12.48.

3-(4-chlorophenyl)-1,2-dimethyl-2,3-dihydro-*1H***-indazole (5dH)**: ¹HNMR (CD₃CN, 400 M): δ 7.43 (brs, 4H), 7.17 (t, 1H), 6.73 (m, 3H), 4.81 (s, 1H), 2.92 (s, 3H), 2.61 (s, 3H); ESI-MS/M+1 = 259.2.

1,2-dimethyl-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro-*1H***-indazole (5eH)**: ¹HNMR (CD₃CN, 400 M): δ 7.73 (d, 2H), 7.64 (d, 2H), 7.18 (t, 1H), 6.76 (m, 3H), 4.92 (s, 1H), 2.94 (s, 3H), 2.63 (s, 3H); ESI-MS/M+1 = 293.1.

3-(3-methoxyphenyl)-1,2-dimethyl-2,3-dihydro-*1H***-indazole (5fH)**: ¹HNMR (CD₃CN, 400 M): δ 7.42 (s, 1H), 7.20 (m, 4H), 6.68 (m, 3H), 7.05 (s, 1H), 4.92 (s, 1H), 3.71 (s, 3H), 2.64 (s, 3H), 2.41 (s, 3H); ESI-MS/M+1 = 255.2.

1,2-dimethyl-3-(m-tolyl)-2,3-dihydro*1H***-indazole (5gH)**: ¹HNMR (CD₃CN, 400 M): δ 7.11 (m, 5H), 6.62 (m, 3H), 4.63 (s, 1H), 2.79 (s, 3H), 2.48 (s, 3H), 2.08 (s, 3H); ESI-MS/M+1 = 238.9.

3-(3-chlorophenyl)-1,2-dimethyl-2,3-dihydro-*1H***-indazole (5hH)**: ¹HNMR (CD₃CN, 400 M): δ 7.53 (4H), 7.27 (t, 1H), 6.79 (m, 3H), 4.83 (s, 1H), 2.95 (s, 3H), 2.64 (s, 3H); ESI-MS/M+1 = 259.2.

1,2-dimethyl-3-(3-(trifluoromethyl)phenyl)-2,3-dihydro*-1H***-indazole (5iH)**: ¹HNMR (DMSO, 400 M): δ 8.19 (m, 4H), 7.74 (m, 1H), 7.28 (m, 3H), 5.46 (s, 1H), 3.47 (s, 3H), 3.16 (s, 3H); ESI-MS/M+1 = 293.1.

SI-2-4. Synthetic Routes of 6⁺ and 6H ^{S2,S6}

Preparation of (2-(benzylthio)phenyl)(phenyl)methanone (B1)

Phenylmethanethiol (10 mmol) and potassium tert-butylate (6 mmol) in THF (20 ml) was stirred at room temperature for 12 hours. To the mixture was added a solution of (2-fluorophenyl)(phenyl) methanone (10 mmol) in THF, and stirred at reflux temperature for 5 hours. The mixture was quenched by chilled water and exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was applied to silica gel column chromatography (PE : EA = 10 : 1) to give (2-(benzylthio)phenyl)(phenyl)methanone as light yellow solid.

Preparation of 3-phenylbenzo[d]isothiazole (B2)

(2-(benzylthio)phenyl)(phenyl)methanone (8 mmol) was dissolved in SOCl₂ (20 ml) and stirred at reflux temperature for 3 hours. After SOCl₂ was removed in vacuo, the residue was dissolved in ethanol. NH₃ (g) was bubbled into the solution for 12 h at 0 °C. The solvent was then evaporated under vacuum, and the residue was applied to silica gel column chromatography (PE : EA = 5 : 1) to 3-phenylbenzo[*d*]isothiazole as light yellow solid.

Preparation of 2-methyl-3-phenylbenzo[d]isothiazol-2-ium methyl sulfate (B3)

2-methyl-3-phenylbenzo[d]isothiazol-2-ium methyl sulfate (5 mmol) was dissolved in dimethyl sulfate (20 ml). The mixture was stirred at 130 °C overnight. After cooling down to room temperature, dimethyl sulfate (highly toxic) was carefully evaporated in vacuo, and the residue was directly used in next step.

Preparation of 2-methyl-3-phenylbenzo[d]isothiazol-2-ium perchlorate (6⁺)

2-methyl-3-phenylbenzo[d]isothiazol-2-ium methyl sulfate was suspended in a dilute solution of HClO₄, and stirred overnight at room temperature to yield perchlorate salt as a precipitate. The perchlorate salt was collected by filtration and recrystallized from ethanol to give the title compound as a white solid.

6⁺ClO₄⁻:

¹HNMR (CD₃CN, 400 M): δ 8.38 (d, 1H), 8.04 (m, 2H), 7.78 (m, 6H), 4.16 (s, 3H); ESI-MS/M-99 = 226.2; Anal. Calcd for C₁₄H₁₂N₂O₄SCl: C, 51.62; H, 3.71; N, 4.30. Found: C, 51.60; H,

3.70; N, 4.31.

