Electronic Supplementary Information

Effective Chemiluminogenic Systems Based on Acridinium Esters Bearing Substituents of Various Electronic and Steric Properties

Beata Zadykowicz¹, Justyna Czechowska¹, Agnieszka Ożóg¹, Anton Renkevich², Karol Krzymiński^{1*}

¹ Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63 St., 80–308 Gdańsk, Poland ² Department of Chemical Metrology, Kharkiv V.N. Karazin National University, Kharkiv, 61022, Ukraine *corresponding author: karol.krzyminski@ug.edu.pl

Synthesis of substituted acridinium esters (XAEs)

Substituted 9-[(phenoxy)carbonyl]-10-methylacridinium triflates (XAEs, Scheme 1) were synthesized in three steps. Reflux of the solution of dehydrated acridine-9-carboxylic acid in thionyl chloride (C = 0.4 M, 4 h) yielded 9-(chlorocarbonyl)acridinium chloride quantitatively. After evaporation of the excess of SOCl₂, the crude product was washed with dry benzene and stirred with slight excess (5-10 mol%) of appropriate phenol (distilled) in dry dichloromethane. The esterifications were carried out in dry conditions in the presence of N,N,N-triethylamine (4-fold molar excess) and catalytic amounts of N,N-(dimethyl)-4-aminopyridine (DMAP) (room temperature, 25-50 hours). After the completion, the reaction mixtures were diluted with CH₂Cl₂, filtered and applied to a gravitational LC columns (stationary phase: SiO₂, mobile phase: 2/1 v/v cyclohexane/ethyl acetate), giving chromatographically pure products (one spot on TLC plates under 254/360 nm UV lamp) -9-[(phenoxy)carbonyl]acridines (yields of 70–90%). The analyses are listed in the following manner: retention factor ($R_{\rm F}$) (TLC SiO₂ plate, cyclohexane/ethyl acetate = 3/2 v/v, detection: UV lamp, 254 nm/360 nm), melting point (m.p., K, Stuart Melting Point SMP30, Bibby Scientific Ltd., UK), elemental analysis (% calculated/found, Eager 200 CHN, Carlo Erba Instuments, Italy; Vario EL Cube CHNS, Elementar Analysensysteme GmbH, Germany). For 9-[(2-fluorophenoxy)carbonyl]acridine: $R_{\rm F} = 0.59$; m.p. = 436–437 K (Differential Scanning Calorimetry (DSC): 437 K^{32}), C = 75.70/75.46, H = 3.81/3.98, N = 4.41/4.26; for 9-[(2-chlorophenoxy)carbonyl]acridine: $R_{\rm F} = 0.61$; m.p. = 412–413 K, C = 71.9/70.1, H = 3.62/3.50, N = 4.20/4.33; for 9-[(2-bromophenoxy)carbonyl]acridine: $R_F = 0.61$; m.p. = 424–426 K, С = 63.5/62.8, Η 3.20/3.21, = Ν 3.70/3.3; for 9-[(2-iodophenoxy)carbonyl]acridine: m.p. = 438–439 K (438 K^{32}), $R_F = 0.61$; C = 56.5/56.4, H = 2.84/2.90, N = 3.29/2.99; for $9-\{[(2-trifluoromethyl)phenoxy]carbonyl\}$ acridine: m.p. = 408.0–409.0 K, С = 68.7/68.6, H = 3.29/3.37, N: 3.81/3.77; for 9-[(2-nitrophenoxy)carbonyl]acridine: $R_{\rm F} = 0.52$, m.p. = 421.5-424 K (DSC: 422 K³²), C = 69.7/69.7, H = 3.51/3.46, N = 8.14/8.10; for 9-[(2-methoxyphenoxy)carbonyl]acridine: $R_{\rm F} = 0.56$, m.p. = 459-461 K (DSC: 462 K³²), C = 76.6/76.4, H = 4.59/4.55, N = 4.25/4.22; for 9-[(2,6-difluorophenoxy)carbonyl]acridine: $R_{\rm F} = 0.61$, m.p. = 467–468 K (DSC: 467 K³²), C = 71.6/71.5, H = 3.31/3.27, N = 4.18/4.12; for 9-[(2,6-dichlorophenoxy)carbonyl]acridine: $R_{\rm F} = 0.66$, m.p. = 417.5–418.5 K (DSC: 418 K³²), C = 65.2/65.5, H = 3.01/3.20, 9-[(2,6-dibromorophenoxy)carbonyl]-acridine: N = 3.80/3.68;for $R_{\rm F}$ 0.67, = m.p. = 431.5 - 432.5 K (DSC: 432 K³²), C = 52.5/51.9, H = 2.43/2,30, N = 3.06/2.95; for 9-[(2,6-diiodophenoxy)carbonyl]acridine: m.p. = 450.5-452 K (DSC: 453 K³²), C = 43.59/44.21, H = 2.01/1.86, N = 2.54/2.45; for 9-[(3-fluorophenoxy)carbonyl]acridine: $R_{\rm F}$ = 0.61, m.p. = 436-438 K, C = 75.70/75.97, H = 3.81/4.03, N = 4.41/4.27; for 9-[(4-fluorophenoxy)carbonyl]acridine: $R_{\rm F}$ = 0.61, m.p. = 472-474 K, C = 75.70/74.60, H = 3.81/3.93, N = 4.41/4.29; for 9-[(4-chlorophenoxy)carbonyl]acridine: $R_{\rm F}$ = 0.66, m.p. = 441.5-443 K, C = 71.90/70.20, H = 3.62/3.67, N = 4.20/3.96; for 9-[(4-bromophenoxy)carbonyl]acridine: $R_{\rm F}$ = 0.64; m.p. = 461-463 K, C = 63.51/62.30, H = 3.20/3.33, N = 3.70/3.27.

