Efficient Rh-catalyzed C-H Borylation of Arene Derivatives under Photochemical Conditions

Charles Beromeo Bheeter, Abhishek Dutta Chowdhury, Rosa Adam, Ralf Jackstell, and
Matthias Beller*

Table of Contents

I. General information S3
II. General experimental set up. S4
III.GC Table of conversion of phenylboronic esters (Table 1 Entry 1) S5
IV.GCMS of dehydrogenation of pinacolborane (Table 1 Entry 13) S6
V. Experimental procedures and characterization of compounds S7
VI.References S22
VII. NMR spectra of compounds S24

I. General Information

All the synthetic manipulations were carried out using standard schlenk tubes $(1.2 \mathrm{~mm}$ thickness) technique in over dried Duran borosilicate glassware conducted in a nitrogen glove box. All the substrates, reagents and materials were purchased from Sigma Aldrich, Alfa Aesar and TCI Chemicals. Unless otherwise noted, all commercial reagents were used without further purification. Air and moisture-sensitive manipulations were carried out using standard high vacuum line, Schlenk tubes are using 1.2 mm thickness. The catalyst trans$\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ was prepared according to literature procedure. ${ }^{[1]}$

The portable Lumatec Superlite $400(150 \mathrm{~W}, 100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$) with highly flexible fiber optic cable of 5 mm diameter was used as light source throughout our study. ${ }^{[2]}$ The power of light was measured using Laser point plus power and energy meter. ${ }^{[3]}$ It should be noted that accuracy of such C-H borylation photocatalytic system; so stirring rate of 1000 rpm has been maintained. The product(s) were analyzed against authenticated sample and yield was determined by Gas Chromatographic technique using an Agilent 6890N network GC system with $(60 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m})$ DB Wax column with respect to mesitylene as an internal standard after dilution of aliquot with acetone. Response factors of each analyte were determined by 'Multiple Point Internal Standard GC Quantitation Method' against authenticated samples with respect to mesitylene.

Air- and moisture-sensitive syntheses were performed under argon atmosphere. The products were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS spectroscopy. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance $300(300 \mathrm{MHz})$ or $400(400 \mathrm{MHz})$ NMR spectrometers. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to the center of solvent resonance [$\left.\mathrm{CDCl}_{3}: 7.26\left({ }^{1} \mathrm{H}\right), 77.0\left({ }^{13} \mathrm{C}\right)\right]$ or $\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}: 5.32\left({ }^{1} \mathrm{H}\right), 54.0\left({ }^{13} \mathrm{C}\right)\right] .{ }^{31} \mathrm{P}$ NMR was referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at $0 \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were acquired on a broad band decoupled mode. Multiplets were assigned as s (singlet), d (doublet), t (triplet), $d d$ (doublet of doublet), ddd (double of double of doublet), dddd (doublet of doublet of doublet of doublet), q (quartert), m (multiplet) and. EI (Electron impact) mass spectra were recorded on an MAT 95XP spectrometer (70 eV , Thermo ELECTRON CORPORATION). ESI (electrospray ionization) high resolution mass spectra were recorded on an Agilent Technologies 6210 TOF LC/MS
using $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid (10\%) and methanol (90\%) as eluent. GC analysis was performed on an Agilent 7890A chromatograph with a 29 m HP 5 column. The products were isolated from the reaction mixture by solvent evaporation and further purified by column chromatography on silica gel.

II. General Experimental set up

Figure S1. The general experimental set up.

III. GC Table of conversion of phenylboronic esters (Table 1 Entry 1)

Data File C:\CHEM32\1\DATA\102014\CB 389.D
Sample Name: CB 389

Additional Info : Peak(s) manually integrated

\qquad

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	
Use Multiplier \& Dilution Factor	with ISTDs		

Signal 1: FID1 A,

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	11.222	BB	0.1023	4.80727 e 4	5826.51660	84.96492
2	13.086	BB	0.0637	1297.51428	314.61230	2.29326
3	18.917	BB	0.0981	5178.38184	732.35791	9.15241
4	24.064	BV	0.0153	1196.94580	1231.60083	2.11551
5	27.053	BV	0.0274	833.92139	472.43069	1.47389
Total	:			5.65794 e 4	8577.51834	

