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1, General Remarks
Reagents and solvents: Commercially available reagents were used without any further 
purification. All organic solvents were of reagent grade quality. The dry 1, 4-dioxane was 
distilled from sodium/benzophenone.

Chromatography: Flash column chromatography was performed using Silicycle silica gel 
(200-300 mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm 
coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 nm or 365 nm). 
Nuclear Magnetic Resonance Spectroscopy: 1H NMR was recorded on magnet system 400’54 
ascend purchased from Bruker Biospin AG. 1H NMR spectra chemical shifts (δ) are reported 
in parts per million (ppm) referenced to TMS (0ppm). Data are reported as follows: chemical 
shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt 
= doublet of triplets, ddt = doublet of doublet of triplets, dtd = doublet of triplet of doublets, 
m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration.
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Scheme S1: Proposed mechanism of H2O2/Br-/H+

Initially, Br- was oxidized to form the hypobromous acid in the presence of acid and hydrogen 
peroxide. The generated hypobromous acid subsequently reacted with the corresponding 
hydroxyl group to form the hypobromite intermediate A, which yielded the corresponding 
carbonyl compounds via α-hydrogen elimination. Brnsted acid and Br- were reformatted to 
maintain the system circularly. [1-2]



3, Table S 2: The temperature screening under optimized conditionsa
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areaction condition: 1a (1 mmol), AIBN (0.05 mmol), NaBr (3 mmol), solvent (3 mL), T (℃), under 
O2 (O2 balloon). byield: isolated yield.

4, General experimental procedure
The specific benzylic alcohols (1 mmol, 1.0 eq) and sodium bromide (3 mmol, 3 eq) were 
dissolved in dioxane (3 mL), then AIBN (0.05 mmol, 0.05 eq) was added to the reaction 
mixture and stirred for a certain time in a preheated oil batch at 70℃ under O2 atmosphere 
(O2 balloon). The reaction mixtures were diluted with ethyl acetate and washed with brine 
and water. The separated organic layers were dried over by anhydrous Na2SO4 and filtered. 
The filtrate was concentrated under reduced pressure and the residue was 
chromatographed on silica gel using hexane/ethyl acetate to afford the desired product.

5, proposed mechanism and verification

5.1 Scheme S2: intermediate A and intermediate B 
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Scheme S2: intermediate A and intermediate B

Entry Catalyst (equiv) Additive(equiv) Solvent T(℃) Yield 
(%)b

1 AIBN NaBr(3) Dioxane 50 34
2 AIBN NaBr(3) Dioxane 60 82
3 AIBN NaBr(3) Dioxane 70 95
4 AIBN NaBr(3) Dioxane 80 94
5 AIBN NaBr(3) Dioxane 90 92



5.2 Figure S1: MS for intermediate A
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HRMS calculated for intermediate A (C16H24N2O4+Cl)-: 343.143, found: 343.1447.

5.3 Figure S2: MS for intermediate B
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Counts vs. Mass-to-Charge (m/z)
406.13 406.14 406.15 406.16 406.17 406.18 406.19 406.2 406.21 406.22 406.23 406.24 406.25 406.26 406.27 406.28 406.29 406.3

HRMS calculated for intermediate B (C22H29NO4+Cl)-: 406.1791, found: 406.1850.

6, Characterization Data of the products
All the products were characterized by 1H NMR spectroscopy and compared with literature 
reported data.

Anisic aldehyde
1H NMR (400 MHz, CDCl3) δ 9.79 (s, 1H), 7.77 – 7.72 (m, 2H), 6.94 – 6.89 (m, 
2H), 3.79 (s, 3H). Spectral data are in accordance with the literature 
report.[3-4]

4-Chlorobenzaldehyde
1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 7.78 – 7.76 (m, 1H), 7.75 – 7.74 (m, 
1H), 7.47 – 7.45 (m, 1H), 7.45 – 7.43 (m, 1H). Spectral data are in accordance 
with the literature report.[3]

4'-Chloroacetophenone

1H NMR (400 MHz, CDCl3) δ 7.84 – 7.82 (m, 1H), 7.81 – 7.80 (m, 1H), 7.38 – 7.36 
(m, 1H), 7.35 – 7.34 (m, 1H), 2.51 (s, 3H).

4-Bromobenzaldehyde
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1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 
8.3 Hz, 2H).

Benzophenone (2i)

1H NMR (400 MHz, CDCl3) δ 7.84 – 7.78 (m, 4H), 7.62 – 7.56 (m, 2H), 7.52 – 
7.46 (m, 4H). Spectral data are in accordance with the literature report.[4]

2, 6-Dichlorobenzaldehyde. 

1H NMR (400 MHz, CDCl3) δ 10.43 (s, 1H), 7.33 (s, 3H). Spectral data are in 
accordance with the literature report.[3]

Furfural
1H NMR (400 MHz, CDCl3) δ 9.59 (s, 1H), 7.64 – 7.62 (m, 1H), 7.19 (dd, J = 3.6, 0.5 
Hz, 1H), 6.54 (dd, J = 3.6, 2 Hz, 1H). Spectral data are in accordance with the 
literature report.[5]

p-Tolualdehyde
1H NMR (400 MHz, CDCl3) δ 9.88 (s, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.9 
Hz, 2H), 2.36 (s, 3H). Spectral data are in accordance with the literature 
report.[3]

2-Thenaldehyde
1H NMR (400 MHz, CDCl3) δ 9.87 (d, J = 1.2 Hz, 1H), 7.73 – 7.68 (m, 2H), 7.14 (dd, 
J = 4.8, 3.8 Hz, 1H). Spectral data are in accordance with the literature report.[4]

3-Pyridinecarboxaldehyde
1H NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 9.02 (dd, J = 1.6 Hz,0.4 Hz,1H), 8.78 
(dd, J = 4.8, 1.6 Hz, 1H), 8.11 (dt, J = 7.9, 2.0 Hz, 1H), 7.43 (dd, J = 7.9, 4.8 Hz, 1H). 
Spectral data are in accordance with the literature report.[3]
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6, 1H spectra
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