The above esters were subjected to N-methylation, using 5–10 molar excess of methyl trifluorometanesulphonate $(CF_3OSO_2CH_3,$ *Sigma-Aldrich*) in purified chloroform (Ar atmosphere, room temperature, 3-4 hours) in the presence of a catalytic amount of polymer-bound 2,6-di-tert-butylpyridine (Sigma-Aldrich). The crude products were purified by dilution the reaction mixture with small amount of acetonitrile, filtration and precipitation the salts with an excess of dry diethyl ether. XAEs were isolated by filtration, washed with ether and dried under vacuum (yields: 72-84%). Their purity, assessed with the aid of the RP-HPLC technique fall in the range of 92.0–100% (% of areas under the main signal with detection wavelength set at 254 nm and 367 nm, n = 3). Analyses of XAEs are listed in the following manner: retention time (R_T) (stationary phase: Waters Symmetry C-8 column $(3 \times 150 \text{ mm})$, mobile phase: acetonitrile / 0.1 M TFA = 40/60 v/v, 1 ml/min.; melting point (m.p.), elemental analysis (% calculated/found, Carlo Erba NCS, Italy). Analyses for 2-F $(C_{22}H_{15}F_4NO_5S)$: $R_T = 3.72$ min., m.p. = 498–500 K (dec.) (DSC: 503 K³²), C = 54.9/55.3, H = 3.14/3.23, N = 2.91/2.82, S = 6.66/6.55; for **2-Cl** (C₂₂H₁₅ClF₃NO₅S): R_T = 5.38 min., m.p. = 490–491 K (dec.), C = 53.1/53.0, H = 3.04/3.12, N = 2.81/2.72, S = 6.44/6.27; for 2-Br (C₂₂H₁₅BrF₃NO₅S): $R_T = 6.12$ min., m.p. = 504–505.5 K (dec.), C = 48.7/49.7, H = 2.79/2.80, N = 2.58/2.52, S = 5.91/5.72; for **2-I** ($C_{22}H_{15}F_{3}INO_{5}S$): $R_{T} = 6.35$ min., m.p. = 483–484 K (dec.) (DSC: 489 K³²), C = 44.8/44.6, H = 2.57/2.59, N = 2.38/2.36; S = 5.44/5.34; for 2-CF₃ (C₂₃H₁₅F₆NO₅S): $R_T = 6.34$ min., m.p. = 495.5-497 K (dec.), C = 56.0/55.8, H = 3.68/3.71, N = 2.84/2.77, S = 6.50/6.56; for **2-NO**₂ ($C_{22}H_{15}F_3N_2O_7S$): $R_{\rm T} = 3.79$ min., m.p. = 501.5–503 K (dec.) (DSC: 506, 509 K³²), C = 52.0/52.9, H = 2.97/3.16, N = 5.51/5.36, S = 6.31/6.15; for **2-OCH**₃ (C₂₃H₁₈F₃NO₆S): $R_T = 4.20$ min., m.p. = 515–516 K (dec.) (DSC: 516 K^{32}), C = 52.0/51.6, H = 2.85/2.92, N = 2.64/2.64, S = 6.06/6.06; for **2,6-diF** (C₂₂H₁₄F₅NO₅S): $R_T = 4.21$ min., m.p. = 516-517.5 K (dec.) (DSC: 517 K^{32}), C = 52.9/53.0, H = 2.83/2.90, N = 2.80/2.80, S = 6.42/6.50; for **2.6-diCl**