*** End of Report ***

IV. GCMS of dehydrogenation of Pinacolborane (Table 1 Entry 13)

V. Experimental procedures and characterization of compounds

1b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of benzene $(5.0 \mathrm{mmol}$, 0.45 mL). The reaction vessel is sealed and irradiated with light for 5 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 83% yield based on HBPin.
${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}) $\delta 7.83$ (dd, J = 7.8, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (dddd, $\mathrm{J}=6.4,6.4,1.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.38 (ddd, J = 7.8, 6.4, 1.4 Hz, 2H), 1.36 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.86,131.38,127.83,83.89,24.99$.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.01 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

2b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)fluorobenzene

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of fluorobenzene (5.0 $\mathrm{mmol}, 0.67 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 5 h . After exposure
to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 84% yield based on HBPin. The ortho:meta:para ratio was determined to be 0.1:0.5:0.4 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ortho isomer) $7.85-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.03(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$, (meta isomer) $7.58(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ $(\mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) $7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ortho isomer) $137.09(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$), $133.39(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$), $123.70(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 114.94(\mathrm{~d}, \mathrm{~J}=20.2 \mathrm{~Hz}), 83.99$, 24.93, (meta isomer) $162.60(\mathrm{~d}, \mathrm{~J}=$ $246.3 \mathrm{~Hz}), 130.40(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 129.58(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 121.06(\mathrm{~d}, \mathrm{~J}=19.3 \mathrm{~Hz}), 118.27(\mathrm{~d}, \mathrm{~J}$ $=21.1 \mathrm{~Hz}$), 84.19, 24.96, (para isomer) $167.30(\mathrm{~d}, \mathrm{~J}=250.9 \mathrm{~Hz}), 136.95(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz})$, $115.35(\mathrm{~d}, \mathrm{~J}=24.0 \mathrm{~Hz}), 83.99$, 24.93.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta$ (ortho isomer)-108.01--107.91 (m), (meta isomer)-102.27$102.22(\mathrm{~m})$, (para isomer)-113.74--113.81 (m). ${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.12 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the para isomer agree with previously reported data. ${ }^{[13-15]}$

3b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(trifluoromethyl)benzene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of (trifluoromethyl)benzene ($5.0 \mathrm{mmol}, 0.61 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 5 h. After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 84% yield based on HBPin. The meta:para ratio was determined to be 0.6:0.4 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) $7.92(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) 138.13, $131.50(\mathrm{q}, \mathrm{J}(\mathrm{CF})=3.8 \mathrm{~Hz}$), 129.94, $127.93(\mathrm{q}, \mathrm{J}(\mathrm{CF})=3.7 \mathrm{~Hz}), 124.35(\mathrm{q}, \mathrm{J}(\mathrm{CF})=272.4 \mathrm{~Hz}), 84.42,24.99$, (para isomer) 135.2, $130.15(\mathrm{q}, \mathrm{J}(\mathrm{CF})=32.1 \mathrm{~Hz}), 124.48(\mathrm{q}, \mathrm{J}(\mathrm{CF})=3.8 \mathrm{~Hz}), 124.19(\mathrm{q}, \mathrm{J}(\mathrm{CF})=272.9 \mathrm{~Hz})$, 84.42, 24.99.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.23 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

4b 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)1,3-trifluoromethylbenzene

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of 1,3 -bis (trifluoromethyl)benzene ($5.0 \mathrm{mmol}, 0.78 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 5 h. After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 89% yield based on HBPin.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 134.81(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 131.04(\mathrm{q}, \mathrm{J}=33.2 \mathrm{~Hz}), 125.01-124.68(\mathrm{~m}), 123.65(\mathrm{q}, \mathrm{J}=$ $272.6 \mathrm{~Hz}), 85.00,24.99$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-62.48 .{ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.80 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the para isomer agree with previously reported data. ${ }^{[16]}$

5b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)toluene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of toluene $(5.0 \mathrm{mmol}$, 0.53 mL). The reaction vessel is sealed and irradiated with light for 5 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 73% yield based on HBPin. The meta:para ratio was determined to be 0.7:0.3 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) $7.68(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}$, $2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) $7.75(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1,1 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) 137.22, 135.46, 132.16, 131.91, 127.81, 83.81, 24.97, 21.38, (para isomer) 141.49, 134.94, 128.63, 83.71, 24.97, 21.84.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.06 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