Preparation of substituted 2-methyl-3-phenyl-2,3-dihydrobenzo[d]isothiazole (6H)

Under an inert atmosphere, STAB (6 mmol) was added batchwise to a solution of 2-methyl-3phenylbenzo[d]isothiazol-2-ium perchlorate (5 mmol) in MeOH (15 ml) at 0 °C. After stirring for 30 min at 0 °C, the mixture was quickly quenched by cold water, exacted with ethyl acetate, and dried over Na_2SO_4 and evaporated under vacuum. The residue was quickly applied to a flash chromatography to give the title compound as yellowish solid, which was stored in fridge under an inert atmosphere.

6H:

¹HNMR (CD₃CN, 400 M): δ 7.25 (m, 5H), 7.12 (m, 2H), 6.78 (m, 2H), 4.98 (s, 1H), 2.85 (s, 3H); ESI-MS/M-99 = 228.0; Anal. Calcd for C₁₄H₁₃NS: C, 73.97; H, 5.76; N, 6.16. Found: C, 73.96; H, 5.78; N, 6.15.

Preparation of 3-phenylbenzo[d]isoxazole (C1)

Into a mixture of appropriate (2-fluorophenyl)(phenyl)methanol (10 mmol) and Hydroxylamine hydrochloride (10 mmol) in DMF (20 ml) was added Sodium hydride (25 mmol) at 0 °C. After stirring at the same temperature for 30 min, the reaction was quenched by chilled water, exacted with ethyl acetate twice, and the combined organic phase was dried and evaporated under vacuum. The residue was applied to silica gel column chromatography (PE : EA = 5 : 1) to give the title compound as white solid.

Preparation of 2-methyl-3-phenylbenzo[d]isoxazol-2-ium methyl sulfate (C2)

Appropriate 3-phenylbenzo[*d*]isoxazole (8 mmol) was dissolved in dimethyl sulfate (20 ml). The mixture was stirred at 130 °C overnight. After cooling down to room temperature, dimethyl sulfate (highly toxic) was carefully evaporated in vacuo, and the residue was directly used in next step.

Preparation of 2-methyl-3-phenylbenzo[d]isoxazol-2-ium perchlorate (7+)

Appropriate 2-methyl-3-phenylbenzo[d]isoxazol-2-ium methyl sulfate was suspended in a dilute solution of HClO₄, and stirred overnight at room temperature to yield its perchlorate salt as a precipitate. The perchlorate salt was collected by filtration and recrystallized from ethanol to give the title compound as white solid.

3-(4-methoxyphenyl)-2-methylbenzo[*d*]isoxazol-2-ium perchlorate (7a⁺): ¹HNMR (CD₃CN, 400 M): δ 8.15 (m, 2H), 7.92 (m, 3H), 7.79 (m, 1H), 7.36 (m, 1H), 4.45 (s, 3H), 4.00 (s, 3H); ESI-MS/M-99 = 240.3.

2-methyl-3-(p-tolyl)benzo[*d*]isoxazol-2-ium perchlorate (7b⁺): ¹HNMR (CD₃CN, 400 M): δ 8.20 (m, 2H), 8.13 (m, 1H), 7.84 (m, 3H), 7.68 (m, 2H), 4.45 (s, 3H), 2.58 (s, 3H); ESI-MS/M-99 = 223.9.

2-methyl-3-phenylbenzo[*d*]isoxazol-2-ium perchlorate (7c⁺): ¹HNMR (CD₃CN, 400 M): δ 8.22 (m, 1H), 8.20 (m, 1H), 8.11 (m, 1H), 7.92 (m, 3H), 7.84 (m, 3H), 4.46 (s, 3H); ESI-MS/M-99 = 210.2; ¹³C NMR (DMSO, 100 M): δ 159.23, 155.45, 137.81, 134.30, 130.83, 130.47, 128.69, 125.59, 121.95, 119.91, 110.97, 40.83; Anal. Calcd for C₁₄H₁₂NO₅Cl: C, 54.29; H, 3.91; N, 4.52. Found: C, 54.28; H, 3.90; N, 4.51.

3-(4-chlorophenyl)-2-methylbenzo[*d*]isoxazol-2-ium perchlorate (7d⁺): ¹HNMR (CD₃CN, 400 M): δ 8.10 (m, 1H), 7.99 (m, 1H), 7.88 (m, 1H), 7.75 (m, 5H), 4.34 (s, 3H); ESI-MS/M-99 = 244.3.

2-methyl-3-(4-(trifluoromethyl)phenyl)benzo[*d*]isoxazol-2-ium perchlorate (7e⁺): ¹HNMR (CD₃CN, 400 M): δ 8.05 (m, 7H), 7.75 (m, 1H), 4.35 (s, 3H); ESI-MS/M-99 = 277.9.

Preparation of substituted 2-methyl-3-phenyl-2,3-dihydrobenzo[d]isoxazole (7H)

Under an inert atmosphere, NaBH₄ (6 mmol) was added batchwise to a solution of appropriate 2methyl-3-phenylbenzo[*d*]isoxazol-2-ium perchlorate (4 mmol) in MeOH (20 ml) at 0 °C. After stirring for 30 min at 0 °C, the mixture was quenched by water, exacted with ethyl acetate, and dried over Na₂SO₄ and evaporated under vacuum. The residue was applied to silica gel column chromatography to give 0.5 g title compound as white solid.

3-(4-methoxyphenyl)-2-methyl-2,3-dihydrobenzo[*d*]isoxazole (7aH): ¹HNMR (CD₃CN, 400 M): δ 7.23 (m, 3H), 7.01 (m, 1H), 6.91 (m, 3H), 6.84 (m, 1H), 5.16 (s, 1H), 3.77 (s, 3H), 2.89 (s, 3H); ESI-MS/M+1 = 242.2.

2-methyl-3-(p-tolyl)-2,3-dihydrobenzo[*d*]isoxazole (7bH): ¹HNMR (CD₃CN, 400 M): δ 7.19 (m, 5H), 7.03 (m, 1H), 6.90 (m, 1H), 6.83 (m, 1H), 5.17 (s, 1H), 2.89 (s, 3H), 2.31 (s, 3H); ESI-MS/M+1 = 226.3.

2-methyl-3-phenyl-2,3-dihydrobenzo[*d*]isoxazole (7cH): ¹HNMR (CD₃CN, 400 M): δ 7.35 (m, 5H), 7.22 (m, 1H), 7.06 (m, 1H), 6.91 (m, 1H), 6.85 (m, 1H), 5.22 (s, 1H), 2.91 (s, 3H); ESI-MS/M+1 = 211.9; Anal. Calcd for C₁₄H₁₃NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.58; H, 6.18; N, 6.62.

3-(4-chlorophenyl)-2-methyl-2,3-dihydrobenzo[*d*]isoxazole (7dH): ¹HNMR (CD₃CN, 400 M): δ 7.36 (m, 4H), 7.23 (m, 1H), 7.09 (m, 1H), 6.93 (m, 1H), 6.85 (m, 1H), 5.23 (s, 1H), 2.90 (s, 3H); ESI-MS/M+1 = 246.2.

2-methyl-3-(4-(trifluoromethyl)phenyl)-2,3-dihydrobenzo[*d*]isoxazole (7eH): ¹HNMR (CD₃ CN, 400 M): δ 7.66 (m, 4H), 7.24 (m, 1H), 7.13 (m, 1H), 6.94 (m, 1H), 6.88 (m, 1H), 5.33 (s, 1H), 2.93 (s, 3H); ESI-MS/M+1 = 280.3.

SI-3. References

- S1 B. S. Furniss, A. J. Hannaford, P. W. Smith, A. R. Tatchell, Vogel's textbook of pratical organic chemistry, 5th ed, 1989, Lasercomp Times New Roman.
- S2 R. J. Steffan, E. Matelan, M. A. Ashwell, W. J. Moore, W. R. Solvibile, T E. rybulski, C. C.
 Chadwick, S. Chippari, T. Kenney, A. Eckert, L. Marcucci, J. C. Keith, Z. Xu, L. Mosyak,
 D. C. Harnish, *J. Med. Chem.* 2004, 47, 6435.
- S3 A. Schmidt, B. Snovydovych, T. Habeck, P. Dröttboom, M. Gjikaj, A. Adam, Eur. J. Org. Chem. 2007, 4909-4916.
- S4 J. Yang, P. Gharagozloo, *Syn. Commun.*, **2005**, *35(3)*, 409-415.
- S5 Z. N. Timofeeva, M. V. Petrova, M. Z. Girshovich, A. V. El'tsov, *Zhurnal Obshchei Khimii*, 1969, 39, 54-59.
- S6 T. Kitamura, M Todaka, I. Shin-machi, Y. Fujiwara, *Heterocycl. Commun.* 1998, 4(3), 205-208.

SI-4. Copies of the Typical ¹H NMR, ¹³C NMR Spectra of X⁺ and XH

SI-5. Plots of $\Delta H_{\text{HA}}(X^+)$, $\Delta H_{\text{PA}}(X^*)$, $\Delta H_{\text{HA}}(X^*)$, $E(X^{+/0})$ as well as $E(XH^{+/0})$ against the Hammett substituent parameters σ_p or σ_m

Figure S1. Plot of $\Delta H_{\text{HA}}(\mathbf{X}^+)$ against Hammett substituent parameter (σ).

Figure S2. Plot of $\Delta H_{\text{HA}}(\mathbf{X}^{\bullet})$ against Hammett substituent parameter (σ).

Figure S3. Plot of $\Delta H_{HP}(\mathbf{X}^{\bullet})$ against Hammett substituent parameter (σ).

Figure S4. Plot of $E(\mathbf{X}^{+/0})$ against Hammett substituent parameter (σ).

Figure S5. Plot of $E(\mathbf{XH}^{+/0})$ against Hammett substituent parameter (σ).