(C₂₂H₁₄Cl₂F₃NO₅S): $R_T = 7.10$ min., m.p. = 522.5–524.5 K (dec.) (DSC: 527 K³²), C = 49.6/50.5, H = 2.65/2.59, N = 2.63/2.57, S = 6.02/5.90; for **2,6-diBr** (C₂₂H₁₄Br₂F₃NO₅S): $R_T = 7.60$ min., m.p. = 519–521.5 K (dec.) (DSC: 520 K³²), C = 42.5/43.4, H = 2.27/2.24, N = 2.25/2.16, S = 5.16/4.90, for **2,6-diI** (C₂₂H₁₄F₃I₂NO₅S): m.p. = 463, 481 K (DSC³¹), C = 36.91/36.94, H = 1.95/1.97, N = 1.90/1.96, S = 4.57/4.48; for **3-F**: R_T = 5.53 min., m.p. = 501–502 K (dec.); for **4-F** (C₂₂H₁₅F₄NO₅S): R_t = 4.58 min., m.p. = 474–475 K (dec.), C = 54.9/55.1, H = 3.14/3.13, N = 2.91/2.90; S = 6.66/6.66; for **4-Cl** (C₂₂H₁₅ClF₃NO₅S): R_t = 7.28 min., m.p. = 495.5–497.5 K (dec.), C = 53.1/53.3, H = 3.04/3.02, N = 2.81/2.70; S = 6.44/6.56; for **4-Br** (C₂₂H₁₅BrF₃NO₅S): R_t = 7.99 min., m.p. = 505–506 K (dec.), C = 48.7/49.0, H = 2.79/2.77, N = 2.58/2.58, S = 5.91/5.90.

Calculations of limits of detection and limits of quantification (LOD, LOQ)

The limits of detection (*LOD*) and limits of quantification (*LOQ*) were calculated using described procedures, assuming *t*-Student parameter t = 95% prediction interval of the regression graphs: Area under CL profile (*A*, RLU²) = $f(c_{XAE} [M])$ (Figure S5, lower graph). The equations used for *LOD* and *LOQ* calculations are presented below.⁴⁶

$$LOD = \frac{2 \cdot t \cdot S_{yx}}{a} \cdot \sqrt{1 + \frac{1}{n} + \frac{(b + y_c - \overline{y})^2}{a^2 \cdot Q_{xx}}}$$
(eq. S1)
where: $y_c = t \cdot S_{yx} \cdot \sqrt{1 + \frac{1}{n} + \frac{\overline{x}^2}{Q_{xx}}}$

$$LOQ = \frac{y_{h} - b + t \cdot S_{yx}}{a} \cdot \sqrt{1 + \frac{1}{n} + \frac{(b + y_{h} - \overline{y})^{2}}{a^{2} \cdot Q_{xx}}}$$
(eq. S2)

where: $y_h = b + 2 \cdot t \cdot S_{yx} \cdot \sqrt{1 + \frac{1}{n} + \frac{(y_c/a - \overline{x})^2}{Q_{xx}}}$

 \bar{x} - denotes the average value of the variable x ($\bar{x} = \frac{\sum x_i}{n}$); \bar{y} - the average value of the variable y ($\bar{y} = \frac{\sum y_i}{n}$); Q_{xx} - the sum of the squares $Q_{xx} = \sum (x_i - \bar{x})^2$; S_{yx} - standard error of estimate of y on x, residual standard deviation:

$$S_{yx} = \sqrt{\frac{\sum (y_i - y_{t_i})^2}{n-2}} = \sqrt{\frac{\sum y_i^2 - b \sum y_i - a \sum x_i y_i}{n-2}}$$
(eq. S3)

compound					${}^{1}\mathrm{H}$	NMR*			Main cations detected** (MALDI-TOF MS)				
code (Scheme 1)	H1/H8	H2/H7	H3/H6	H4/H5	H19	H20	H21	H22	H23	H24	$\begin{array}{l} M^{\scriptscriptstyle +} \ , \\ \left(M \pm 1 \right)^{\scriptscriptstyle +} \end{array}$	MeAcr ⁺ , (MeAcr ± 1) ⁺	Others
2-F CD3OD	8.96 (9.3) d, 2H	8.21 (7.8) t, 2H	8.55 (8.8) m, 2H	8.57 (9.3) m, 2H		7.96 (7.8) t, 1H	7.49 (7.6) t, 1H	7.56 (5.6) m, 1H	7.64 (10) t, 1H	4.96 s, 3H	332 (100), 333 (33)	193 (79)	164 (11)
2-Cl CD3OD	8.96 (9.3) d, 2H	8.22 (7.8) t, 2H	8.56 (7.8) t, 2H	8.67 (8.8) d, 2H		8.07 (7.8) d, 1H	7.55 (7.6) t, 1H	7.66 (7.6) t, 1H	7.81 (7.8) d, 1H	4.96 s, 3H	348 (100), 349 (75)	193 (40)	269 (11)
2-Br DMSO-d6	8.96 (9.3) d, 2H	8.22 (7.3) t, 2H	8.57 (8.3) t, 2H	8.72 (8.8) d, 2H		8.08 (8.3) d, 1H	7.47 (7.6) t, 1H	7.69 (7.6) t, 1H	7.94 (7.8) d, 1H	4.96 s, 3H	394 (100), 393 (75)	193 (96)	139 (27), 165 (24)
2-I DMSO-d6	8.98 (9.3) d, 2H	8.21 (7.8) t, 2H	8.59 (8.0) t, 2H	8.79 (8.3) d, 2H		8.10 (7.1) d, 1H	7.30 (7.6) t, 1H	7.70 (7.8) t, 1H	8.07 (7.8) d, 1H	4.98 s, 3H	440 (100), 441 (39)	193 (44)	284 (14)
2-CF ₃ DMSO-d6	8.99 (9.3) d, 2H	8.21 (7.6) t, 2H	8.58 (6.8) m, 4H (+H4/H5)	8.58 (6.8) m, 4H (+H3/H6)		8.37 (7.8) d, 2H	7.73 (7.3) t, 1H	8.01 (7.8) d, 1H	8.05 (7.3) d, 1H	4.98 s, 3H	382 (36), 383 (41)	193 (44), 194 (100)	415 (57), 532 (41)
2-NO ₂ DMSO-d6	8.97 (9.6) d, 2H	8.24 (9.0) t, 2H	8.57 (7.9) sxt, 2H	8.68 (8.4) d, 2H		8.35 (8.2, 1.6) q, 1H	8.07 (7.9) sxt, 1H	7.78 (7.9) t, 1H	8.20 (6.8) d, 1H	4.99 s, 3H	359 (13), 358 (18)	193 (100)	238 (28), 509 (4)
2-OCH ₃ DMSO-d6	8.94 (9.2) d, 2H	8.23 (7.6) t, 2H	8.56 (7.9) m, 2H	8.67 (8.0) d, 2H		7.39 (7.4) q, 1H	7.17 (7.6) sxt, 1H	7.47 (7.8) m, 1H	7.70 (8.0) q, 1H	4.96 s, 3H	344 (63), 345 (8)	193 (100), 194 (32)	421 (100), 494 (10)
2,6-diF CD3OD	9.00 (9.3) d, 2H	8.27 (7.8) t, 2H	8.60 (7.8) t, 2H	8.44 (8.3) d, 2H		7.58 (8.8) m, 2H (+H22)	7.64 (8.3) m, 1H	7.58 (8.8) m, 2H (+H20)		4.99 s, 3H	350 (24), 351 (32)	193 (100), 192 (86)	151 (83), 500 (42)
2,6-diCl CD3OD	9.00 (9.3) d, 2H	8.28 (7.8) t, 2H	8.60 (7.8) t, 2H	8.78 (8.3) d, 2H		7.88 (8.3) d, 2H (+H22)	7.73 (8.1) t, 1H	7.88 (8.3) d, 2H (+H20)		4.99 s, 3H	383 (100)	193 (100)	529 (21)
2,6-diBr CD3OD	9.00 (9.3) d, 2H	8.25 (7.6) t, 2H	8.59 (7.8) t, 2H	8.96 (8.8) d, 2H		8.00 (8.3) d, 2H (+H22)	7.44 (8.1) t, 1H	8.00 (8.3) d, 2H (+H20)		4.99 s, 3H	472 (25), 471 (33)	193 (100)	440 (100), 622 (10)
2,6-diI CD3OD	9.16 (8.8) d, 2H	8.21 (7.8) t, 2H	8.58 (7.8) t, 2H	8.99 (9.3) d, 2H		8.12 (7.8) d, 2H (+H22)	7.02 (7.8) t, 1H	8.12 (7.8) d, 2H (+H20)		5.00 s, 3H	565 (100); 566 (76)		376 (44) 575 (38)
3-F DMSO-d6	8.96 (9.3) d, 2H	8.18 (7.8) t, 2H	8.57 (8.0) t, 2H	8.68 (8.8) d, 2H	7.89 (9.3) d, 1H		7.40 (7.4) m, 1H	7.64 (9.3) t, 1H	7.71 (8.3) q, 1H	4.97 s, 3H	332 (83)	192 (100), 193 (21)	165 (16), 220 (11)
4-F CD3OD	8.90 (9.3) d, 2H	8.20 (7.6) t, 2H	8.57 (8.1) t, 2H	8.65 (8.8) d, 2H	7.70 (6.8) m, 2H (+H23)	7.37 (8.8) t, 2H (+H22)		7.37 (8.8) t, 2H (+H20)	7.69 (6.8) m, 2H(+H19)	5.05 s, 3H	332 (78), 333 (46)	192 (90), 193 (100)	221 (14), 482 (32)
4-Cl CD3OD	8.96 / (9.3) d, 2H	8.18 (8.3) t, 2H	8.57 (7.3) t, 2H	8.66 (8.8) d, 2H	7.74 (8.8) d, 2H (+H23)	7.86 (8.8) d, 2H (+H22)		7.86 (8.8) d, 2H(+H20)	7.74 (8.8) d, 2H (+H19)	4.97 s, 3H	349 (35)	192 (100), 193 (26)	151 (36)
4-Br CD3OD	8.90 (9.3) d, 2H	8.20 (7.8) t, 2H	8.57 (8.3) t, 2H	8.65 (8.3) d, 2H	7.62 (8.8) d, 2H (+H23)	7.79 (8.8) d, 2H (+H22)		7.79 (8.8) d, 2H(+H20)	7.62 (8.8) d, 2H (+H19)	5.05 s, 3H	394 (30), 393 (22)	193 (100), 194 (34)	151 (12), 165 (13)