6b 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-o-xylene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of o-xylene $(5.0 \mathrm{mmol}$, 0.6 mL). The reaction vessel is sealed and irradiated with light for 5 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 80% yield based on HBPin.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=7.9,1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.8,1 \mathrm{H}), 2.30$ (s, 3H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.25,136.05,135.98,132.53,129.28,83.70,24.97,20.14$, 19.60.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.60 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

7b 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-m-xylene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of m-xylene $(5.0 \mathrm{mmol}$, 0.62 mL). The reaction vessel is sealed and irradiated with light for 10 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 73% yield based on HBPin.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.67,133.37,132.87,84.18,25.25,21.47$.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.68 .{ }^{[4]}$
8b 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-p-xylene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of p-xylene $(5.0 \mathrm{mmol}$,
0.62 mL). The reaction vessel is sealed and irradiated with light for 10 h . After exposure to air the reaction mixture was stirred for 5 minutes. There was a no conversion of starting material.

9b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)cumene.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of cumene $(5.0 \mathrm{mmol}$, 0.7 mL). The reaction vessel is sealed and irradiated with light for 10h. After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 71% yield based on HBPin. The meta:para ratio was determined to be 0.7:0.3 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.5(\mathrm{~d}, \mathrm{~J}=7.2,1 \mathrm{H}), 7.22-7.15(\mathrm{~m}$, $2 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.0,6 \mathrm{H})$, (para isomer) $7.69(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) 148.14, 133.00, 132.49, 129.43, 127.89, 83.76, $34.25,24.88$, 24.14, (para isomer) 152.39, 135.07, 128.28, 126.72, 126.00, 83.67, 34.45 , 24.92, 23.96.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.06 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[8]}$

10b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol}), 1.0$ equivalent of HBPin ($1.25 \mathrm{mmol}, 180 \mu \mathrm{~L}$) and 4.0 equivalents of biphenyl ($5.0 \mathrm{mmol}, 0.78 \mathrm{~g}$) were dissolved in 1 mL of THF. The reaction vessel is sealed and irradiated with light for 12 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a white solid in 69% yield based on HBPin. The meta:para ratio was determined to be 0.7:0.3 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta($ meta isomer) $8.05(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{ddd}, \mathrm{J}=7.3,1.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.32(\mathrm{~m}$, $1 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) $7.86(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (meta and para isomer) 144.22, 141.59, 141.39, 140.95, $135.72,134.11,133.86,130.40,129.36,129.29,128.75,128.18,127.82,127.65,126.89$, 84.45, 84.39, 25.28.
${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.87 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the para isomer agree with previously reported data. ${ }^{[9]}$

11b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenylcyclohexane.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalents of phenylcyclohexane $(5.0 \mathrm{mmol}, 0.85 \mathrm{~mL})$. The reaction vessel is sealed and irradiated with light for 12 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (15:1). The product is obtained as a white solid in 71% yield based on HBPin. The meta:para ratio was determined to be 0.7:0.3 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR. The NMR signals are described for the mixture of meta and para isomers due to their complexity, highlighting the distinguishable peaks.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (meta and para isomer) $7.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, para isomer), $7.58(\mathrm{~s}, 1 \mathrm{H}$, meta isomer), $7.54-7.57(\mathrm{~m}, 1 \mathrm{H}$, meta isomer), $7.24-7.19(\mathrm{~m}, 2 \mathrm{H}$, meta isomer), 7.14(d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$, para isomer), $2.48-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.83(\mathrm{~m}, 8 \mathrm{H}), 1.70$ $-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.29(\mathrm{~m}, 12 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}$, meta isomer), $1.25(\mathrm{~s}, 12 \mathrm{H}$, para isomer), $1.23-1.09$ (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta and para isomer) 151.59, 147.38, 135.02, 133.44, $132.46,129.88,127.85,126.45,83.75,83.68,44.97,44.74,34.53,34.37,27.06,26.97,26.26$, 24.98, 24.96.
${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.06$.

HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 287.21802$; Found: 287.21781 .

12b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anisole.

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{B}_{2} \mathrm{Pin}_{2}(0.65 \mathrm{mmol}, 165 \mathrm{mg})$ and 4.0 equivalents of anisole (5.0 mmol , 0.54 mL). The reaction vessel is sealed and irradiated with light for 8 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a colourless liquid with 52% yield based on HBPin.

The meta:para ratio was determined to be $0.6: 0.4$ by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (meta isomer) 7.36-7.26 (m, 3 H), $7.00(\mathrm{ddd}, \mathrm{J}=7.9,2.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) $7.70(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (meta isomer) 159.71, $129.45,127.49,119.41,117.99,84.39,55.70,25.24$, (para isomer) 162.80, 136.91, 113.82, 84.09, 55.60, 25.24.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.44 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

13b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)diphenylether

In an argon filled glove box, $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] 2.0 \%(8.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{B}_{2} \operatorname{Pin}_{2}(0.65 \mathrm{mmol}, 165 \mathrm{mg})$ and 3.0 equivalent of diphenyl ether (3.75 $\mathrm{mmol}, 0.64 \mathrm{~g})$. The reaction vessel is sealed and irradiated with light for 10 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a colourless liquid with 63% yield based on HBPin. The meta:para ratio was determined to be 0.7:0.3 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR. The NMR signals are described for the mixture of meta and para isomers due to their complexity, highlighting the distinguishable peaks.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (meta and para isomer) $7.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, para isomer), $7.54(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, meta isomer), $7.43-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.97$ $(\mathrm{m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}$, para isomer), $1.33(\mathrm{~s}, 12 \mathrm{H}$, meta isomer).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (meta and para isomer) 160.79, 158.09, 157.83, 157.26, $157.02,137.06,130.40,130.31,130.18,129.86,125.21,124.33,123.79,123.65,122.63$, 120.08, 119.37, 119.22, 118.04, 84.52, 84.29, 25.22.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.44 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the para isomer agree with previously reported data. ${ }^{[12]}$

14b 4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(trifluoromethoxy)benzene.

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalent of (trifluoromethoxy)benzene ($5.0 \mathrm{mmol}, 0.67 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 8 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a colourless liquid with 78% yield based on HBPin. The meta:para ratio was determined to be 0.8:0.2 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta($ meta isomer $) 7.64(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}$ $=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) $7.75(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.37. HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BF}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 287.11202; Found: 287.11781.

15b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(trifluoromethylsulfane)benzene.

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, \quad 180 \mu \mathrm{~L})$ and 4.0 equivalent of (trifluoromethylsulfane)benzene ($5.0 \mathrm{mmol}, 0.72 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 8 h . After exposure to air the reaction mixture was stirred for 5
minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a colourless liquid with 75% yield based on HBPin. The meta:para ratio was determined to be 0.7:0.3 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, \mathrm{J}=7.4,1.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H})$, (para isomer) 7.77 $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (meta isomer) 142.71, 139.09, 137.22, 129.06, 124.15, 84.38, 25.00, (para isomer) 135.7, 135.28, 127.62 84.38, 25.00.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.57 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

16b (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(methyl)thiophene.

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalent of 2-methylthiophene (5.0 $\mathrm{mmol}, 0.5 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 8 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the product was purified by flash chromatography on SiO_{2} using heptane:ethyl acetate (20:1). The product is obtained as a colourless liquid with 69% yield based on HBPin. The C3:C5 ratio was determined to be $0.5: 0.5$ by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (2- tetramethyldioxaborolan 5-methyl isomer) $7.45(\mathrm{~d}, \mathrm{~J}=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H})$, (3- tetramethyldioxaborolan 2methyl isomer) $7.21(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (2- tetramethyldioxaborolan 5-methyl isomer) 147.66, 137.77, 127.13, 84.01, 24.88, 15.52, (3- tetramethyldioxaborolan 2-methyl isomer) 133.21, 122.05, 83.32, 25.03, 15.77.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.98 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with previously reported data. ${ }^{[4]}$

17b 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-p-xylene.

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 1.0 \%(4.0 \mathrm{mg}, 0.0125 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalent of of 2,6 lutidine ($7.5 \mathrm{mmol}, 0.9 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 10 h . After exposure to air the reaction mixture was stirred for 5 minutes. There was a no conversion of starting material.