Table S1 ¹H NMR (room temperature) and MALDI-TOF MS data for 9-[(phenoxy)carbonyl)]-10-methylacridinium triflates (XAEs) substituted in the benzene ring. Structures, names and codes of the compounds with the numbering of atoms are given in Scheme 1.

Abbreviations and notes:

s - singlet, d - dublet, t - triplet, q - quartet, sxt - sextet, m - multiplet; nH - relative area under signal (H integration).

* values denote chemical shifts according to TMS (in ppm), values in parentheses denote coupling constants (in Hz); **numbers denote relative mass of the ion (m/z), numbers in parentheses denote its relative

abundance (in %); M⁺ denotes the parent cation of XAE, MeAcr⁺ denotes 10-metylacridinium cation

compound								¹³ C	C NMR*							
code (Scheme 1)	C1/C8	C2/C7	C3/C6	C4/C5	C9	C11/C14	C12/C13	C15	C18	C19	C20	C21	C22	C23	C24	R
2-F	129.3	133.8	139.3	123.1	142.4	119.1	147.4	162.3	147.7	129.3	128.9	123.8	127.9	114.9	38.9	
CD3OD																
2-Cl	126.1	130.7	139.3	123.1	142.4	123.8	146.0	162.4	147.7	129.3	128.7	127.7	128.7	119.1	38.8	
CD3OD																
2-Br	124.7	134.7	140.3	123.7	142.9	119.9	147.8	163.5	148.0	134.0	130.2	128.5	130.0	115.7	40.3	
CD3CN																
2-I	128.8	140.9	142.9	124.0	144.6	123.7	148.0	164.1	151.1	140.3	130.9	130.0	130.2	119.9	40.3	
CD3CN																
2-CF ₃	128.3	130.4	135.0	125.0	143.0	123.6	147.4	163.5	147.5	140.2	128.7	128.3	128.4	120.0	40.4	128.1
CD3CN																
$2-NO_2$	125.9	130.4	136.5	123.9	142.4	123.0	142.9	163.3	147.0	140.2	129.5	127.1	128.4	119.9	40.4	
CD3CN																
2-OCH ₃	122.2	129.1	138.6	121.1	142.3	119.9	149.1	162.6	150.9	139.3	128.4	123.1	128.1	112.8	38.6	55.3
CD30D	107.1	100.4	1.42.4	102.1	146.0	110.2	152.0	1 < 1 7	155.0	112.7	100 6	105.6	100 7	112.6	20.0	
2,6-dif	127.1	139.4	142.4	123.1	146.9	119.3	153.9	161./	155.9	112.7	129.6	125.6	128.7	112.6	38.9	
	120.2	120.2	120.2	127.0	142.4	102.4	142.9	1615	146.9	110.2	120 6	129.2	120.2	110.2	20.0	
2, 6-01CI	129.2	139.3	139.3	127.9	142.4	123.4	142.8	161.5	146.8	119.2	129.6	128.2	129.3	119.2	39.0	
26 diBr	122.4	120.2	120.2	102.5	142.4	110.1	145 5	161.2	1465	116.0	120.0	129.4	120.1	116.0	20.1	
2,0-01BF	155.4	139.5	139.5	125.5	142.4	119.1	145.5	101.5	140.5	110.9	150.0	120.4	129.1	110.9	39.1	
2.6-dil	130.2	140.5	142.4	123.5	146.3	121 7	148.0	161.2	152.0	110.0	120.2	128.0	128.0	110.1	30.2	
2,0-uii	139.2	140.5	142.4	123.3	140.5	121./	140.0	101.2	152.0	119.0	129.2	120.9	128.9	119.1	39.2	
3.F	132.0	132.1	140.3	123.5	142.9	119.9	148 3	163.9	151.0	115.2	110.4	130.4	128.4	117.9	40.2	
CD3CN	132.0	152.1	140.5	125.5	142.9	11).)	140.5	105.9	151.0	115.2	110.4	150.4	120.4	117.9	40.2	
4-F	128.5	130.3	140.2	123.5	142.9	123.0	146 3	162.5	148 5	120.5	124.1	1173	124.1	119.8	40.2	
CD3CN	12010	10010	11012	12010	1.20	12010	11010	10210	1 1010	12010	12	11/10	12.111	11)10		
4-Cl	129.8	132.6	139.3	127.7	142.4	127.7	148.1	163.0	148.6	122.9	129.4	119.1	129.4	122.9	38.8	
CD30D			222710						2.010				/		2 510	
4-Br	128.4	130.4	133.8	124.3	140.2	123.5	142.9	163.9	149.6	120.7	128.4	119.8	128.4	120.7	40.2	
CD3CN					•											

Table S2¹³C NMR (room temperature) data for 9-(phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates (XAEs) substituted inthe benzene ring. Structures, names and codes of the compounds with the numbering of atoms are given in Scheme 1.

Abbreviations and notes:

* values denote chemical shifts according to TMS (in ppm)

Table S3 An exemplary ¹H NMR data for **4-F** (Scheme 1) and its unmethylated precursor, 9-[(4-fluorophenoxy)carbonyl]acridine obtained with the assistance of ACD/HNMR database⁵⁵. Chemical shifts, assayed with the coefficient of variation (CV) in the range of 0.10–4.1%, are averaged for each group of protons.

No. of ¹ H nuclei (Scheme 1)	chem. shift (ppm)	std. dev. (ppm)	relative intensity (integration)	coupling constants (ⁿ J, Hz)					
9-[(4-Fluorophenoxy)carbonyl]acridine									
1/8	8.60	0.50	2Н	${}^{3}J_{1,2}=7.61;\ {}^{4}J_{1,3}=1.39;\ {}^{5}J_{1,4}=0.65$					
2/7	7.74	0.24	2Н	${}^{3}J_{7,8}=7.61;\;{}^{3}J_{2,3}=7.14;\;{}^{4}J_{2,4}=1.32$					
3/6	7.72	0.03	2Н	${}^3J_{3,4}=8.08;\ {}^3J_{6,7}=7.14;\ {}^4J_{6,8}=1.39$					
4/5	8.47	0.03	2Н	${}^3J_{5,6} = 8.08; \ {}^4J_{5,7} = 1.32; \ {}^5J_{5,8} = 0.65$					
19/23	7.25	0.13	2H	${}^{4}J_{19,23} = 3.35$					
20/22	7.12	0.12	2Н	${}^{3}J_{20,22;21F} = 6.32$					
9-[(4-Fluorophenoxy)carbonyl]-10-methylacridinium triflate (4-F)									
1/8	8.95	0.01	2Н	${}^{3}J_{8,7}=8.85;\ {}^{4}J_{8,6}=1.72;\ {}^{5}J_{8,5}=0.94;\ {}^{5}J_{1,4}=0.50$					
2/7	7.46	0.31	2Н	${}^{3}J_{2,1} = 8.85; \; {}^{3}J_{7,6} = 6.57$					
3/6	7.95	0.22	2H	${}^{3}J_{3,4} = 8.84; \ {}^{4}J_{3,1} = 1.72$					
4/5	8.47	0.35	2H	${}^3J_{5,6} = 8.84; \ {}^4J_{5,7} = 1.46$					
19/23	7.25	0.13	2Н	${}^{3}J_{19,20}=9.17;\ {}^{4}J_{19,21F}={}^{4}J_{23,21F}=6.32;\ {}^{4}J_{19,23}=3.35;\ {}^{5}J_{19,22}=0.35$					
20/22	7.12	0.12	2H	${}^{3}J_{22,23}=9.17; {}^{3}J_{20,21F}={}^{3}J_{22,21F}=6.62; {}^{4}J_{20,22}=2.85; {}^{5}J_{20,23}=0.35$					
24	4.22	0.04	ЗН	$^{2}J_{24,24} = 14.6$					

Table S4 Chemiluminogenic properties of substituted 9-[(phenoxy)carbonyl)]-10-methylacridinium triflates (XAEs, Scheme 1) in various environments; k_{CL} denotes the pseudo-first order constants of CL decay (in s⁻¹), *RCLE* – relative CL efficiency, normalized to the highest value, *QY* – quantum yield (in %). The vales were obtained basing on five runs for each concentration of XAE, CV = 2–8%.

compound	$k_{\rm CL}^{1}$	$k_{\rm CL}^2$	$k_{\rm CL}^3$	$k_{\rm CL}^4$	RCLE ¹	$RCLE^2$	RCLE ³	$RCLE^4$	QY^5	<i>RCLE</i> in buffered solutions ⁶		itions ⁶	stability ⁷
code											pН		_
										12.0	10.0	8.0	
2-F	4.44	5.19	2.91	6.77	0.808	0.880	0.544	0.410	2.31	83.5	46.7	18.4	51.5
2-Cl	4.29	4.24	2.88	6.77	0.729	0.774	0.489	0.417	2.08	80.5	65.8	17.8	42.1
2-Br	5.12	4.63	3.02	7.03	0.770	0.845	0.539	0.460	2.02	85.0	47.8	16.9	44.7
2-I	3.92	5.17	3.14	6.17	0.782	0.977	0.574	0.495	2.05	93.1	82.6	11.1	46.0
2-CF ₃	3.95	4.06	2.77	7.54	0.662	0.704	0.444	0.287	1.74	73.0	64.4	40.5	44.6
2-NO ₂	3.75	4.39	3.22	7.43	0.687	0.692	0.421	0.360	1.80	76.1	59.8	21.4	26.3
2-OCH ₃	0.42	0.91	0.29	0.21	0.635	0.765	0.475	0.513	1.67	70.1	19.3	0.474	71.9
2.6-diF	3.98	4.24	3.07	8.19	0.759	0.796	0.527	0.407	1.99	85.5	71.3	37.6	44.7
2.6-diCl	3.90	4.18	3.21	8.50	0.747	0.775	0.488	0.295	1.96	72.8	28.5	19.0	50.3
2.6-diBr	3.83	3.89	3.46	7.87	0.709	0.656	0.461	0.271	1.86	55.8	16.3	13.0	70.4
3-F	4.14	4.35	2.93	7.39	0.906	1.00	0.661	0.464	2.38	100	97.4	17.0	46.0
4-F	2.95	3.35	2.02	3.46	0.662	0.882	0.542	0.500	1.74	73.1	70.2	1.14	54.8
4-Cl	4.24	4.00	2.65	7.39	0.704	0.917	0.593	0.463	1.85	77.7	73.7	4.98	50.2
4-Br	3.97	4.19	3.23	7.23	0.762	0.920	0.612	0.505	2.00	84.1	80.4	5.03	51.8

Notes:

Final concentrations of reagents (plate):

 $^{1}c_{XAE} = 2.0 \times 10^{-5}$ M in 1 mM HCl; triggers: $c_{H2O2} = 4.5$ mM in 10 mM HNO₃; $c_{NaOH} = 50$ mM in H₂O (standard triggering mixture)

 $^{2}c_{XAE} = 2.0 \times 10^{-5}$ M in 1 mM HCl; triggers: $c_{H2O2} = 4.5$ mM in 10 mM HNO₃; $c_{TBAOH} = 50$ mM in H₂O

 ${}^{3}c_{XAE} = 2.0 \times 10^{-5}$ M in 1 mM HCl; triggers: $c_{H2O2} = 4.5$ mM in 10 mM HNO₃; $c_{DBU} = 50$ mM in H₂O

 $^{4}c_{XAE} = 2.0 \times 10^{-5}$ M in CH₃OH; triggers: $c_{H2O2} = 4.5$ mM in CH₃OH; $c_{TBAOH} = 50$ mM in CH₃OH

⁵Quantum yields (QY) were calculated for standard triggering system (see note 1) using luminol as standard.²²

⁶Standard phosphate buffers were used (*Aldrich*); triggering system: see note 1.

⁷Samples of XAEs were incubated in Britton-Robinson phosphate buffer: $c = 2.0 \times 10^{-5}$ M, pH = 8.0, T = 298 K; t = 30 min.; triggering system: see note 1.

Stabilities were calculated as % of the initial activity: $100\% \times (\text{integral CL} (t = 30 \text{ min.})/\text{integral CL} (t = 0 \text{ min.}))$. For details see Experimental section.

d

e

f

h

10

i

j

k

l

Fig. S1 DFT (B3LYP/6–31G**) optimized geometries of selected entities occurring on the reaction pathways of XAE's with OOH⁻ and OH⁻ (**TSVII**, **TSX**, **TSXIII**, **TSXVIII** represent transition state geometries; the dotted lines denote the bonds formed and broken during the course of the reaction).

9-[(2-bromophenoxy)carbonyl]-10-methylacridinium (2-Br)

9-[(2-methoxyphenoxy)carbonyl]-10-methylacridinium (2-OCH₃)

9-[(2,6-difluorophenoxy)carbonyl]-10-methylacridinium trifluoromethanesulfonate (2,6-diF)

9-[(2,6-dichlorophenoxy)carbonyl]-10-methylacridinium trifluoromethanesulfonate (2,6-diCl)

9-[(2,6-dibromophenoxy)carbonyl]-10-methylacridinium trifluoromethanesulfonate (2,6-diBr)

M

1.9749 0.4078

8.5

1.9702

8.0

7.5

1.8953

9.5

1.9687

9.0

9-[(2,6-diiodophenoxy)carbonyl]-10-methylacridinium (**2,6-diI**)

10

0

[ppm]

th

0.7391

7.0

9-[(3-fluorophenoxy)carbonyl]-10-methylacridinium (3-F)

9-[(4-fluorophenoxy)carbonyl]-10-methylacridinium (**4-F**)

9-[(4-chlorophenoxy)carbonyl]-10-methylacridinium (4-Cl)

9-[(4-bromophenoxy)carbonyl]-10-methylacridinium (**4-Br**)

0.28

Fig. S2 ¹H NMR, ¹³C NMR, ¹H–¹H COSY and ¹H–¹³C NMR HETCOR (HSQC) spectra (500 MHz, 100 MHz, respectively, room temperature (~300 K)) and MALDI-TOF MS spectra of XAE's. The aromatic region is enlarged above the general view of spectrum. For ¹H NMR and MALDI-TOF MS spectra see also Table S1[†]; for ¹³C NMR spectra see also Table S2[†]. Details of experiments are described in Experimental section.

Fig. S3 Calibration graphs for exemplary XAEs (Scheme 1) used for estimating relative CL efficiencies (*RCLE*) summarized in Table S3[†] (graph A) and $\Delta RCLE$, *LOD* and *LOQ* values given in Table 3 (graph B). *RCLEs* were calculated as the slopes of the above relationships ($\mathbb{R}^2 > 0.99$ in all cases) and normalized to the highest value. For details see Experimental section.

Fig. S4 Graph A: exemplary RP-HPLC analysis for post-CL reaction mixture obtained with the participation of **2,6-diF** (Scheme 1) and standard triggering reagents (see note 1 under the Table S3[†]). Graph B: calibration chart for 10-methylacridinium-9-carboxylic acid (NMACA, left) and 10-methyl-9-acridinone (NMAON, right). For details see Experimental section.

Fig. S5 Graph A: hydrolysis of **2,6-diF** in an alkaline environment (pH = 12.0) monitored chromatographically (RP-HPLC). Graph B: Linear charts used for estimation of the pseudo-first order hydrolysis constants (k_{OH} , Table 4) for exemplary XAEs (Scheme 1): **2,6-diF** (left) and **2,6-diBr** (right). For details see Experimental section.