18b 1-[4'-(Trimethylsilyl)biphenyl-4-yl]ethanone

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L})$ and 4.0 equivalent of phenyltrimethylsilane ($5.0 \mathrm{mmol}, 0.86 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 12 h . After cooling, the catalyst $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} 5.0 \%(0.0625 \mathrm{mmol}, 72 \mathrm{mg}), 1.0$ equivalent of 4 bromoacetophene ($1.25 \mathrm{mmol}, 249 \mathrm{mg}$) and 2.0 equivalent of sodium carbonate $(2.5 \mathrm{mmol}$, 265 mg ,) with respect to HBpin were added under argon atmosphere. Then, the reaction mixture was dissolved in dioxane/ethanol/water (5:4:1 ratio) and the reaction vessel was sealed and heated upto $110{ }^{\circ} \mathrm{C}$ in oil bath with stirring for 20 hours. Next, it was cooled to room temperature and filtered through a short plug of silica gel using heptane:Ethylacetate $=$ $1: 1$ as eluants. After removing all the solvent under reduced pressure, the product was crystalised in ether:heptane and obtained as white crystals with 42% yield based on HBPin. The 1-tetramethyldioxaborolan-1-phenyl:1-tetramethyldioxaborolan-2-phenyl ratio was determined to be 0.9:0.1 by integration of the characteristic peaks in ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.02(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.65$ (m, 4H), 2.61 (s, 3H), 0.31 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 197.91, 146.00, 141.23, 140.58, 136.56, 134.52, 129.35, 127.64, 126.96, 27.07, $-0.95 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the para isomer agree with previously reported data. ${ }^{[17]}$

19b 2'-Fluoro-5'-methoxy-N,N-dimethyl-[1,1'-biphenyl]-4-amine

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 0.5 \%(2.0 \mathrm{mg}, 0.0062 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L}) 6.0$ equivalent of 4 -fluoroanisole (7.5 mmol , 0.85 mL). The reaction vessel is sealed and irradiated with light for 12 h . After cooling, the catalyst $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} 5.0 \%(0.0625 \mathrm{mmol}, 72 \mathrm{mg}), 1.0$ equivalent of 4-bromo-N,Ndimethylaniline ($1.25 \mathrm{mmol}, 250 \mathrm{mg}$) and 2.0 equivalent of sodium carbonate ($2.5 \mathrm{mmol}, 265$ mg ,) with respect to HBpin were added under argon atmosphere. Then, the reaction mixture was dissolved in dioxane/ethanol/water (5:4:1 ratio) and the reaction vessel was sealed and heated upto $110{ }^{\circ} \mathrm{C}$ in oil bath with stirring for 20 hours. Next, it was cooled to room temperature and filtered through a short plug of silica gel using diethylether as eluant. After removing all the solvent under reduced pressure, the product was the product was purified by flash chromatography on SiO_{2} using pentane:diethylether (10:1) and obtained as yellowish liquid with 62% yield based on HBPin.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.44(\mathrm{dd}, \mathrm{J}=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=10.4,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{dd}, \mathrm{J}=6.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.99$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 156.42(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 156.35,150.79,132.06(\mathrm{~d}, \mathrm{~J}=230.2$ $\mathrm{Hz}), 130.06(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 123.80(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}), 116.83(\mathrm{~d}, \mathrm{~J}=25.2 \mathrm{~Hz}), 115.36(\mathrm{~d}, \mathrm{~J}=3.8$ $\mathrm{Hz}), 112.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 112.66$, 56.25 , 40.76 .
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 282 \mathrm{MHz}\right) \delta-129.52$.
HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}: 246.12887$; Found: 246.12876 .

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 1.0 \%(4.0 \mathrm{mg}, 0.0125 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\mathrm{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L}) 4.0$ equivalent of 4-fluoro-3methylanisole ($5.0 \mathrm{mmol}, 0.65 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 12h. After cooling, the catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} 5.0 \%(0.0625 \mathrm{mmol}, 72 \mathrm{mg}), 1.0$ equivalent of 2bromothiophene ($1.25 \mathrm{mmol}, 120 \mu \mathrm{~L}$) and 2.0 equivalent of sodium carbonate ($2.5 \mathrm{mmol}, 265$ mg ,) with respect to HBpin were added under argon atmosphere. Then, the reaction mixture was dissolved in dioxane/ethanol/water (5:4:1 ratio) and the reaction vessel was sealed and heated upto $110{ }^{\circ} \mathrm{C}$ in oil bath with stirring for 20 hours. Next, it was cooled to room temperature and filtered through a short plug of silica gel using diethylether as eluant. After removing all the solvent under reduced pressure, the product was the product was purified by flash chromatography on SiO_{2} using pentane:diethylether (10:1) and obtained as yellowish liquid with 63% yield based on HBPin.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.47$ (ddd, J = 3.6, 1.1, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (dd, J = 5.2, 1.2 Hz , $1 \mathrm{H}), 7.12(\mathrm{ddd}, \mathrm{J}=5.0,3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=5.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{ddd}, \mathrm{J}=5.8$, $3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 155.62(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 152.51(\mathrm{~d}, \mathrm{~J}=240.9 \mathrm{~Hz}), 137.76(\mathrm{~d}, \mathrm{~J}=$ $3.3 \mathrm{~Hz}), 127.89,127.05(\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}), 126.66(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}), 126.15(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz})$, $122.35(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}), 115.89(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}), 111.01(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 56.05,15.21(\mathrm{~d}, \mathrm{~J}=4.7$ Hz).
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 282 \mathrm{MHz}\right) \delta-128.63$. HRMS (ESI):

Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FOS}[\mathrm{M}+\mathrm{H}]^{+}$: 223.05874; Found: 223.05853 .

Competitive C-H borylation experiments

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 1.0 \%(4.0 \mathrm{mg}, 0.0125 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(1.25 \mathrm{mmol}, 180 \mu \mathrm{~L}$) and 4.0 equivalent of benzene (5.0
$\mathrm{mmol}, 0.45 \mathrm{~mL}$) and 4.0 equivalent of 2,6 lutidine ($5.0 \mathrm{mmol}, 0.58 \mathrm{~mL}$). The reaction vessel is sealed and irradiated with light for 16 h . After exposure to air the reaction mixture was stirred for 5 minutes. The volatiles were then removed under reduced pressure and the only (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzene was observed with 71% of yield of the product.

Photocatalytic C-H borylation of benzene with low amount of catalyst loading:

In an argon filled glove box, $\left.\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\right] 0.1 \%(1.2 \mathrm{mg}, 0.0038 \mathrm{mmol})$ was dissolved in 1.0 equivalent of $\operatorname{HBPin}(3.8 \mathrm{mmol}, 550 \mu \mathrm{~L})$ and 6.0 equivalent of benzene (22.8 $\mathrm{mmol}, 2.0 \mathrm{~mL}$) . The reaction vessel is sealed and irradiated with light for 16 h . After exposure to air the reaction mixture was stirred for 5 minutes. TON was then determined by GC with respect to mesitylene as an internal standard. Turnover numbers (TON) represented can be expressed as [mmol of product]/[mmol of catalyst] and TOF (turn over frequency) is expressed as (TON/Time in h). TONs reported in this study are averages of at least two runs.

Preparation of [$\left.\mathbf{R h}(\mathbf{C l})\left(\mathrm{Me}_{2} \mathbf{I M e s}\right)(\mathrm{COD})\right]$

This $\left[\mathrm{Rh}(\mathrm{Cl})\left(\mathrm{Me}_{2} \mathrm{IMes}\right)(\mathrm{COD})\right]$ was prepared according to the procedure reported in the article. ${ }^{[18]}$

VI. References

[1] a) T. Sakakura, T. Sodeyama, K. Sasaki, K. Wada, M. Tanaka, J. Am. Chem. Soc. 1990, 112, 7221-7229; b) J. A. Maguire, W. T. Boese, A. S. Goldman, J. Am. Chem. Soc. 1989, 111, 7088-7093.
[2] See: http://www.forensicssource.com/ProductDetail.aspx?ProductName=1090964
[3] See: http://www.laserpoint.eu/product.php?f=2\&p=18.
[4] M. Murata, T. Oyama, S. Watanabe, Y. Masuda, J. Org. Chem. 1999, 65, 164-168.
[5] T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390-391.
[6] A. Del Grosso, P. J. Singleton, C. A. Muryn, M. J. Ingleson, Angew. Chem. Int. Ed. 2011, 50, 2102-2106.
[7] S. I. Kalläne, T. Braun, Angew. Chem. Int. Ed. 2014, 53, 9311-9315.
[8] M. Peters, M. Trobe, H. Tan, R. Kleineweischede, R. Breinbauer, Chem. Eur. J. 2013, 19, 2442-2449.
[9] H-B. Chen, Y. Zhou, J. Yin, J. Yan, Y. Ma, L. Wang, Y. Cao, J. Wang, J. Pei, Langmuir 2009, 25, 5459-5462.
[10] C. Pintaric, S. Olivero, Y. Gimbert, P. Y. Chavant, E. Duñach,J. Am. Chem. Soc. 2010, 132, 11825-11827.
[11] Y. Yamamoto, R. Fujikawa, T. Umemoto, N. Miyaura, Tetrahedron, 2004, 60, 1069510700.
[12] R. J. Payne, A. Riboldi-Tunnicliffe, O. Kerbarh, A. D. Abell, A. J. Lapthorn, C. Abell. ChemMedChem, 2007, 2, 1010-1013.
[13] A. Adamczyk-Woźniak, M. Jakubczyk, A. Sporzyński, G. Żukowska. Inorg. Chem. Соттип.2011, 14, 1753-1755.
[14] E. Kianmehr, M. Yahyaee, K. Tabatabai.Tetrahedron lett.2007, 48, 2713-2715.
[15] F. Mo, Y. Jiang, D. Qiu, Y. Zhang, J. Wang. Angew. Chem. Int. Ed., 2010, 49, 18461849.
[16] T. M.Boller, J. M.Murphy, M. Hapke, T. Ishiyama, N. Miyaura, J. F. Hartwig. J. Am. Chem. Soc., 2005, 127, 14263-14278.
[17] S. Bernhardt, G. Manolikakes, T. Kunz, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 9205-9209.
[18] M. Ahmed, C. Buch, L. Routaboul, R. Jackstell, H. Klein, A. Spannenberg, M. Beller, Chem. Eur. J. 2007, 13, 1594-1601.
VII. NMR spectra of compounds
${ }^{1} \mathrm{H}$ NMR

\qquad

1																			
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{array}{c}1.0 \\ (\mathrm{ppm})\end{array}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{13} \mathrm{C}$ NMR
®on min
$\stackrel{\infty}{\infty}$
~

${ }^{11} \mathrm{~B}$ NMR

2b

${ }^{11} \mathrm{~B}$ NMR
$\stackrel{\#}{\tilde{\#}}$
2b

\qquad Ninn Mind
$\begin{array}{lllllllllllllllllllllllllllllllllll}10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$
${ }^{13} \mathrm{CNMR}$

3b

[^0]$$
{ }^{11} \mathrm{~B} \text { NMR }
$$

3b

${ }^{1} \mathrm{H}$ NMR
$\stackrel{\text { m}}{\mid}$

L

[^1]

$$
{ }^{13} \mathrm{C} \text { NMR }
$$

$$
{ }^{11} \mathrm{~B} \text { NMR }
$$

${ }^{13} \mathrm{C}$ NMR

6b

din Uill

[^2]

6b

[^3]${ }^{1} \mathrm{H}$ NMR $\stackrel{\overbrace{}}{i}$

[^4]$$
{ }^{11} \mathrm{~B} \text { NMR }
$$

9b

Nund \qquad
背

[^5]
$$
{ }^{11} \mathrm{~B} \text { NMR }
$$

9b

${ }^{1}$ H NMR 10b

Lilind he \qquad

10b

11b

$\begin{array}{llllllllllllllllllll}110 & 130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\ (\mathrm{ppm}) & -10 & -30 & -50 & -70 & -90 & -110 & -130 & -150\end{array}$

${ }^{1} \mathrm{H}$ NMR
13b

${ }^{13} \mathrm{C}$ NMR			

[^6]
$$
{ }^{11} \mathrm{~B} \text { NMR }
$$
$\stackrel{\stackrel{m}{m}}{\stackrel{m}{1}}$
14b


```
l
```

15b

Lilinaidille

${ }^{13} \mathrm{C}$ NMR

15b

15b

${ }^{1} \mathrm{H}$ NMR

16b

\qquad

00	190	180	170	160	150	140	130	120	110								30		
00	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & (\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

${ }^{11} \mathrm{~B}$ NMR

${ }^{1} \mathrm{H}$ NMR
18b

${ }^{13} \mathrm{C}$ NMR			鸱

${ }^{19}$ F NMR

${ }^{1} \mathrm{H}$ NMR

-

20b

Lus
,

\qquad

1

${ }^{19}$ F NMR

20b

[^0]: $\begin{array}{lllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]:

[^2]:

[^3]:

[^4]:

[^5]: $\begin{array}{llllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{\substack{5.0 \\(\mathrm{ppm})}}{5.0} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$

[^6]:

