A rapid and efficient one-pot method for the reduction of Nprotected α -amino acids to chiral α -amino aldehydes using CDI/DIBAL-H

Jakov Ivkovic,^a Christian Lembacher-Fadum^a and Rolf Breinbauer^{*a}

^a Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria

Supporting Information

General information

All commercially available reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, ABCR, Fisher Scientific, Acros Organics, Roth or VWR, and were used without further purification except otherwise stated. When it was required, non-dry solvents were distilled before use. If reactions were performed under inert conditions, e.g. exclusion of water, oxygen or both, all experiments were carried out using established Schlenk techniques. Herein solvents were dried and/or degassed with common methods and afterwards stored under inert gas atmosphere (argon or N₂) over molecular sieves. In some cases, when explicitly mentioned, dry solvents were received from the mentioned suppliers. DCM (EtOH stabilized) was distilled first over P_4O_{10} to remove the stabilizer and then over CaH_2 under argon atmosphere and stored over 4 Å molecular sieves in an amber 1000 mL Schlenk bottle. THF was dried over Na under reflux and argon atmosphere until benzophenone indicated its dryness by turning into deep blue color. The dry THF was stored over 4 Å molecular sieves in an amber 1000 mL Schlenk bottle under argon atmosphere.

In general, when high vacuum was declared in experimental procedures, typically a vacuum of 10^{-2} - 10^{-3} mbar was applied. All reactions were stirred with Teflon-coated magnetic stirring bars. Molecular sieves (Sigma Aldrich, beads with 8-12 mesh) were activated in a round-bottom flask with a gas-inlet adapter by heating them carefully in a heating mantle for approximately 12 h under high vacuum until complete dryness was obtained. These activated molecular sieves were stored at room temperature under argon atmosphere.

Temperatures were measured externally if not otherwise stated. When working at a temperature of 0 °C, an ice-water bath served as the cooling medium. Reactions, which were carried out at -78 °C were cooled by keeping the reaction vessel immersed in a properly sized Dewar vessel containing acetone/dry ice.

Analytical thin layer chromatography (TLC) was carried out on Merck TLC silica gel 60 F254 aluminium sheets and spots were visualized by UV light (λ = 254 and/or 366 nm) or by staining with iodide, cerium ammonium molybdate (2.0 g Ce(SO₄)₂, 50.0 g (NH₄)₆Mo₇O₂₄ and 50 mL conc. H₂SO₄ in 400 mL water) (CAM) or potassium permanganate (0.3 g KMnO₄, 20 g K₂CO₃, 5 mL 5 % aqueous NaOH in 300 mL H₂O)

followed by the development of the stains in the heat. Flash column chromatography was performed on silica gel 0.035-0.070 mm, 60 Å (Acros Organics). A 30 to 100 fold excess of silica gel was used with respect to the amount of dry crude product, depending on the separation problem. The dimensions of the column were selected in such a way that the required amount of silica gel formed a pad between 10 cm and 25 cm. The column was equilibrated first with the solvent or solvent mixture, and the crude product diluted with the eluent was applied onto the top of the silica pad. In case when the crude product was insoluble in the eluent, the sample was dissolved in an appropriate solvent (EtOAc or DCM), and the equal amount of diatomaceous earth was added, followed by removal of the solvent under reduced pressure and drying the sample in vacuo, which was then directly loaded onto the top of the silica pad. The mobile phase was forced through the column using a rubber bulb pump.

GC-MS analyses were carried out on an Agilent Technologies 7890A GC system equipped with a 5975C mass selective detector (inert MSD with Triple Axis Detector system, EI, 70 eV). Samples were injected by employing autosampler 7683B in a split mode 20/1 (inlet temperature: 280 °C; injection volume: 0.2 μ L) and separated on an Agilent Technologies J&W GC HP-5MS capillary column (30 m x 0.2 mm x 0.25 μ m) at a constant helium flow rate (He 5.0 Air Liquide, 1.085 mL/min, average velocity 41.6 cm/sec). A general gradient temperature method was used (initial temperature: 50 °C for 2 min, linear increase to 300 °C (40 °C/min), hold for 5 min, 1 min post-run at 300 °C, detecting range: 50.0-550.0 amu, solvent delay of 2.80 min).

GC-FID analyses for separation of enantiomers or diastereomers were carried out on an Agilent Technologies 6890N GC system equipped with a flame ionization detector (FID). Samples were injected by employing autosampler CTC Analytics CombiPAL in a split mode 5/1 (inlet temperature: 200 °C; injection volume: 1.0 μ L) and separated on a Varian CP7503 CP-Chiralsil Dex CP capillary column (25.0 m x 320 μ m x 0.25 μ m) at a constant nitrogen flow rate (Nitrogen 5.0 Messer, 4.5 mL/min, average velocity 68 cm/sec). Two gradient temperature methods were used: "AMAL_GCPAL.M" (initial temperature: 80 °C for 5 min, linear increase to 150 °C (10 °C/min), hold for 18 min, 1 min post-run at 160 °C) and "AMAL_GCPAL_PHE_4.M" (initial temperature: 80 °C for 5 min, linear increase to 125 °C (10 °C/min), hold for 40 min, 1 min post-run at 160 °C).

Analytical HPLC-MS analyses were performed on an Agilent Technologies 1200 Series system (G1379 Degasser, G1312 Binary Pump, G1367C HiP ALS SL Autosampler, G1330B FC/ALS Thermostat, G1316B TCC SL column compartment, G1365C MWD SL multiple wavelength detector (deuterium lamp, 190-400 nm)) equipped with a single quadrupole LCMS detector "6120 LC/MS" using electrospray ionization source (ESI in positive and negative mode). The analyses were carried out on an Agilent Poroshell 120 SB-C18 (100 x 3.0 mm, 2.7 µm) column equipped with a Merck LiChroCART[®] 4-4 pre-column. A general solvent gradient method was used (0-2.00 min: MeCN:H₂O = 10:90 (v/v), 2.00-6.00 min: linear increase to MeCN:H₂O = 40:60 (v/v), 6.00-12.00 min: holding of MeCN:H₂O = 40:60 (v/v), 12.00-16.00 min: linear increase to MeCN:H₂O = 95:5 (v/v), oven temperature: 40 °C, solvent flow: 0.700 mL/min).

Analytical HPLC analyses for separation of enantiomers were performed on an Agilent Technologies 1100 Series system (G1322A Degasser, G1311 Quaternary Pump, G1313A ALS Autosampler, G1316A Column Compartment, G1365B MWD multiple wavelength detector (deuterium lamp, 190-400 nm)). The analyses were carried out on a Daicel Chemical Technologies Chiralpak[®] AD-H (250 x 4.6 mm, 5.0 µm)

column. An isocratic method was used (0-30.00 min: heptane:2-propanol = 90:10 (v/v), oven temperature: 15 °C, solvent flow: 0.850 mL/min).

¹H-, ¹³C-NMR spectra were recorded on a Bruker AVANCE III 300 spectrometer (¹H: 300.36 MHz; ¹³C: 75.53 MHz). Chemical shifts were referenced to the residual proton and carbon signal of the deuterated solvent, respectively (CDCl₃: δ = 7.26 ppm (¹H), 77.16 ppm (¹³C)). Signal multiplicities are abbreviated as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quadruplet), p (pentet) and m (multiplet). Additionally, quaternary carbon atoms are designated as C_q. Deuterated solvents for nuclear resonance spectroscopy were purchased from Euriso-top[®].

Optical rotations were measured in CH_2Cl_2 , $CHCl_3$, EtOH and MeOH on a Perkin Elmer 341 polarimeter with a 10 cm cell. Concentration *c* given is in g/100 mL. Each optical rotation measurement was done five times and the mean value is reported.

Melting points were measured on a Mel-Temp[®] melting point apparatus (Electrothermal) with an integrated microscopical support in open capillary tubes and were not corrected. The temperature was measured with a mercury-in-glass thermometer.

High-resolution mass spectra were recorded using MALDI-TOF on a Micromass[®] MALDI micro MX^m spectrometer. Dithranol (1,8-dihydroxy-9,10-dihydroanthracen-9-one) or α -cyano-4-hydroxycinnamic acid served as matrix. The stated values are m/z.

Purification of CDI (1,1'-carbonyldiimidazole)¹

According to the note 8 in the procedure published by H. A. Staab and K. Wendel ¹ an oven dried 250 mL two-neck round-bottom flask with a Schlenk adapter, a reflux condenser, a gas bubbler and a magnetic stirring bar, were purged with N₂. In this flask 25.0 g (154 mmol) CDI were suspended in 40 mL abs. THF and stirred. The mixture was heated to reflux in an oil bath and 20 mL abs. THF were added to facilitate the full dissolution. Stirring was stopped and the pale yellow solution was allowed to cool down to RT for 60 min. Crystallization was completed by cooling in an ice bath for 30 min. Subsequently, under nitrogen counter flow, the reflux condenser was removed and an inert atmosphere frit was mounted together with an additional receiving 250 mL two-neck round-bottom flask at the opposite end of the frit. White crystals were collected by filtration under inert atmosphere, washed with 15 mL of ice-cold abs. THF and dried *in vacuo*. 19.9 g (123 mmol, 80%) white crystalline solid were recovered and stored in a Schlenk flask under nitrogen atmosphere.

General procedure for one-pot conversion of *N*-protected α -amino acids to *N*-protected α -amino aldehydes

A 1000 mL two-neck round-bottom flask with a Schlenk adapter, a glass stopper and a magnetic stirring bar was heated, dried under vacuum and purged with N_2 . 50.0 mmol (1.0 eq) protected amino acid were added and dissolved in 333 mL abs. dichloromethane. The solution was cooled to 0 °C (ice bath) and 8.918 g (55.0 mmol, 1.1 eq) 1,1'-carbonyldiimidazole (CDI) were added. A gas bubbler was mounted instead of the glass stopper to maintain a pressure relief. After stirring for 60 min the gas bubbler was removed and the colorless reaction solution was cooled to -78 °C (CO₂/acetone bath) for 15 min. A septum was mounted instead of the glass stopper while maintaining a gentle counter flow of N₂. Subsequently, 105 mL (105 mmol, 2.1 eq) DIBAL-H solution (1.0 M in toluene) were added dropwise with a syringe through the septum throughout 110 min. The reaction mixture was stirred at -78 °C until TLC indicated quantitative conversion (30-60 min). The reaction mixture was quenched by the addition of 335 mL EtOAc. The acetone bath was removed, the gas bubbler was mounted, and 222 mL tartaric acid solution (25 % in H_2O) were added to the mixture under vigorous stirring. The mixture was warmed up by immersing the vessel into a water bath at RT and stirred vigorously for 15 min. The stirring was stopped and the layers were separated. The aqueous phase was extracted with EtOAc (1 x 333 mL) and the combined organic extracts were washed with 1 M HCl (1 x 222 mL), 0.8 M NaHCO₃ (1 x 222 mL) and brine (1 x 222 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was frozen in liquid nitrogen and was allowed to reach room temperature under high vacuum. The freeze-thaw procedure was repeated two times. The crude product is used without further purification.

tert-Butyl (S)-(3-methyl-1-oxobutan-2-yl)carbamate (3a)²

This compound was synthesized according to the general procedure using 10.864 g (50.0 mmol, 1.0 eq) Boc-L-Val-OH. The colorless solution was treated with 8.918 g (55.0 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 105 mL (105 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 45 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 8.474 g (42.10 mmol, 84 %) of a viscous colorless liquid.

Yield: 8.474 g (42.10 mmol, 84 %), viscous colorless liquid.

$$[\alpha]_{D}^{23} = +78.6$$
 ° (c = 1.07, CH₂Cl₂), lit. $[\alpha]_{D}^{20} = +82.1$ ° (c = 1, CH₂Cl₂)².

 $R_f = 0.61$ (cyclohexane/ethyl acetate = 2:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.63 (s, 1H, CHO), 5.15-4.99 (m, 1H, NH), 4.33-4.15 (m, 1H, CHCHO), 2.37-2.14 (m, 1H, CH(CH₃)₂), 1.44 (s, 9H, (CH₃)₃CO), 1.02 (d, ³J = 6.9 Hz, 3H, CH(CH₃)(CH₃)), 0.93 (d, ³J = 7.0 Hz, 3H, CH(CH₃)(CH₃)).

¹³C NMR (75 MHz, CDCl₃) δ = 200.5 (s, 1C, CHO), 156.0 (s, 1C, C=O), 80.1 (s, 1C, Me₃C), 64.8 (s, 1C), 29.2 (s, 1C), 28.4 (s, 3C), 19.2 (s, 1C), 17.7 (s, 1C).

GC-FID (CP-Chiralsil Dex): t_R ((S)-**3a**) = 9.0 min, 100%; t_R ((R)-**3a**) = 9.2 min, no abundance detected; ee > 99%.

Racemic tert-butyl (3-methyl-1-oxobutan-2-yl)carbamate (rac-3a)

*rac-*3a

This compound was synthesized according to the general procedure using 43 mg (0.20 mmol, 1.0 eq) Boc-DL-Val-OH. The colorless solution was treated with 36 mg (0.22 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.42 mL (0.42 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 33 mg (0.16 mmol, 80 %) of a colorless liquid.

Yield: 33 mg (0.16 mmol, 80 %), colorless liquid.

 $R_f = 0.61$ (cyclohexane/ethyl acetate = 2:1 (v/v); staining: KMnO₄).

GC-FID (CP-Chiralsil Dex CP): t_R ((S)-3a) = 9.0 min; t_R ((R)-3a) = 9.2 min.

tert-Butyl (S)-(1-oxopropan-2-yl)carbamate (3b)^{3,4}

This compound was synthesized according to the general procedure using 9.460 g (50.0 mmol, 1.0 eq) Boc-L-Ala-OH. The colorless solution was treated with 8.918 g (55.0 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 105 mL (105 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 45 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 7.510 g (43.40 mmol, 87 %) of a white solid.

Yield: 7.510 g (43.40 mmol, 87 %), white solid.

m.p. = 81–84 °C, lit. 90–92 °C 3 and 70 °C. 4

 $[\alpha]_D^{23} = -39.0$ ° (c = 1.0, MeOH), lit. $[\alpha]_D^{20} = -40.9$ ° (c = 1, MeOH)³ and $[\alpha]_D^{undisclosed} = -39.1$ ° (c = 0.69, MeOH).⁴

 $R_f = 0.38$ (cyclohexane/ethyl acetate = 2:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.55 (s, 1H, CHO), 5.11-4.99 (m, 1H, NH), 4.30-4.12 (m, 1H, CHCHO), 1.44 (s, 9H, (CH₃)₃CO), 1.32 (d, ³J = 7.4 Hz, 3H, CHCH₃).

¹³C NMR (75 MHz, CDCl₃) δ = 199.9 (s, 1C, CHO), 155.4 (s, 1C, C=O), 80.2 (s, 1C, Me₃C), 55.7 (s, 1C), 28.4 (s, 3C), 15.0 (s, 1C).

tert-Butyl (S)-(1-oxo-3-phenylpropan-2-yl)carbamate (3c)⁵

This compound was synthesized according to the general procedure using 53 mg (0.20 mmol, 1.0 eq) Boc-L-Phe-OH. The colorless solution was treated with 36 mg (0.22 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.42 mL (0.42 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 48 mg (0.19 mmol, 96 %) of a white solid.

Yield: 48 mg (0.19 mmol, 96 %), white solid.

m.p. = 80–84 °C, lit. 82 °C. ⁵

 $[\alpha]_{D}^{23} = +39.3 \circ (c = 1.02, CH_2Cl_2), [\alpha]_{D}^{undisclosel} = +41.6 \circ (c = 1.1, CH_2Cl_2).^{5}$

 $R_f = 0.26$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.62 (s, 1H, CHO), 7.40–7.06 (m, 5H, Ar–*H*), 5.15–4.97 (m, 1H, N*H*), 4.50–4.32 (m, 1H, CHCHO), 3.22–2.98 (m, 2H, CH₂), 1.42 (s, 9H, (CH₃)₃CO).

¹³C NMR (75 MHz, CDCl₃) δ = 199.5 (s, 1C, CHO), missing carbamate signal (155 ppm), 135.9 (s, 1C, C_q), 129.5 (s, 2C), 128.9 (s, 2C), 127.2 (s, 1C), 80.4 (s, 1C, Me₃C), 60.8 (s, 1C), 35.6 (s, 1C), 28.4 (s, 3C).

GC-FID (CP-Chiralsil Dex): t_R ((S)-3c) = 38.2 min, 99.51%; t_R ((R)-3c) = 38.2 min, 0.49%; ee > 99%.

Racemic tert-butyl (1-oxo-3-phenylpropan-2-yl)carbamate (rac-3c)

This compound was synthesized according to the general procedure using 53 mg (0.20 mmol, 1.0 eq) Boc-DL-Phe-OH. The colorless solution was treated with 36 mg (0.22 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.42 mL (0.42 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 30 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 46 mg (0.18 mmol, 90 %) of a white amorphous paste.

Yield: 48 mg (0.19 mmol, 96 %), white amorphous paste.

 $R_f = 0.26$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

GC-FID (CP-Chiralsil Dex): t_R ((S)-**3c**) = 38.3 min; t_R ((R)-**3c**) = 39.5 min.

tert-Butyl (S)-2-formylpyrrolidine-1-carboxylate (3d)⁶

3d

This compound was synthesized according to the general procedure using 86 mg (0.40 mmol, 1.0 eq) Boc-L-Pro-OH. The colorless solution was treated with 71 mg (0.44 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.84 mL (0.84 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 77 mg (0.39 mmol, 97 %) of a viscous colorless liquid.

Yield: 77 mg (0.39 mmol, 97 %), colorless liquid.

 $[\alpha]_{D}^{23} = -97.9^{\circ} (c = 1.02, CHCl_{3}), lit. [\alpha]_{D}^{24} = -96.1^{\circ} (c = 0.6, CHCl_{3}).^{6}$

 $R_f = 0.20$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃, mixture of two rotamers) δ = 9.54 and 9.44 (s, 1H, CHO), 4.24–4.15 and 4.10– 3.99 (m, 1H, CHCHO), 3.62–3.38 (m, 2H, NCH₂), 2.21–1.73 (m, 4H, CH₂CH₂CH), 1.46 and 1.41 (s, 9H, (CH₃)₃CO). ¹³C NMR (75 MHz, CDCl₃) δ = 200.7 and 200.5 (s, 1C, CHO), 155.0 and 154.1 (s, 1C, C=O), 80.8 and 80.3 (s, 1C, Me₃C), 65.1 and 65.0 (s, 1C), 47.0 and 46.9 (s, 1C), 28.5 and 28.4 (s, 3C), 28.1 and 26.8 (s, 1C), 24.7 and 24.1 (s, 1C).

Enantiomeric excess was determined indirectly by conversion of freshly isolated material into alcohol 8d.

tert-Butyl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (8d)⁷

In a 5 mL glass vial equipped with a Teflon[®]-coated magnetic stirring bar 59 mg (0.27 mmol, 1.0 eq) freshly prepared compound **3d** were dissolved in 4.0 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 17 mg (0.44 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L acetone and stirred for 5 min at RT. The solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic phase was concentrated under reduced pressure and purified by flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 50 mg (0.25 mmol, 93%) of a white solid.

Yield: 50 mg (0.25 mmol, 93%, 2 steps), white solid.

m.p. = 57–60 °C, lit. 58–59 °C.⁷

 $[\alpha]_D^{23} = -55.7 \circ (c = 0.83, CHCl_3), lit. [\alpha]_D^{26} = -52.7 \circ (c = 1.05, CHCl_3).^7$

 $R_f = 0.42$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 4.75 (br s, 1H, O*H*), 4.01–3.81 (m, 1H, CH₂C*H*N), 3.68–3.49 (m, 2H, CH₂O), 3.49–3.36 (m, 1H, NCH*H*), 3.35–3.21 (m, 1H, NC*H*H), 2.07–1.49 (m, 4H, NCH₂C*H*₂C*H*₂), 1.45 (s, 9H, ((C*H*₃)₃C).

¹³C NMR (75 MHz, CDCl₃) δ = 157.3 (s, 1C, C=O), 80.3 (s, 1C, (CH₃)₃C), 67.8 (s, 1C), 60.3 (s, 1C), 47.7 (s, 1C), 28.8 (s, 1C), 28.6 (s, 3C), 24.4 (s, 1C).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((*R*)-**8d**) = 7.2 min, no abundance detected; t_R ((*S*)-**8d**) = 8.4 min, 100%; ee >99%.

Racemic tert-butyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate (rac-8d)

*rac-*8d

The aldehyde intermediate was synthesized according to the general procedure using 86 mg (0.400 mmol, 1.0 eq) Boc-DL-Pro-OH. The colorless solution was treated with 71 mg (0.440 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.84 mL (0.84 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying over Na₂SO₄ provided 57 mg (0.29 mmol, 72%) of **rac-3d** as colorless oil.

In a 5 mL glass vial equipped with a Teflon-coated magnetic stirring bar 57 mg (0.29 mmol, 1.0 eq) freshly prepared *rac*-3d were dissolved in 4.0 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 17 mg (0.44 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L of acetone and stirred for 5 min at RT. Solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic extract was concentrated under reduced pressure and purified via flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 43 mg (0.21 mmol, 53%, 2 steps) of a colorless oil.

Yield: 43 mg (0.21 mmol, 53%, 2 steps), colorless oil.

 $R_f = 0.42$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): $t_R((R)$ -8d) = 7.2 min; $t_R((S)$ -8d) = 8.4 min.

tert-Butyl (S)-(4-(methylthio)-1-oxobutan-2-yl)carbamate (3e)⁸

This compound was synthesized according to the general procedure using 100 mg (0.400 mmol, 1.0 eq) Boc-L-Met-OH. The colorless solution was treated with 71 mg (0.44 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.84 mL (0.84 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 86 mg (0.37 mmol, 96 %) of colorless oil.

Yield: 86 mg (0.37 mmol, 92 %), colorless oil.

 $[\alpha]_{D}^{23} = +27.0$ ° (c = 1.74, CH₂Cl₂), lit. $[\alpha]_{D}^{20} = +27.8$ ° (c = 1, CH₂Cl₂).⁸

 $R_f = 0.26$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.63 (s, 1H, CHO), 5.29–5.13 (m, 1H, NH), 4.37–4.22 (m, 1H, CHCHO), 2.62–2.46 (m, 2H, SCH₂), 2.31–2.13 (m, 1H, NCHCH), 2.07 (s, 3H), 2.00–1.84 (m, 1H, NCHCH) 1.44 (s, 9H, (CH₃)₃CO).

¹³C NMR (75 MHz, CDCl₃) δ = 199.2 (s, 1C, CHO), 155.7 (s, 1C, C=O), 80.4 (s, 1C, Me₃C), 59.2 (s, 1C), 30.0 (s, 1C), 28.9 (s, 1C), 28.4 (s, 3C), 15.5 (s, 1C).

GC-FID (CP-Chiralsil Dex): t_R ((S)-3c) = 14.2 min, 100%; t_R ((R)-3c) = 14.4 min, no abundance detected; ee >99%.

Racemic tert-butyl (4-(methylthio)-1-oxobutan-2-yl)carbamate (rac-3e)

This compound was synthesized by mixing 50 mg (0.20 mmol, 0.5 eq) Boc-L-Met-OH and 50 mg (0.20 mmol, 0.5 eq) Boc-D-Met-OH, and converting the mixture according to the general procedure. The colorless solution was treated with 71 mg (0.44 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.84 mL (0.84 mmol, 2.1 eq) DIBAL-H. The mixture was stirred for 30 min at -78 °C until TLC indicated full conversion. Extractive workup and drying over Na₂SO₄ provided 89 mg (0.38 mmol, 95 %) of a colorless oil.

Yield: 89 mg (0.38 mmol, 95 %), colorless oil.

 $R_f = 0.26$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

GC-FID (CP-Chiralsil Dex): $t_R((S)$ -3c) = 14.2 min; $t_R((R)$ -3c) = 14.4 min.

tert-Butyl ((25,35)-3-methyl-1-oxopentan-2-yl)carbamate (3f)⁵

This compound was synthesized according to the general procedure using 185 mg (0.800 mmol, 1.0 eq) Boc-L-Ile-OH. The colorless solution was treated with 143 mg (0.880 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 1.68 mL (1.68 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 156 mg (0.725 mmol, 91 %) of colorless turbid oil.

Yield: 156 mg (0.725 mmol, 91 %), colorless turbid oil.

 $[\alpha]_{D}^{23} = +87.1 \circ (c = 0.93, CH_2Cl_2), lit. [\alpha]_{D}^{undisclosed} = +85.0 \circ .5$

 $R_f = 0.39$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.64 (s, 1H, CHO), 5.23–4.97 (m, 1H, NH), 4.36–4.11 (m, 1H, CHCHO), 2.08– 1.86 (m, 1H), 1.55–1.33 (m, 10H, (CH₃)₃CO and CH₃CHH), 1.32–1.12 (m, 1H, CH₃CHH), 1.03–0.79 (m, 6H, 2CH₃).

¹³C APT NMR (75 MHz, CDCl₃) δ = 200.8 (s, 1C, CHO), 155.9 (s, 1C, C=O), 80.0 (s, 1C, Me₃C), 64.3 (s, 1C), 36.5 (s, 1C), 28.4 (s, 3C), 25.4 (s, 1C), 15.8 (s, 1C), 12.00 (s, 1C).

GC-EI-MS: t_R ((25,35)-6) = 6.09 min; m/z = 57 (100%), 69 (9%), 86 (47%), 112 (3%), 130 (29%), 142 (2%), 186 (2%).

GC-FID (CP-Chiralsil Dex): t_R ((2R,3S)-**3f**) = 10.0 min, 0.46%; t_R ((2S,3S)-**3f**) = 10.1 min, 99.54%; de = >99%.

Partial epimerization of *tert*-butyl ((*2S,3S*)-3-methyl-1-oxopentan-2-yl)carbamate ((*2S,3S*)-3f) to *tert*-butyl ((*2R,3S*)-3-methyl-1-oxopentan-2-yl)carbamate ((*2R,3S*)-3f)

In a 10 mL Schlenk tube 50 mg (0.23 mmol) crude freshly prepared **3f** were dissolved in 2.0 mL cyclohexane/EtOAc 4:1. The solution was vigorously stirred with a Teflon-coated magnetic stirring bar

and 1.0 g of silica was added. The mixture was immediately purged by three cycles of alternate evacuation to the point of gentle boiling and filling with nitrogen atmosphere. The colorless gel-like mixture was stirred for 45h at 24 °C. Subsequently, the mixture was concentrated and dried under reduced pressure. Filtration through a short pad of silica (SiO₂, cyclohexane/EtOAc 6:1) provided 47 mg (0.22 mmol, 96%) of a colorless oil.

Yield: 47 mg (0.22 mmol, 96%), colorless oil.

 $[\alpha]_{D}^{23} = +26.1 \circ (c = 1.40, CHCl_{3}).$

 $R_f = 0.39$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃, *(2R,3S)*-epimer, based on HSQC) δ = 9.60 (s, 1H, CHO), 5.10–4.92 (m, 1H, NH), 4.41–4.31 (m, 1H, CHCHO), 2.10–1.86 (m, 1H), 1.55–1.36 (m, 10H, (CH₃)₃CO and CH₃CHH), 1.34–1.14 (m, 1H, CH₃CHH), 1.00–0.79 (m, 6H, 2CH₃).

¹³C NMR (75 MHz, CDCl₃, *(2R,3S)*-epimer, based on HSQC) δ = 200.8 (s, 1C, CHO), 156.0 (s, 1C, C=O), 80.1 (s, 1C, Me₃*C*), 63.3 (s, 1C), 35.3 (s, 1C), 28.4 (s, 3C), 26.4 (s, 1C), 14.6 (s, 1C), 12.00 (s, 1C).

GC-EI-MS:

 t_R ((2R,3S)-**3f**) = 6.04 min, 26.5%, m/z = 57 (100%), 69 (10%), 86 (56%), 112 (4%), 130 (36%), 142 (3%), 186 (4%);

 t_R ((25,35)-**3f**) = 6.08 min, 73.5%; m/z = 57 (100%), 69 (10%), 86 (57%), 112 (3%), 130 (36%), 142 (3%), 186 (4%).

GC-FID (CP-Chiralsil Dex): t_R ((2R,3S)-**3f**) = 10.0 min, 31.58%; t_R ((2S,3S)-**3f**) = 10.1 min, 68.42%.

Methyl (S)-3-((tert-butoxycarbonyl)amino)-4-oxobutanoate (3g)⁸

This compound was synthesized according to the general procedure using 356 mg (1.44 mmol, 1.0 eq) Boc-L-Asp(OMe)-OH. The colorless solution was treated with 257 mg (1.58 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 3.02 mL (3.02 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 295 mg of colorless turbid oil. Purification via flash chromatography (SiO₂, cyclohexane/EtOAc 4:1) furnished 206 mg (0.893 mmol, 62 %) of the desired aldehyde as a colorless oil.

Yield: 206 mg (0.893 mmol, 62 %), colorless oil.

 $[\alpha]_{D}^{23} = -16.9$ ° (c = 0.92, CHCl₃).

 $R_f = 0.28$ (cyclohexane/ethyl acetate = 2:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.64 (s, 1H, CHO), 5.72–5.52 (m, 1H, NH), 4.44–4.25 (m, 1H, CHCHO), 3.69 (s, 3H), 3.08–2.91 (m, 1H, COCHH), 2.90–2.74 (m, 1H, COCHH), 1.45 (s, 9H, (CH₃)₃CO).

¹³C NMR (75 MHz, CDCl₃) δ = 199.3 (s, 1C, *C*HO), 171.8 (s, 1C, C=O), 155.6 (s, 1C, C=O), 80.7 (s, 1C, Me₃C), 56.1 (s, 1C), 52.3 (s, 1C), 34.5 (s, 1C), 28.4 (s, 3C).

Benzyl (S)-(4-methyl-1-oxopentan-2-yl)carbamate (3h)⁹

This compound was synthesized according to the general procedure using 212 mg (0.800 mmol, 1.0 eq) Boc-L-Leu-OH. The colorless solution was treated with 143 mg (0.880 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 1.68 mL (1.68 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 174 mg (0.698 mmol, 87 %) of colorless oil.

Yield: 174 mg (0.698 mmol, 87 %), colorless oil.

 $[\alpha]_{D}^{23} = -41.7 \circ (c = 1.60, MeOH), [\alpha]_{D}^{25} = -22.8 \circ (c = 0.74, MeOH).^{9}$

 $R_f = 0.58$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃, based on HSQC) δ = 9.59 (s, 1H, CHO), 7.47–7.20 (m, 5H, Ar–*H*), 5.30–5.16 (m, 1H, N*H*), 5.12 (s, 2H), 4.41–4.25 (m, 1H, CHCHO), 1.87–1.53 (m, 2H, (CH₃)₂C*H* and NCHC*H*H), 1.51–1.30 (m, 1H, NCHCH*H*), 1.05–0.77 (m, 6H, 2C*H*₃).

¹³C NMR (75 MHz, CDCl₃) δ = 199.8 (s, 1C, CHO), 156.3 (s, 1C, C=O), 136.3 (s, 1C, C_q), 128.7 (s, 2C), 128.4 (s, 1C), 128.2 (s, 2C), 67.3 (s, 1C), 59.0 (s, 1C), 38.3 (s, 1C), 24.8 (s, 1C), 23.2 (s, 1C), 22.0 (s, 1C).

GC-FID (CP-Chiralsil Dex): t_R ((S)-**3h**) = 24.5 min, 99.24%; t_R ((R)-**3h**) = 25.0 min, 0.76%; ee >98%.

Racemic benzyl (4-methyl-1-oxopentan-2-yl)carbamate (rac-3h)

This compound was synthesized according to the general procedure using 53 mg (0.20 mmol, 1.0 eq) Cbz-DL-Leu-OH. The colorless solution was treated with 36 mg (0.22 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.42 mL (0.42 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 43 mg (0.17 mmol, 85 %) of colorless oil.

Yield: 43 mg (0.17 mmol, 85 %), colorless oil.

 $R_f = 0.58$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

GC-FID (CP-Chiralsil Dex): t_R ((S)-**3h**) = 24.5 min, t_R ((R)-**3h**) = 25.0 min.

Benzyl (S)-(1-oxo-3-phenylpropan-2-yl)carbamate (3i)³

This compound was synthesized according to the general procedure using 239 mg (0.800 mmol, 1.0 eq) Cbz-L-Phe-OH. The colorless solution was treated with 143 mg (0.880 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 1.68 mL (1.68 mmol, 2.1 eq) of 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 225 mg (0.794 mmol, 99 %) of white solid.

Yield: 225 mg (0.794 mmol, 99 %), white solid.

m.p. = 76–79 °C, lit. 77–79 °C.³

 $[\alpha]_{D}^{23} = +43.7 \circ (c = 0.56, CH_2Cl_2), lit. [\alpha]_{D}^{20} = +44.5 \circ (c = 1, CH_2Cl_2).^3$

 $R_f = 0.15$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.63 (s, 1H, CHO), 7.44–7.02 (m, 10H, Ar–*H*), 5.39–5.22 (m, 1H, N*H*), 5.11 (s, 2H, C*H*₂O), 4.59–4.43 (m, 1H, CHCHO), 3.13 (d, ³*J* = 6.3 Hz, 2H, C*H*₂).

¹³C APT NMR (75 MHz, CDCl₃) δ = 199.0 (s, 1C, CHO), 156.0 (s, 1C, C=O), 136.2 (s, 1C, C_q), 135.5 (s, 1C, C_q), 129.4 (s, 2C), 129.0 (s, 2C), 128.7 (s, 1C), 128.4 (s, 1C), 128.3 (s, 2C), 127.3 (s, 1C), 67.3 (s, 1C), 61.2 (s, 1C), 35.5 (s, 1C).

Enantiomeric excess was determined indirectly by conversion of freshly isolated material into alcohol 8i.

Benzyl (S)-(1-hydroxy-3-phenylpropan-2-yl)carbamate (8i)^{10,11}

In a 5 mL glass vial equipped with a Teflon[®]-coated magnetic stirring bar 42 mg (0.15 mmol, 1.0 eq) freshly prepared compound **3i** were dissolved in 1.5 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 27 mg (0.17 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L acetone and stirred for 5 min at RT. The solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic phase was concentrated under reduced pressure and purified by flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 38 mg (0.13 mmol, 86%) of a white solid.

Yield: 38 mg (0.13 mmol, 86%), white solid.

m.p. = 88–90 °C, lit. 90–91 °C. ¹¹

 $[\alpha]_{D}^{23} = -23.2 \circ (c = 0.69, CHCl_{3}), lit. [\alpha]_{D}^{19} = -28.5 \circ (c = 1.0, CHCl_{3}).^{10}$

 $R_f = 0.37$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 7.42–7.09 (m, 10H, Ar–*H*), 5.06 (s, 2H, CH₂OCO), 5.06–4.88 (m, 1H, N*H*), 4.02–3.84 (m, 1H, CHCH₂O), 3.67 (dd, ²*J* = 10.5 Hz, ³*J* = 2.7 Hz, 2H, NCHCH*H*), 3.56 (dd, ²*J* = 10.5 Hz, ³*J* = 4.4 Hz, 2H, NCHC*H*H), 2.85 (d, ³*J* = 7.0 Hz, 2H, CH₂OH), 2.08 (s, 1H, OH).

¹³C NMR (75 MHz, CDCl₃) δ = 156.6 (s, 1C, C=O), 137.7 (s, 1C, C_q), 136.5 (s, 1C, C_q), 129.4 (s, 2C), 128.8 (s, 2C), 128.7 (s, 2C), 128.3 (s, 1C), 128.2 (s, 2C), 126.8 (s, 1C), 67.0 (s, 1C), 64.1 (s, 1C), 54.3 (s, 1C), 37.5 (s, 1C).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((S)-**8i**) = 17.2 min, 98.56%; t_R ((R)-**8i**) = 21.0 min, 1.44%; ee > 97%.

Racemic benzyl (1-hydroxy-3-phenylpropan-2-yl)carbamate (rac-8i)

The aldehyde intermediate was synthesized according to the general procedure using 60 mg (0.200 mmol, 1.0 eq) Cbz-DL-Phe-OH. The colorless solution was treated with 36 mg (0.220 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.42 mL (0.42 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 53 mg (0.19 mmol, 94%) of **rac-3i** as colorless oil.

In a 5 mL glass vial equipped with a Teflon-coated magnetic stirring bar 42 mg (0.15 mmol, 1.0 eq) freshly prepared *rac-3i* were dissolved in 1.5 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 27 mg (0.17 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L of acetone and stirred for 5 min at RT. Solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic extract was concentrated under reduced pressure and purified via flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 37 mg (0.13 mmol, 81%, 2 steps) of a white solid.

Yield: 37 mg (0.13 mmol, 81%, 2 steps), white solid.

m.p. = 86–89 °C

 $R_f = 0.37$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((S)-8i) = 17.3 min; t_R ((R)-8i) = 22.0 min.

Benzyl (S)-(1-oxopropan-2-yl)carbamate (3j)¹²

3j

This compound was synthesized according to the general procedure using 179 mg (0.800 mmol, 1.0 eq) Cbz-L-Ala-OH. The colorless solution was treated with 143 mg (0.880 mmol, 1.1 eq) CDI at 0 $^{\circ}$ C for 60

min, and subsequently, dropwise with 1.68 mL (1.68 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 156 mg (0.753 mmol, 94 %) of colorless oil.

Yield: 156 mg (0.753 mmol, 94 %), colorless oil.

$$[\alpha]_{D}^{23}$$
 = +10.4 ° (c = 1.17, CH₂Cl₂), lit. $[\alpha]_{D}^{23}$ = +9.9 ° (c = 0.75, CH₂Cl₂).¹²

 $R_f = 0.12$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.54 (s, 1H, CHO), 7.43–7.21 (m, 5H, Ar–*H*), 5.59–5.39 (m, 1H, N*H*), 5.11 (s, 2H, C*H*₂O), 4.38–4.20 (m, 1H, CHCHO), 1.42–1.24 (m, 3H, C*H*₃).

¹³C APT NMR (75 MHz, CDCl₃) δ = 199.2 (s, 1C, CHO), 156.0 (s, 1C, C=O), 136.2 (s, 1C, C_q), 128.7 (s, 2C), 128.4 (s, 1C), 128.2 (s, 2C), 67.2 (s, 1C), 56.0 (s, 1C), 14.9 (s, 1C).

Enantiomeric excess was determined indirectly by conversion of freshly isolated material into alcohol 8j.

Benzyl N-[(2S)-1-hydroxypropan-2-yl]carbamate (8j)¹³

In a 5 mL glass vial equipped with a Teflon[®]-coated magnetic stirring bar 81 mg (0.39 mmol, 1.0 eq) freshly prepared compound **3j** were dissolved in 4.0 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 17 mg (0.44 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L acetone and stirred for 5 min at RT. The solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic phase was concentrated under reduced pressure and purified via flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 75 mg (0.36 mmol, 92%) of a colorless oil.

Yield: 50 mg (0.25 mmol, 92%), colorless oil.

 $[\alpha]_D^{23} = -10.7 \circ (c = 0.55, CHCl_3), \text{ lit. } [\alpha]_D^{22} = -6.53 \circ (c = 0.95, CHCl_3)^{13}.$

 $R_f = 0.30$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃, based on HSQC) δ = 7.44–7.21 (m, 5H, Ar–*H*), 5.09 (s, 2H, C*H*₂OCO), 5.03–4.89 (m, 1H, N*H*), 3.91–3.75 (m, 1H, C*H*CH₂O), 3.65 (dd, ²*J* = 10.7 Hz, ³*J* = 2.8 Hz, 2H, NCHCH*H*), 3.51 (dd, ²*J* = 10.7 Hz, ³*J* = 5.7 Hz, 2H, NCHCH*H*), 2.57 (s, 1H, O*H*), 1.16 (d, ³*J* = 6.8 Hz, 3H, C*H*₃).

¹³C NMR (75 MHz, CDCl₃, based on HSQC) δ = 156.7 (s, 1C, C=O), 136.5 (s, 1C, C_q), 128.7 (s, 2C), 128.3 (s, 1C), 128.2 (s, 2C), 67.0 (s, 2C, *C*H₂CO₂ and *C*H₂OH), 49.1 (s, 1C), 17.4 (s, 1C).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((S)-**8**j) = 12.3 min, 100%; t_R ((R)-**8**j) = 15.6 min, no abundance detected; ee >99%.

Racemic benzyl N-[1-hydroxypropan-2-yl]carbamate (rac-8j)

The aldehyde intermediate was synthesized according to the general procedure using 45 mg (0.20 mmol, 1.0 eq) Cbz-DL-Ala-OH. The colorless solution was treated with 36 mg (0.22 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.42 mL (0.42 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 29 mg (0.14 mmol, 70%) of **rac-8j** as colorless oil.

In a 5 mL glass vial equipped with a Teflon-coated magnetic stirring bar 29 mg (0.14 mmol, 1.0 eq) freshly prepared *rac-8j* were dissolved in 2.0 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 8 mg (0.2 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L of acetone and stirred for 5 min at RT. Solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic extract was concentrated under reduced pressure and purified via flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 19 mg (0.091 mmol, 45%, 2 steps) of a colorless oil.

Yield: 19 mg (0.091 mmol, 45%, 2 steps), colorless oil.

 $R_f = 0.30$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((S)-**8**j) = 12.3 min; t_R ((R)-**8**j) = 15.6 min.

(9H-Fluoren-9-yl)methyl (S)-2-formylpyrrolidine-1-carboxylate (3k)¹⁴

This compound was synthesized according to the general procedure using 270 mg (0.800 mmol, 1.0 eq) Fmoc-L-Pro-OH. The colorless solution was treated with 143 mg (0.880 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 2.68 mL (2.68 mmol, 3.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 272 mg of white amorphous gel. Purification via flash chromatography^{*} (SiO₂, cyclohexane/EtOAc 4:1) provided 184 mg (0.573 mmol, 72 %) of the desired aldehyde as colorless oil.

Yield: 184 mg (0.573 mmol, 72 %), colorless oil.

 $[\alpha]_{D}^{23} = -62.7 \circ (c = 3.60, CHCl_{3}).$

 $R_f = 0.25$ (cyclohexane/ethyl acetate = 2:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃, mixture of two conformers, based on HSQC) δ = 9.58 and 9.25 (s, 1H, CHO), 7.88–7.20 (m, 8H, Ar–H), 4.65–4.37 (m, 2H, CH₂O), 4.37–3.39 (m, 2H, CHCHO and CHCH₂O), 3.66–3.38 (m, 2H, NCH₂), 2.20–1.69 (m, 4H, NCH₂(CH₂)₂).

¹³C NMR (75 MHz, CDCl₃, based on HSQC) δ = 200.0 and 199.8 (s, 1C, CHO), 155.4 and 154.6 (s, 1C, C=O), 143.9 and 143.8 (s, 2C, C_q), 141.4 (s, 2C, C_q), 127.8 (s, 2C), 127.1 (s, 2C), 125.2 and 124.9 (s, 2C), 120.0 (s, 2C), 67.6 and 67.3 (s, 1C), 65.3 and 64.8 (s, 1C), 47.3 (s, 1C), 46.7 (s, 1C), 27.8 and 26.6 (s, 1C), 24.6 and 23.6 (s, 1C).

Enantiomeric excess was determined indirectly by conversion of crude, freshly isolated material, not subjected to flash chromatography, into alcohol **8k**.

^{*} Flash chromatography was performed due to somewhat lower purity than in the cases of other aldehydes, to determine the exact abundance of the desired aldehyde. Due to propensity for racemization on silica (demonstrated in epimerization experiment for **3f**), for further synthetic use we recommend the usage of nonchromatographed material, as demonstrated in the examples **8k** and *rac*-**8k**.

9H-Fluoren-9-ylmethyl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (8k)¹⁵

In a 5 mL glass vial equipped with a Teflon[®]-coated magnetic stirring bar 103 mg (0.320 mmol, 1.0 eq) freshly prepared, nonchromatographed compound **3k** were dissolved in 4.0 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 17 mg (0.44 mmol, 1.4 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L acetone and stirred for 5 min at RT. The solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic phase was concentrated under reduced pressure and purified via flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 85 mg (0.26 mmol, 81%) of a white solid.

Yield: 85 mg (0.26 mmol, 81%), white solid.

m.p. = 89 °C, lit. 89–90 °C.¹⁵

 $[\alpha]_{D}^{23} = -29.2 \circ (c = 0.42, CHCl_{3}), \text{ lit. } [\alpha]_{D}^{24} = -30.3 \circ (c = 1.02, CHCl_{3}).^{15}$

 $R_f = 0.40$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃, based on HSQC) δ = 7.78 (d, ³*J* = 7.3 Hz, 2H, Ar–*H*), 7.61 (d, ³*J* = 7.3 Hz, 2H, Ar–*H*), 7.42 (t, ³*J* = 7.3 Hz, 2H, Ar–*H*), 7.33 (t, ³*J* = 7.3 Hz, 2H, Ar–*H*), 4.45 (br s, 2H, CH₂OCO), 4.25 (t, ³*J* = 6.5 Hz, 1H, benzylic C*H*), 4.10–3.87 (m, 1H, NCHCH₂O), 3.78–2.99 (m, 5H, CH₂OH and NCH₂CH₂), 2.14–1.53 (m, 4H, NCH₂CH₂).

¹³C NMR (75 MHz, CDCl₃, based on HSQC) δ = 157.3 (s, 1C, C=O), 144.1 (s, 1C, C_q), 141.5 (s, 1C, C_q), 127.8 (s, 2C), 127.2 (s, 2C), 125.1 (s, 2C), 120.1 (s, 2C), 67.6 (s, 1C, *C*H₂CO₂), 67.1 (s, 1C, *C*H₂OH), 60.9 (s, 1C), 47.5 (s, 1C), 47.4 (s, 1C), 28.7 (s, 1C), 24.2 (s, 1C).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((S)-8k) = 20.5 min, 100%; t_R ((R)-8k) = 24.3 min, no abundance detected; ee >99%.

Racemic 9H-fluoren-9-ylmethyl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (rac-8k)

This compound was synthesized by mixing 68 mg (0.20 mmol, 0.5 eq) Fmoc-L-Pro-OH and 68 mg (0.20 mmol, 0.5 eq) Fmoc-D-Pro-OH, and converting the mixture according to the general procedure. The colorless solution was treated with 71 mg (0.44 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.84 mL (0.84 mmol, 2.1 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 29 mg (0.14 mmol, 70%) of *rac-*3k as colorless oil.

In a 5 mL glass vial equipped with a Teflon-coated magnetic stirring bar 111 mg (0.345 mmol, 1.0 eq) freshly prepared *rac-3k* were dissolved in 4.0 mL of MeOH, stirred and cooled to 0 °C in an ice bath. 17 mg (0.44 mmol, 1.1 eq) NaBH₄ were added to the colorless solution at 0 °C, the vial was covered with aluminium foil to facilitate a pressure relief. The mixture was stirred vigorously for 20 min at 0 °C, when TLC indicated full conversion. The reaction was quenched by the addition of 200 μ L of acetone and stirred for 5 min at RT. Solvents were removed under reduced pressure and the residue was partitioned between 3.0 mL EtOAc and 1.0 mL NaHCO₃ (sat). The organic extract was concentrated under reduced pressure and purified via flash chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield 68 mg (0.21 mmol, 53%, 2 steps) of a colorless oil.

Yield: 68 mg (0.21 mmol, 53%, 2 steps), colorless oil.

 $R_f = 0.40$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

HPLC (Daicel Chemical Technologies Chiralpak[®] AD-H): t_R ((S)-8k) = 20.5 min; t_R ((R)-8k) = 24.3 min.

(9H-Fluoren-9-yl)methyl benzyl (6-oxohexane-1,5-diyl)(S)-dicarbamate (3I)¹⁶

This compound was synthesized according to the general procedure using 402 mg (0.800 mmol, 1.0 eq) Fmoc-L-Lys(Cbz)-OH. The white colloidal solution was treated with 143 mg (0.880 mmol, 1.1 eq) CDI at 0 °C for 60 min, which resulted in complete dissolution. Subsequently, the reaction solution was treated dropwise with 3.20 mL (3.20 mmol, 4.0 eq) 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 391 mg of a turbid gel. Purification via flash chromatography[†] (SiO₂, cyclohexane/EtOAc 4:1) furnished 201 mg (0.413 mmol, 52 %) of the desired aldehyde as a viscous colorless oil.

Yield: 201 mg (0.413 mmol, 52 %), viscous colorless oil.

 $[\alpha]_D^{23} = +10.7 \circ (c = 5.30, CHCl_3).$

 $R_f = 0.44$ (cyclohexane/ethyl acetate = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.48 (s, 1H, CHO), 7.71 (d, ³*J* = 7.4 Hz, 2H, Ar–*H*), 7.56 (d, ³*J* = 7.0 Hz, 2H, Ar–*H*), 7.40–7.19 (m, 9H, Ar–*H*), 5.65–5.46 (m, 1H, FmocN*H*), 5.04 (s, 2H, PhCH₂O), 4.99–4.82 (m, 1H, CbzN*H*), 4.39 (d, ³*J* = 4.7 Hz, 2H, CHCH₂O), 4.27–4.07 (m, 2H, NC*H* and CHCH₂O), 3.24–2.96 (m, 2H, NCH₂), 1.94–1.19 (m, 6H, NCH₂(CH₂)₃).

¹³C NMR (75 MHz, CDCl₃) δ = 199.5 (s, 1C, CHO), 156.7 (s, 1C, C=O), 156.3 (s, 1C, C=O), 143.8 (s, 2C, C_q), 141.4 (s, 2C, C_q), 136.6 (s, 1C, C_q), 128.6 (s, 2C), 128.2 (s, 1C), 128.1 (s, 2C), 127.8 (s, 2C), 127.1 (s, 2C), 125.1 (s, 2C), 67.0 (s, 1C), 66.7 (s, 1C), 60.0 (s, 1C), 47.2 (s, 1C), 40.4 (s, 1C), 29.6 (s, 1C), 28.5 (s, 1C), 22.1 (s, 1C).

HRMS (MALDI-TOF): Calcd. for $C_{29}H_{30}N_2O_5Na$ [M+Na]⁺: 509.2052; found: 509.2055.

tert-Butyl (S)-(2-oxo-1-phenylethyl)carbamate (3m)¹⁷

This compound was synthesized via a modified procedure using 100 mg (0.400 mmol, 1.0 eq) Boc-L-Phg-OH. The colorless solution was treated with 72 mg (0.44 mmol, 1.2 eq) CDI at 0 °C. After 30 min of stirring 27 mg (0.20 mmol, 0.5 eq) CuCl₂ were added and the mixture was stirred at RT for 60 min. Subsequently, 0.84 mL (0.84 mmol, 2.1 eq) 1 M DIBAL-H were added dropwise at the rate of 2.0 mL/min. The mixture was stirred for 30 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 82 mg (0.35 mmol, 88 %) of pale yellow oil.

⁺ Flash chromatography was performed due to somewhat lower purity than in the cases of other aldehydes, to determine the exact abundance of the desired aldehyde. Due to propensity for racemization on silica (demonstrated in epimerization experiment for **3f**), for further synthetic use we recommend the usage of nonchromatographed material, as demonstrated in the examples **8k** and **rac-8k**.

Yield: 82 mg (0.35 mmol, 88 %), pale yellow oil.

 $[\alpha]_{D}^{23} = +213 \circ (c = 1.98, CH_2Cl_2), lit. [\alpha]_{D}^{20} = +272 \circ (c = 0.9, CH_2Cl_2).^{17}$

 $R_f = 0.27$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 9.53 (s, 1H, CHO), 7.53–7.16 (m, 5H, Ar–*H*), 5.88–5.67 (m, 1H, N*H*), 5.42– 5.19 (m, 1H, C*H*CHO), 1.42 (s, 9H, (C*H*₃)₃CO).

¹³C NMR (75 MHz, CDCl₃) δ = 195.2 (s, 1C, CHO), 155.1 (s, 1C, C=O), 132.9 (s, 1C, C_q), 129.5 (s, 2C), 128.9 (s, 1C), 127.9 (s, 2C), 80.4 (s, 1C, Me₃C), 65.0 (s, 1C), 28.4 (s, 3C).

GC-FID (CP-Chiralsil Dex): t_R ((S)-3m) = 14.1 min, 91.51%; t_R ((R)-3m) = 14.6 min, 8.49%; ee = 83%.

Racemic tert-butyl (2-oxo-1-phenylethyl)carbamate (rac-3m)

*rac-*3m

This compound was synthesized according to the general procedure using 75 mg (0.30 mmol, 1.0 eq) Boc-DL-Phg-OH. The colorless solution was treated with 54 mg (0.33 mmol, 1.1 eq) CDI at 0 °C for 60 min, and subsequently, dropwise with 0.63 mL (0.63 mmol, 2.1 eq) of 1 M DIBAL-H. The mixture was stirred for 60 min at -78 °C until TLC indicated full conversion. Extractive workup and drying provided 58 mg (0.25 mmol, 83 %) of pale yellow oil.

Yield: 58 mg (0.25 mmol, 83 %), pale yellow oil.

 $R_f = 0.27$ (cyclohexane/ethyl acetate = 4:1 (v/v); staining: KMnO₄).

GC-FID (CP-Chiralsil Dex): t_R ((S)-3m) = 14.2 min; t_R ((R)-3m) = 14.6 min.

Ethyl (tert-butoxycarbonyl)-L-valyl-L-phenylalaninate (6a)¹⁸

A 50 mL Schlenk flask with a magnetic stirring bar was dried under vacuum with a heat gun and purged with N₂. 261 mg (1.20 mmol, 1.0 eq) Boc-Val-OH were dissolved in 8 mL abs. DMF and 838 μ L (4.80 mmol, 4.0 eq) Hünig's base were added to the stirred solution. After cooling to 0 °C (ice bath), 462 mg (1.44 mmol, 1.2 eq) TBTU were added in one portion. After 5 min of activation time H-Phe-OEt*HCl (304 mg, 1.32 mmol, 1.1 eq) was added, the ice bath removed and the reaction mixture was stirred for 50 min. The mixture was quenched by the addition of 8 mL brine and extracted with EtOAc (32 mL). The layers were separated and the aqueous phase was extracted with 16 mL EtOAc. The combined organic layers were washed with H₂O (2 x 8 mL) and brine (8 mL). The organic phase was dried over Na₂SO₄, concentrated under reduced pressure and purified via flash chromatography (SiO₂; CH₂Cl₂/MeOH = 10:1 v/v).

Yield: 433 mg (1.10 mmol, 92 %), white solid.

m.p. = 112 °C, lit. 117–118 °C.¹⁸

 $[\alpha]_D^{23} = -24.7^\circ$ (c = 0.99, EtOH), lit. $[\alpha]_D^{24} = -23^\circ$ (c = 1, EtOH).¹⁸

 $R_f = 0.32$ (CH₂Cl₂/MeOH = 10:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 7.33–7.08 (m, 5H, Ar–*H*), 6.39–6.27 (m, 1H, OCN*H*), 5.03 (d, ³*J* = 7.3 Hz, 1H, O₂CN*H*), 4.85 (dd, ³*J* = 13.6 Hz, 6.1 Hz, 1H, BnC*H*), 4.15 (q, ³*J* = 7.1 Hz, 2H, CO₂C*H*₂), 3.90 (m, 1H, *i*-PrC*H*), 3.12 (d, ³*J* = 5.8 Hz, 2H, PhC*H*₂), 2.16–2.02 (m, 1H, C*H*(CH₃)₂), 1.45 (s, 9H, (CH₃)₃), 1.22 (t, ³*J* = 7.1 Hz, 3H, CO₂CH₂C*H*₃), 0.96–0.82 (m, 6H, CH(C*H*₃)₂).

¹³C NMR (75 MHz, CDCl₃) δ = 171.4 (s, 1C, C=O), 171.3 (s, 1C, C=O), 155.8 (s, 1C, HNCO₂), 135.9 (s, 1C, C_q-Ar), 129.5 (s, 2C, C-Ar), 128.7 (s, 2C, C-Ar), 127.3 (s, 1C, C-Ar), 80.0 (s, 1C, Me₃C), 61.6 (s, 1C), 60.0 (s, 1C), 53.3 (s, 1C), 38.2 (s, 1C), 31.0 (s, 1C), 28.4 (s, 3C), 19.3 (s, 1C), 17.8 (s, 1C), 14.2 (s, 1C).

Methyl (tert-butoxycarbonyl)-L-valyl-D-phenylalaninate (6b)¹⁹

A 50 mL Schlenk flask with a magnetic stirring bar was dried under vacuum with a heat gun and purged with N₂. 261 mg (1.20 mmol, 1.0 eq) Boc-Val-OH were dissolved in 8 mL abs. DMF and 838 μ L (4.80 mmol, 4.0 eq) Hünig's base were added to the stirred solution. After cooling to 0 °C (ice bath), 462 mg (1.44 mmol, 1.2 eq) TBTU were added in one portion. After 5 min of activation time H-D-Phe-OMe*HCl (285 mg, 1.32 mmol, 1.1 eq) was added, the ice bath removed and the reaction mixture was stirred for 50 min. The mixture was quenched by the addition of 8 mL brine and extracted with EtOAc (32 mL). The layers were separated and the aqueous phase was extracted with 16 mL EtOAc. The combined organic layers were washed with H₂O (2 x 8 mL) and brine (8 mL), was dried over Na₂SO₄, concentrated under reduced pressure and purified via flash chromatography (SiO₂; CH₂Cl₂/MeOH = 10:1 v/v).

Yield: 398 mg (1.05 mmol, 88 %), white solid.

m.p. = 101–103 °C, lit. 104–105 °C.¹⁹

 $[\alpha]_D^{23} = -35.7^\circ$ (c = 1.0, CHCl₃), lit. $[\alpha]_D^{25} = +37.8^\circ$ (c = 1.0, CHCl₃).¹⁹

 $R_f = 0.28$ (CH₂Cl₂/MeOH = 10:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 7.35–7.18 (m, 3H, Ar–*H*), 7.17–7.05 (m, 2H, Ar–*H*), 6.44 (d, ³*J* = 7.7 Hz, 1H, OCN*H*), 5.05–4.80 (m, 2H, O₂CN*H* and BnC*H*), 3.97 (m, 1H, *i*PrC*H*), 3.71 (s, 3H, CO₂C*H*₃), 3.19–3.01 (m, 2H, PhC*H*₂), 2.19–2.03 (m, 1H, C*H*(CH₃)₂), 1.43 (s, 9H, (C*H*₃)₃), 0.88 (d, ³*J* = 6.7 Hz, 3H, CHC*H*₃CH₃), 0.80 (d, ³*J* = 6.8 Hz, 3H, CHCH₃CH₃).

¹³C NMR (75 MHz, CDCl₃) δ = 172.0 (s, 1C, C=O), 171.4 (s, 1C, C=O), 155.9 (s, 1C, HNCO₂), 135.9 (s, 1C, C_q-Ar), 129.3 (s, 2C, C-Ar), 128.8 (s, 2C, C-Ar), 127.3 (s, 1C, C-Ar), 80.1 (s, 1C, Me₃C), 59.8 (s, 1C), 53.1 (s, 1C), 52.5 (s, 1C), 38.2 (s, 1C), 30.8 (s, 1C), 28.4 (s, 3C), 19.4 (s, 1C), 17.3 (s, 1C).

(tert-Butoxycarbonyl)-L-valyl-L-phenylalanine (7a)^{20,21}

In a 50 mL round bottom flask 410 mg (1.04 mmol, 1 eq) **6a** were dissolved in 3.5 mL THF. A solution of 175 mg (4.18 mmol, 4.0 eq) LiOH x H₂O in 5.2 mL H₂O was added under vigorous stirring. After full conversion was indicated by TLC, EtOAc (5 mL) was added and the pH adjusted to 4 with 25 % aqueous citric acid. The mixture was poured into a separation funnel, the layers separated and aqueous layer was extracted with EtOAc (5 mL). The combined organic extracts were washed with H₂O (2.5 mL) and brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified via silica gel filtration (SiO₂; CH₂Cl₂/MeOH = 9:1 (v/v)) to obtain the desired product as a white solid.

Yield: 362 mg (0.99 mmol, 96 %), white solid.

m.p. = 123–128 °C, lit. 114–115 °C.²⁰

 $[\alpha]_{D}^{23} = -15.2^{\circ}$ (c = 1.0, MeOH), lit. $[\alpha]_{D}^{20} = +13.7^{\circ}$ (c = 1.00, MeOH).²¹

 $R_f = 0.22$ (cyclohexane/EtOAc = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, methanol-d4) δ = 7.30–7.15 (m, 5H, Ar–*H*), 4.68 (dd, ³*J* = 7.9 Hz, 5.3 Hz, 1H, BnC*H*), 3.84 (d, ³*J* = 7.0 Hz, 1H, *i*-PrC*H*), 3.19 (dd, ²*J* = 13.8 Hz, ³*J* = 4.9 Hz, 1H, PhC*H*₂), 2.99 (dd, ²*J* = 13.8 Hz, ³*J* = 8.5 Hz, 1H, PhC*H*₂), 2.03–1.86 (m, 1H, C*H*(CH₃)₂), 1.43 (s, 9H, (C*H*₃)₃), 0.92–0.80 (m, 6H, CH(C*H*₃)₂).

¹³C NMR (75 MHz, methanol-d4) δ = 174.3 (s, 1C, C=O), 174.2 (s, 1C, C=O), 157.8 (s, 1C, C=O), 138.3 (s, 1C, C_q-Ar), 130.3 (s, 2C, C-Ar), 129.4 (s, 2C, C-Ar), 127.7 (s, 1C, C-Ar), 80.5 (s, 1C, Me₃*C*), 61.5 (s, 1C), 54.8 (s, 1C), 38.5 (s, 1C), 32.1 (s, 1C), 28.7 (s, 3C), 19.7 (s, 1C), 18.5 (s, 1C).

(tert-Butoxycarbonyl)-L-valyl-D-phenylalanine (7b)

In a 50 mL round bottom flask 363 mg (0.96 mmol, 1 eq) **6b** were dissolved in 3.2 mL THF. A solution of 161 mg (3.84 mmol, 4.0 eq) LiOH x H_2O in 4.8 mL H_2O was added under vigorous stirring. After full

conversion was indicated by TLC, EtOAc (5 mL) was added and the pH adjusted to 4 with 25 % aqueous citric acid. The mixture poured into a separation funnel, the layers separated and aqueous layer was extracted with additional EtOAc (5 mL). The combined organic extracts were washed with H₂O (2.5 mL) and brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified via silica gel filtration (SiO₂; CH₂Cl₂/MeOH = 9:1 (v/v)) to obtain the desired product as a white solid.

Yield: 315 mg (0.84 mmol, 90 %), white solid.

m.p. = 74–78 °C

 $[\alpha]_{D}^{23} = -17.2^{\circ} (c = 1.0, MeOH)$

 $R_f = 0.23$ (cyclohexane/EtOAc = 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, methanol-d4) δ = 7.32–7.15 (m, 5H, Ar–*H*), 4.68 (dd, ³*J* = 8.9 Hz, 4.3 Hz, 1H, BnC*H*), 3.91 (d, ³*J* = 5.8 Hz, 1H, *i*-PrC*H*), 3.24 (dd, ²*J* = 14.0 Hz, ³*J* = 6.7 Hz, PhC*H*H), 2.96 (dd, ²*J* = 14.0 Hz, ³*J* = 9.6 Hz, PhCH*H*) 1.98–1.74 (m, 1H, C*H*(CH₃)₂), 1.43 (s, 9H, (CH₃)₃), 0.77 (d, ³*J* = 6.8 Hz, 3H, CH(CH₃)₂), 0.70 (d, ³*J* = 6.8 Hz, 3H, CH(CH₃)₂).

¹³C NMR (75 MHz, methanol-d4) δ = 174.5 (s, 1C, C=O), 174.2 (s, 1C, C=O), 157.9 (s, 1C, HNCO₂), 138.4 (s, 1C, C_q-Ar), 130.3 (s, 2C, C-Ar), 129.5 (s, 2C, C-Ar), 127.8 (s, 1C, C-Ar), 80.6 (s, 1C, Me₃C), 61.1 (s, 1C), 54.9 (s, 1C), 38.4 (s, 1C), 32.2 (s, 1C), 28.7 (s, 3C), 19.7 (s, 1C), 17.8 (s, 1C).

HRMS (MALDI-TOF): Calcd. for C₁₉H₂₈N₂O₅Na [M+Na]⁺: 387.1896; found: 387.1809.

tert-Butyl ((S)-3-methyl-1-oxo-1-(((S)-1-oxo-3-phenylpropan-2-yl)amino)butan-2-yl)carbamate (4a)²²

4a

A 50 mL Schlenk flask, equipped with a glass stopper and a magnetic stirring bar was heated, dried under vacuum and purged with N₂. 146 mg (0.400 mmol, 1.0 eq) **7a** were dissolved in 8.0 mL abs. dichloromethane, and the solution was cooled to 0 °C (ice bath). 78 mg (0.480 mmol, 1.2 eq) 1,1'- carbonyldiimidazole (CDI) were added and a gas bubbler was mounted instead of the glass stopper to maintain a pressure relief. After stirring for 60 min the gas bubbler was removed and exchanged by a septum while maintaining a gentle counter flow of N₂. The heterogeneous reaction mixture was cooled to -78 °C (CO₂/acetone bath) for 15 min. Subsequently, 1.24 mL (1.24 mmol, 3.1 eq) DIBAL-H solution (1.0 mol/L in toluene) were added dropwise with a syringe through the septum at a rate of 2.0 mL/h.

Reaction mixture was stirred at -78 °C until TLC indicated quantitative conversion (60 min). The reaction mixture was quenched by addition of 8.0 mL EtOAc. The acetone bath was removed, the gas bubbler was mounted, and 3.0 mL 25% aqueous tartaric acid solution were added to the mixture under vigorous stirring. The mixture was warmed up by immersing the vessel into a water bath at RT and stirred vigorously for 15 min. The stirring was stopped and the layers were separated. The aqueous phase was extracted with EtOAc (1 x 4.0 mL) and the combined organic extracts were washed with 1 M HCl (1 x 3.0 mL), 0.8 M NaHCO₃ (1 x 3.0 mL) and brine (1 x 3.0 mL), dried over Na₂SO₄, concentrated under reduced pressure and dried *in vacuo*.

Yield: 124 mg (0.356 µmol, 89 %), white solid.

m.p. = 128–131 °C, lit. 124–125 °C.²²

 $[\alpha]_{D}^{23} = -3.0^{\circ}$ (c = 0.69, CHCl₃), lit. $[\alpha]_{D}^{20} = -55.4^{\circ}$ (c = 1.0, MeOH).²²

 $R_f = 0.32$ (cyclohexane/EtOAc = 1:1 (v/v); staining: KMnO4).

¹H NMR (300 MHz, CDCl₃) δ = 9.61 (s, 1H, CHO), 7.39–7.10 (m, 5H, Ar–*H*), 6.52 (br s, 1H, *H*NCO), 5.07–4.90 (m, 1H, *H*NCO₂), 4.71 (d, ³*J* = 6.7 Hz, 1H, BnC*H*), 4.01–3.88 (m, 1H, *i*-PrC*H*), 3.15 (d, ³*J* = 6.1 Hz, 2H, PhCH₂), 2.20–2.01 (m, 1H, (CH₃)₂C*H*), 1.44 (s, 9H, (CH₃)₃), 1.00–0.70 (m, 6H, (CH₃)₂CH).

¹³C NMR (75 MHz, CDCl₃) δ = 198.6 (s, 1C, HC=O), 172.0 (s, 1C, HNC=O), 155.9 (s, 1C, HNCO₂), 135.6 (s, 1C, Ar– C_q), 129.4 (s, 2C, Ar–C), 129.0 (s, 2C, Ar–C), 127.4(s, 1C, Ar–C), 80.2 (s, 1C, Me₃C), 60.1 (s, 1C), 59.8 (s, 1C), 35.4 (s, 1C), 30.7 (s, 1C), 28.4 (s, 3C), 19.4 (s, 1C), 17.7 (s, 1C).

Diastereomeric excess was measured indirectly by reducing the freshly isolated aldehyde **4a** to the alcohol **5a** (*vide infra*).

tert-Butyl ((*S*)-1-(((*S*)-1-hydroxy-3-phenylpropan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamate (5a)²³

In a 5 mL glass vial 52 mg (0.15 mmol, 1.0 eq) **4a** were dissolved in 1.5 mL MeOH abs, cooled to 0 °C (ice bath) and NaBH₄ (27 mg, 0.17 mmol, 1.1 eq) was added in one portion under vigorous stirring. After full conversion was indicated by TLC (20 min), 200 μ L acetone were added. The ice bath was removed and

the reaction mixture was stirred for 5 min. The solvents were removed under reduced pressure and the solid residue partitioned between EtOAc (3.0 mL) and 1.0 mL NaHCO₃ (0.8 M in H₂O). The organic layer was concentrated and dried under reduced pressure. The product was purified via flash chromatography (SiO₂; cyclohexane/EtOAc = 1:1 (v/v)) to obtain the desired product as a white solid.

Yield: 43 mg (0,12 mmol, 80 %), white solid.

m.p. = 134–138 °C, lit. 145.0–146.0 °C.²³

 $[\alpha]_{D}^{23} = -45.2^{\circ}$ (c = 0.8, CHCl₃), lit. $[\alpha]_{D}^{24} = -49.4$ (c = 1.0, MeOH).²³

 $R_f = 0.26$ (cyclohexane/EtOAc= 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 7.37–7.13 (m, 5H, Ar–*H*), 6.47 (d, ³*J* = 5.6 Hz, 1H, *H*NCO), 5.04 (d, ³*J* = 6.8 Hz, 1H, *H*NCO₂), 4.19 (br s, 1H, BnC*H*), 3.90–3.79 (m, 1H, *i*-PrC*H*), 3.66 (dd, ³*J* = 11.1 Hz, 3.5 Hz, 1H, CHHOH), 3.57 (dd, ³*J* = 11.0 Hz, 4.7 Hz, 1H, CHHOH), 2.96–2.79 (m, 2H, PhCH₂), 2.68 (br s, 1H, OH), 2.17–2.01 (m, 1H, (CH₃)₂C*H*), 1.44 (s, 9H, (CH₃)₃), 0.99–0.70 (m, 6H, (CH₃)₂CH).

¹³C NMR (75 MHz, CDCl₃) δ = 172.0 (s, 1C, HNC=O), 156.2 (s, 1C, HNCO₂), 137.8 (s, 1C, Ar– C_q), 129.3 (s, 2C, Ar– C), 128.7 (s, 2C, Ar– C), 126.7 (s, 1C, Ar– C), 80.4 (s, 1C, Me₃C), 63.7 (s, 1C), 60.7 (s, 1C), 53.0 (s, 1C), 37.1 (s, 1C), 30.6 (s, 1C), 28.4 (s, 3C), 19.4 (s, 1C), 17.8 (s, 1C).

HPLC-ESI-MS: $t_R(5a) = 10.66 \text{ min}$, 89.46%; $t_R(5b) = 11.25 \text{ min}$, 10.54%; de = 78.92%; calc. $[M+Na]^+ = 373.2$, $[M+K]^+ = 389.2$, found $[M+Na]^+ = 372.9$, $[M+K]^+ = 388.9$.

HRMS (MALDI-TOF): Calcd. for C₁₉H₃₀N₂O₄Na [M+Na]⁺: 373.2103; found: 373.2108.

tert-Butyl ((S)-3-methyl-1-oxo-1-(((R)-1-oxo-3-phenylpropan-2-yl)amino)butan-2-yl)carbamate (4b)

4b

A 10 mL Schlenk flask, equipped with a glass stopper and a magnetic stirring bar was heated, dried under vacuum and purged with N_2 . 31 mg (0.08 mmol, 1.0 eq) **7b** were dissolved in 2.8 mL abs. dichloromethane, and the solution was cooled to 0 °C (ice bath). 13 mg (0.08 mmol, 1.0 eq) HOBt x H₂O were added, immediately by 16 mg (0.10 mmol, 1.1 eq) 1,1'-carbonyldiimidazole (CDI). A gas bubbler was mounted instead of the glass stopper to maintain pressure relief. After stirring for 60 min, the vessel the gas bubbler was replaced with a septum while maintaining a gentle counter flow of N₂. The heterogeneous reaction mixture was cooled to -78 °C (CO₂/acetone bath) for 15 min. Subsequently, 378

 μ L (0.38 mmol, 4.5 eq) DIBAL-H solution (1.0 M in toluene) were added dropwise with a syringe through the septum at a rate of 2.0 mL/h. Reaction mixture was stirred at -78 °C until TLC indicated quantitative conversion (150 min). The reaction mixture was quenched by addition of 5.6 mL EtOAc. The acetone bath was removed, the gas bubbler was mounted, and 2.8 mL of 25% aqueous tartaric acid solution were added to the mixture under vigorous stirring. The mixture was warmed up by immersing the vessel into a water bath at RT and stirred vigorously for 15 min. The stirring was stopped and the layers were separated. The aqueous phase was extracted with EtOAc (1 x 2.8 mL) and the combined organic extracts were washed with 1 M HCl (1 x 2.8 mL), 0.8 M NaHCO₃ (1 x 2.8 mL) and brine (1 x 2.8 mL), dried over Na₂SO₄, concentrated under reduced pressure and dried *in vacuo*.

Yield: 27 mg (78 µmol, 93 %), white solid.

 $[\alpha]_{D}^{23} = -3.0^{\circ} (c = 0.69, CHCl_{3}).$

 $R_f = 0.32$ (cyclohexane/EtOAc = 1:1 (v/v); staining: KMnO4).

¹H NMR (300 MHz, CDCl₃) δ = 9.61 (s, 1H, CHO), 7.38–7.09 (m, 5H, Ar–*H*), 6.49 (br s, 1H, *H*NCO), 5.04–4.89 (m, 1H, *H*NCO₂), 4.74 (dd, ³*J* = 13.4 Hz, 6.6 Hz, 1H, BnC*H*), 4.04–3.88 (m, 1H, *i*-PrC*H*), 3.13 (d, ³*J* = 6.7 Hz, 2H, PhCH₂), 2.19–2.00 (m, 1H, (CH₃)₂C*H*), 1.43 (s, 9H, (CH₃)₃), 0.95–0.76 (m, 6H, (CH₃)₂CH).

¹³C NMR (75 MHz, $CDCl_{3}$, based on HSQC) δ = 198.8 (s, 1C, HC=O), 172.0 (s, 1C, HNC=O), 156.0 (s, 1C, HNCO₂), 135.6 (s, 1C, Ar– C_q), 129.4 (s, 2C, Ar–C), 129.0 (s, 2C, Ar–C), 127.4(s, 1C, Ar–C), 80.2 (s, 1C, Me₃C), 60.0 (s, 1C), 59.7 (s, 1C), 35.3 (s, 1C), 30.7 (s, 1C), 28.4 (s, 3C), 19.4 (s, 1C), 17.6 (s, 1C).

Diastereomeric excess was measured indirectly by reducing the freshly isolated aldehyde **4b** to the alcohol **5b** (*vide infra*).

tert-Butyl ((*S*)-1-(((*R*)-1-hydroxy-3-phenylpropan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamate (5b)²³

In a 5 mL glass vial 27 mg (78 μ mol, 1.0 eq) **4b** were dissolved in 0.78 mL MeOH abs, cooled to 0 °C (ice bath) and NaBH₄ (14 mg, 86 μ mol, 1.1 eq) was added in one portion under vigorous stirring. After full conversion was indicated by TLC (20 min), 200 μ L acetone were added. The ice bath was removed and the reaction mixture was stirred for 5 min. The solvents were removed under reduced pressure and the

solid residue partitioned between EtOAc (3.0 mL) and 1.0 mL NaHCO₃ (0.8 M in H₂O). The organic layer was concentrated and dried under reduced pressure. The product was purified via flash chromatography (SiO₂; cyclohexane/EtOAc = 1:1 (v/v)) to obtain the desired product as a white solid.

Yield: 17 mg (49 µmol, 62 %), white solid.

m.p. = 125–127 °C, lit. 131–132 °C.²³

 $[\alpha]_{D}^{23} = +1.2^{\circ}$ (c = 0.8, CHCl₃).

 $R_f = 0.28$ (cyclohexane/EtOAc= 1:1 (v/v); staining: KMnO₄).

¹H NMR (300 MHz, CDCl₃) δ = 7.34–7.12 (m, 5H, Ar–*H*), 6.36 (d, ³*J* = 7.7 Hz, 1H, *H*NCO), 5.21 (d, ³*J* = 7.9 Hz, 1H, *H*NCO₂), 4.25 (br s, 1H, BnC*H*), 3.81–3.62 (m, 2H, *i*-PrC*H* and C*H*HOH), 3.54 (dd, ³*J* = 11.2 Hz, 4.9 Hz, 1H, CH*H*OH), 2.97–2.74 (m, 2H, PhC*H*₂), 2.02–1.81 (m, 1H, (CH₃)₂C*H*), 1.43 (s, 9H, (CH₃)₃), 0.87–0.71 (m, 6H, (CH₃)₂CH).

¹³C NMR (75 MHz, CDCl₃) δ = 172.3 (s, 1C, HNC=O), 156.4 (s, 1C, HNCO₂), 137.8 (s, 1C, Ar– C_q), 129.3 (s, 2C, Ar– C), 128.7 (s, 2C, Ar– C), 126.7 (s, 1C, Ar– C), 80.3 (s, 1C, Me₃C), 64.0 (s, 1C), 60.9 (s, 1C), 52.9 (s, 1C), 37.2 (s, 1C), 30.8 (s, 1C), 28.5 (s, 3C), 19.2 (s, 1C), 18.1 (s, 1C).

HPLC-ESI-MS: $t_R(5a) = 10.43 \text{ min}, 5.34\%; t_R(5b) = 10.98 \text{ min}, 94.66\%; de = 89.32\%; calc. [M+Na]^+ = 373.2, [M+K]^+ = 389.2, found [M+Na]^+ = 372.9, [M+K]^+ = 388.9.$

¹H- and ¹³C- NMR spectra and GC-FID chromatograms (enantiopure and racemic) of *tert*-butyl *(S)*-(3-methyl-1-oxobutan-2-yl)carbamate (3a)

Data File D:\GC\1\DATA\JAKOV\150722\150722B 2015-07-22 17-47-10\JI-446.D Sample Name: JI-446

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	۶
1	8.976	BB	0.0431	802.80396	279.26508	1.000e2

Totals : 802.80396 279.26508

Data File D:\GC\1\DATA\JAKOV\150729\150723A 2015-07-29 18-55-17\JI-455.D Sample Name: JI-455

```
Acq. Operator : jkv
                                        Seq. Line : 1
Acq. Instrument : GC Pal
                                         Location : P1-D-01
                                             Inj : 1
Injection Date : 29.07.2015 18:56:31
                                        Inj Volume : External
           : D:\GC\1\DATA\JAKOV\150729\150723A 2015-07-29 18-55-17\AMAL_GCPAL.M
Acq. Method
Last changed : 29.07.2015 18:50:33 by jkv
Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M
Last changed : 20.08.2015 19:12:44 by jkv
               (modified after loading)
      FID1 A, (JAKOV\150729\150723A 2015-07-29 18-55-17\JI-455.D)
   pA _
   350 -
   300 -
                                                   -8.990
                                                    9.151
   250 -
   200 -
                        9.151
   150 -
                                                   9
                                                             10
                                         à
                                                                       11
   100 -
    50
    0 -
                          10
                                       15
                                                   20
                                                               25
                                                                          min
```

Area Percent Report

Sorted By		:	Sign	nal	
Multiplier		:	1.0000		
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: FID1 A,

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	8.990	BV	0.0381	302.95770	131.51054	49.91814
2	9.151	VB	0.0368	303.95135	130.36398	50.08186
Total	s:			606.90906	261.87453	

110 100 f1 (ppm) . 40

¹H- and ¹³C- NMR spectra and GC-FID chromatograms (enantiopure and racemic) of *tert*-butyl *(S)*-(1- oxo-3-phenylpropan-2-yl)carbamate (3c)

Data File D:\GC\1\DATA\JAKOV\150721\150721F 2015-07-21 17-13-32\JI-442.D Sample Name: JI-442

```
Acq. Operator : jkv
                                               Seq. Line : 2
Acq. Instrument : GC Pal
                                                Location : P1-B-02
Injection Date : 21.07.2015 18:08:56
                                                     Inj : 1
                                               Inj Volume : External
              : D:\GC\1\DATA\JAKOV\150721\150721F 2015-07-21 17-13-32\AMAL_GCPAL_PHE_4.M
Acq. Method
Last changed : 21.07.2015 16:05:38 by jkv
Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M
Last changed : 20.08.2015 19:35:49 by jkv
                  (modified after loading)
       FID1 A, (JAKOV\150721\150721F 2015-07-21 17-13-32\JI-442.D)
    pA -
                                        38.187
   32.5 -
    30 -
   27.5 -
    25 -
                                                                    38.187
   22.5 -
                                              39.421
    20 -
   17.5 -
                                                                      39.421
    15 -
                 34
                            36
                                       38
                                                 40
                                                            42
   12.5
     10 -
                     10
                                                       30
                                                                       40
                                      20
                                                                                       min
```

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	38.187	BBA	0.3686	249.81647	8.26684	99.51072
2	39.421	BBA	0.2664	1.22832	5.58140e-2	0.48928
Total	ls :			251.04479	8.32266	

Data File D:\GC\1\DATA\JAKOV\150721\150721F 2015-07-21 17-13-32\JI-444-RACPHE DOUBLE.D Sample Name: JI-444-racPhe double

```
Acq. Operator : jkv
                                               Seq. Line : 1
Acq. Instrument : GC Pal
                                               Location : P1-B-01
                                                    Inj: 1
Injection Date : 21.07.2015 17:15:01
                                              Inj Volume : External
Acq. Method : D:\GC\1\DATA\JAKOV\150721\150721F 2015-07-21 17-13-32\AMAL_GCPAL_PHE_4.M
Last changed : 21.07.2015 16:05:38 by jkv
Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M
Last changed : 20.08.2015 19:25:06 by jkv
                 (modified after loading)
       FID1 A, (JAKOV\150721\150721F 2015-07-21 17-13-32\JI-444-RACPHE DOUBLE.D)
    pA _
    28 -
    26 -
                                     38.266
    24 -
                                            39.472
    22 -
    20 -
    18 -
                                                                   > 38.266
                                                                     39.472
    16 -
                       36
                                   38
                                               40
                                                           42
    14 -
    12 -
     10 -
                                                      30
                                                                      40
                     10
                                     20
```

min

Area Percent Report

Sorted By		:	Sign	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	38.266	BV	0.3541	78.59856	2.64965	50.74378
2	39.472	VB	0.3843	76.29445	2.39575	49.25622
Total	ls :			154.89301	5.04540	

¹H- and ¹³C- NMR spectra of *tert*-butyl (S)-2-formylpyrrolidine-1-carboxylate (3d)

¹H- and ¹³C- NMR spectra, and chiral HPLC chromatograms (enantiopure and racemic) of benzyl (*S*)-(1-hydroxy-3-phenylpropan-2-yl)carbamate (8d)

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\JI-484-B.D Sample Name: JI-484-B

_____ Acq. Operator : jakov Seq. Line : 5 Acq. Instrument : HPLC links Location : Vial 52 Injection Date : 19.09.2015 21:26:48 Inj : 1 Inj Volume : 3.0 ul Different Inj Volume from Sequence ! Actual Inj Volume : 2.0 µl Acq. Method : D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\ADH HEPTIPROH 90 10.M Last changed : 19.09.2015 17:41:23 by jakov Analysis Method : D:\CHEMSTATION\HPLC LINKS\METHODS\JAKOV\INT.M Last changed : 20.09.2015 13:14:06 by jakov (modified after loading) MWD1 A, Sig=210,4 Ref=off, TT (JAKOV\150919A 2015-09-19 17-53-09\JI-484-B.D) mAU 3 8.424 175-150 -125 8.424 100 -75 -50 -25 -0. -25 --50 10 30 40 $\dot{20}$ min _____ Area Percent Report Sorted By : Signal : 1.0000 · 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs Signal 1: MWD1 A, Sig=210,4 Ref=off, TT Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] 8 1 8.424 VBA 0.3625 2495.16821 97.51218 100.0000 Totals : 2495.16821 97.51218

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\JI-480-B.D Sample Name: JI-480-B

¹H- and ¹³C- NMR spectra and chiral GC-FID chromatograms (enantiopure and racemic) of *tert*-butyl (S)-(4-(methylthio)-1-oxobutan-2-yl)carbamate (3e)

Data File D:\GC\1\DATA\JAKOV\150723\150723A 2015-07-23 12-17-54\JI-449.D Sample Name: JI-449

```
_____
Acq. Operator : jkv
                                   Seq. Line : 2
                                   Location : P1-C-04
Acq. Instrument : GC Pal
Injection Date : 23.07.2015 12:59:09
                                       Inj: 1
                                  Inj Volume : External
Acq. Method
          : D:\GC\1\DATA\JAKOV\150723\150723A 2015-07-23 12-17-54\AMAL GCPAL.M
Last changed : 22.05.2015 15:01:11 by jkv
Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M
Last changed : 20.09.2015 14:54:09 by jkv
             (modified after loading)
Additional Info : Peak(s) manually integrated
     FID1 A, (JAKOV\150723\150723A 2015-07-23 12-17-54\JI-449.D)
   pA
                                                 14.159
   500 -
   400-
                                14.159
  300
   200-
   100
                                  12
                                                14
                                                              16
    0-
                                                       25
                                  15
                                             20
                       10
                                                                 mir
_____
                  Area Percent Report
Signal
Sorted By
               .
                    1.0000
Multiplier
               .
                     1.0000
Dilution
               :
Use Multiplier & Dilution Factor with ISTDs
Signal 1: FID1 A,
Peak RetTime Type Width Area
                           Height
                                   Area
 # [min] [pA*s] [pA]
                                    8
1 14.159 BBA 0.0709 1485.10144 315.67136 1.000e2
```

Totals : 1485.10144 315.67136

Data File D:\GC\1\DATA\JAKOV\150915\150915C 2015-09-15 17-09-59\JI-482-CRD.D Sample Name: JI-482-CRD

Totals :

¹H- and ¹³C- NMR spectra, GC-FID chromatogram (enantiopure) and GCMS spectrum of *tert*-butyl (*(25,35)*-3-methyl-1-oxopentan-2-yl)carbamate (3f)

Data File D:\GC\1\DATA\JAKOV\150729\150729B 2015-07-29 23-07-31\JI-453-CRD.D Sample Name: JI-453-crd

JI-453

¹H-, ¹³C- and HSQC NMR spectra, GC-FID chromatogram and GCMS spectra of mixture of epimers: *tert*butyl (*(25,35)*-3-methyl-1-oxopentan-2-yl)carbamate (*(25,35)*-3f) and *tert*-butyl (*(2R,35)*-3-methyl-1oxopentan-2-yl)carbamate (*(2R,35)*-3f)

Data File D:\GC\1\DATA\JAKOV\150810\150810A 2015-08-10 13-57-25\JI-453-B-45H.D Sample Name: JI-453-B-45h

```
Acq. Operator : jkv Seq. Line : 1

Acq. Instrument : GC Pal Location : P1-D-06

Injection Date : 10.08.2015 14:01:32 Inj : 1

Inj Volume : External

Acq. Method : D:\GC\1\DATA\JAKOV\150810\150810A 2015-08-10 13-57-25\AMAL_GCPAL.M

Last changed : 29.07.2015 18:50:33 by jkv

Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M

Last changed : 13.08.2015 14:12:57 by jkv

(modified after loading)
```

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	10.007	BB	0.0323	93.81950	48.11873	31.57841
2	10.129	BB	0.0342	203.28065	96.49541	68.42159
Total	ls :			297.10015	144.61414	

¹H- and ¹³C- NMR spectra of methyl (S)-3-((tert-butoxycarbonyl)amino)-4-oxobutanoate (3g)

¹H-, ¹³C- NMR and HSQC spectra, and GC-FID chromatograms (enantiopure and racemic) of benzyl (S)-(4-methyl-1-oxopentan-2-yl)carbamate (3h)

Data File D:\GC\1\DATA\JAKOV\150807\150807A 2015-08-07 15-19-46\JI-462.D Sample Name: JI-462

```
Acq. Operator : jkv
                                        Seq. Line : 2
Acq. Instrument : GC Pal
                                        Location : P1-D-02
Injection Date : 07.08.2015 15:55:37
                                            Inj: 1
                                       Inj Volume : External
Acq. Method : D:\GC\1\DATA\JAKOV\150807\150807A 2015-08-07 15-19-46\AMAL_GCPAL.M
Last changed : 29.07.2015 18:50:33 by jkv
Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M
Last changed : 20.08.2015 19:08:53 by jkv
               (modified after loading)
     FID1 A, (JAKOV\150807\150807A 2015-08-07 15-19-46\JI-462.D)
   pA -
                                     461
                                                              461
                                     24.
    45 -
                                                              2
    40 -
   35 -
    30 -
    25 -
                                         25.024
    20 -
                                                               525.024
                                                        27
                22
                         23 24 25
                                                 26
    15 -
    10 -
    5-
                                       15
                                                               25
                          10
                                                   20
                                                                          min
_____
                    Area Percent Report
```

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	24.461	BB	0.2053	388.27646	29.09629	99.32977
2	25.024	BBA	0.1590	2.61991	2.34725e-1	0.67023
Total	ls :			390.89637	29.33102	

Data File D:\GC\1\DATA\JAKOV\150807\150807A 2015-08-07 15-19-46\JI-463-RAC.D Sample Name: JI-463-rac

```
Acq. Operator : jkv Seq. Line : 1

Acq. Instrument : GC Pal Location : P1-D-01

Injection Date : 07.08.2015 15:21:15 Inj : 1

Inj Volume : External

Acq. Method : D:\GC\1\DATA\JAKOV\150807\150807A 2015-08-07 15-19-46\AMAL_GCPAL.M

Last changed : 29.07.2015 18:50:33 by jkv

Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M

Last changed : 20.08.2015 19:03:50 by jkv

(modified after loading)
```

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	24.512	BB	0.1719	34.82494	2.83855	49.98275
2	25.033	BB	0.2071	34.84898	2.60788	50.01725
Total	ls :			69.67392	5.44643	

¹H- and ¹³C- NMR spectra benzyl (*S*)-(1-oxo-3-phenylpropan-2-yl)carbamate (3i)

¹H- and ¹³C- NMR spectra, and chiral HPLC chromatograms (enantiopure and racemic) of benzyl (*S*)-(1-hydroxy-3-phenylpropan-2-yl)carbamate (8i)

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150808A 2015-08-08 21-16-11\JI-464-B 2.D Sample Name: JI-464-B 2

_____ Acq. Operator : jakov Seq. Line : 4 Acq. Instrument : HPLC links Location : Vial 22 Injection Date : 08.08.2015 23:31:25 Inj: 1 Inj Volume : 3.0 µl Different Inj Volume from Sequence ! Actual Inj Volume : 30.0 µl Acq. Method : D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150808A 2015-08-08 21-16-11\ADH HEPTPROH 90 10.M Last changed : 08.08.2015 22:03:38 by jakov Analysis Method : D:\CHEMSTATION\HPLC LINKS\METHODS\JAKOV\INT.M : 09.08.2015 11:56:06 by jakov Last changed (modified after loading) MWD1 C, Sig=254,4 Ref=off, TT (JAKOV\150808A 2015-08-08 21-16-11\JI-464-B 2.D) mAU -20 -15 -17.238 10 -5 -012 5 0 -5 -10 20 30 40 min _____ Area Percent Report _____ Sorted By Signal : Multiplier: : 1.0000 Dilution: 1.0000 . Use Multiplier & Dilution Factor with ISTDs Signal 1: MWD1 C, Sig=254,4 Ref=off, TT Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] 8 # [min] 1 17.238 BB 0.8070 668.83026 11.73473 98.6409 2 21.012 BBA 0.4980 9.21526 2.21237e-1 1.3591 Totals : 678.04552 11.95597 _____ *** End of Report ***

Data File D:\CHEMSTA...PLC LINKS\DATA\JAKOV\150808A 2015-08-08 21-16-11\JI-464-A RACEMIC.D Sample Name: JI-464-A rac _____ Acq. Operator : jakov Seq. Line : 6 Acq. Instrument : HPLC links Location : Vial 21 Injection Date : 09.08.2015 01:13:56 Inj: 1 Inj Volume : 3.0 µl Different Inj Volume from Sequence ! Actual Inj Volume : 30.0 µl Acq. Method : D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150808A 2015-08-08 21-16-11\ADH HEPTPROH 90 10.M Last changed : 08.08.2015 22:03:38 by jakov Analysis Method : D:\CHEMSTATION\HPLC LINKS\METHODS\JAKOV\INT.M Last changed : 09.08.2015 12:04:07 by jakov (modified after loading) MWD1 C, Sig=254,4 Ref=off, TT (JAKOV\150808A 2015-08-08 21-16-11\JI-464-A RACEMIC.D) mAU -17.5 15 -12.5 -10 -17.281 7.5 22.038 5-2.5 -0. 10 20 30 40 _____ Area Percent Report _____ Sorted By : Signal Multiplier: : 1.0000 Dilution: 1.0000 . Use Multiplier & Dilution Factor with ISTDs Signal 1: MWD1 C, Sig=254,4 Ref=off, TT Peak RetTime Type Width Height Area Area # [min] [mAU*s] [mAU] 8 1 17.281 BB 0.7845 332.86594 6.08177 50.0895 2 22.038 VVA+ 1.1351 331.67657 4.87000 49.9105 Totals : 664.54251 10.95177 _____ *** End of Report ***

¹H- and ¹³C- NMR spectra of benzyl (*S*)-(1-oxopropan-2-yl)carbamate (3j)

¹H-, ¹³C- and HSQC NMR spectra, and chiral HPLC chromatograms (enantiopure and racemic) of benzyl (S)-(1-hydroxy-3-phenylpropan-2-yl)carbamate (8j)

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\JI-485-B.D Sample Name: JI-485-B

_____ Acq. Operator : jakov Seq. Line : 6 Location : Vial 53 Acq. Instrument : HPLC links Injection Date : 19.09.2015 22:18:35 Inj : 1 Inj Volume : 3.0 µl Different Inj Volume from Sequence ! Actual Inj Volume : 2.0 µl Acq. Method : D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\ADH HEPTIPROH_90_10.M Last changed : 19.09.2015 17:41:23 by jakov Analysis Method : D:\CHEMSTATION\HPLC LINKS\METHODS\JAKOV\INT.M Last changed : 20.09.2015 13:15:50 by jakov (modified after loading) MWD1 A, Sig=210,4 Ref=off, TT (JAKOV/150919A 2015-09-19 17-53-09/JI-485-B.D) 274 mAU] d 200 -12.274 150· 100 -**50** · 0 -**50** · 40 10 20 30 min _____ Area Percent Report _____ Sorted By Signal : : 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs Signal 1: MWD1 A, Sig=210,4 Ref=off, TT Peak RetTime Type Width 1 12.274 VBA 0.5836 5630.50195 144.19669 100.0000 5630.50195 144.19669 Totals :

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\JI-481-B.D Sample Name: JI-481-B

¹H-, ¹³C- and HSQC NMR spectra, and chiral HPLC chromatograms (enantiopure and racemic) of benzyl (*S*)-(1-hydroxy-3-phenylpropan-2-yl)carbamate (8k)

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\JI-483-B.D Sample Name: JI-483-B

Data File D:\CHEMSTATION\HPLC LINKS\DATA\JAKOV\150919A 2015-09-19 17-53-09\JI-479-B.D Sample Name: JI-479-B

¹H- and ¹³C- NMR spectra and GC-FID chromatograms (scalemic and racemic) of *tert*-butyl (*S*)-(2-oxo-1-phenylethyl)carbamate (3m)

Data File D:\GC\1\DATA\JAKOV\150813\150813A 2015-08-13 11-38-49\JI-473-B.D Sample Name: JI-473-B

```
Acq. Operator : jkv
                                    Seq. Line : 2
Acq. Instrument : GC Pal
                                    Location : P1-A-02
Injection Date : 13.08.2015 12:14:24
                                        Inj: 1
                                   Inj Volume : External
           : D:\GC\1\DATA\JAKOV\150813\150813A 2015-08-13 11-38-49\AMAL_GCPAL.M
Acq. Method
Last changed : 29.07.2015 18:50:33 by jkv
Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M
Last changed : 13.08.2015 14:22:49 by jkv
             (modified after loading)
     FID1 A, (JAKOV\150813\150813A 2015-08-13 11-38-49\JI-473-B.D)
   pA ]
   500 -
                                               14.149
   400
                                                  14.570
                                                  5
   300 -
                               12
                                     13
                                              14
                                                     15
                                                            16
                                149
   200 -
                                4
   100 -
                                 14.570
                       10
                                  15
                                             20
                                                        25
                                                                 min
_____
                 Area Percent Report
Sorted By
              : Signal
Multiplier
               :
                    1.0000
Dilution
               .
                    1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: FID1 A,
Peak RetTime Type Width Area
                           Height
                                    Area
 # [min] [min] [pA*s]
                                     ÷
                           [pA]
1 14.149 BB 0.0663 667.43793 154.75189 91.50501
  2 14.570 BBA 0.0741 61.96250 13.16249 8.49499
Totals :
                   729.40042 167.91439
```

Data File D:\GC\1\DATA\JAKOV\150327C\150327C 2015-03-29 14-07-47\1AGF0701.D Sample Name: JI-379-RefRAC

```
Acq. Operator : jkv Seq. Line : 7

Acq. Instrument : GC Pal Location : P1-A-07

Injection Date : 29.03.2015 17:35:52 Inj : 1

Inj Volume : External

Acq. Method : D:\GC\1\DATA\JAKOV\150327C\150327C 2015-03-29 14-07-47\AMAL_GCPAL.M

Last changed : 29.03.2015 14:07:22 by jkv

Analysis Method : D:\GC\1\DATA\JAKOV\METHOD\INT.M

Last changed : 20.08.2015 18:56:09 by jkv

(modified after loading)
```

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: FID1 A,

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	14.248	BB	0.0661	25.83864	6.21485	50.59744
2	14.646	BBA	0.0659	25.22845	6.09536	49.40256

Totals : 51.06708 12.31021

¹H- and ¹³C- NMR spectra of ethyl (*tert*-butoxycarbonyl)-L-valyl-L-phenylalaninate (6a)

¹H- and ¹³C- NMR spectra of methyl (tert-butoxycarbonyl)-L-valyl-D-phenylalaninate (6b)

¹H- and ¹³C- NMR spectra of (*tert*-butoxycarbonyl)-L-valyl-L-phenylalanine (7a)

¹H- and ¹³C- NMR spectra of (*tert*-butoxycarbonyl)-L-valyl-D-phenylalanine (7b)

¹H- and ¹³C- NMR spectra of *tert*-butyl ((*S*)-3-methyl-1-oxo-1-(((*S*)-1-oxo-3-phenylpropan-2-yl)amino)butan-2-yl)carbamate (4a)

¹H-, ¹³C- NMR spectra, mass spectrum and HPLC chromatogram of *tert*-butyl ((*S*)-1-(((*S*)-1-hydroxy-3-phenylpropan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamate (5a)

Data File D:\DATA\JAKOV\150810A 2015-08-10 20-25-02\JI-470-A REP.D Sample Name: JI-470-A

2 11.252 BB 0.1180 392.81415 49.78807 10.5363

Totals : 3728.18451 514.63191

¹H-, ¹³C- and HSQC NMR spectra of *tert*-Butyl ((*S*)-3-methyl-1-oxo-1-(((*R*)-1-oxo-3-phenylpropan-2-yl)amino)butan-2-yl)carbamate (4b)

¹H-, ¹³C- NMR spectra, mass spectrum and HPLC chromatogram of *tert*-butyl ((*S*)-1-(((*R*)-1-hydroxy-3-phenylpropan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamate (5b)

Data File D:\DATA\CHRISTIAN\CLF-40-F3-6.D Sample Name: CLF-40-F3-6

```
Acq. Operator : clf

Acq. Instrument : Instrument 1 Location : Vial 61

Injection Date : 20.08.15 15:19:16

Inj Volume : 4.0 µl

Acq. Method : D:\METHODS\JAKOV\LONG_POROSHELL120_001HCOOH_40PCISOCRAT.M

Last changed : 20.08.15 15:18:35 by clf

(modified after loading)

Analysis Method : D:\METHODS\JAKOV\1.M

Last changed : 20.08.15 15:51:06 by christian
```


Area Percent Report

-

Sorted	ву		:	Sigr	nal
Multip	lier:				1.0000
Diluti	on:				1.0000
Use Mu	ltiplier	&	Dilution	Factor	with ISTDs

Signal 1: MWD1 A, Sig=210,16 Ref=400,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.430	BB	0.1025	63.88106	9.25823	5.3423
2	10.977	BB	0.1157	1131.88049	145.51410	94.6577

Totals : 1195.76155 154.77233

Dependence of ee of Boc-phenylglycinal on the rate of addition of DIBAL-H

Figure S1 Dependence of ee of Boc-phenylglycinal on the rate of addition of DIBALH. Each reaction instance was performed using 50 mg (0.20 mmol) Boc-L-Phg-OH, 32 mg (0.20 mmol, 1.0 eq) CDI and 0.42 mL (0.42 mmol, 2.1 eq) 1M DIBAL-H in 2.0 mL of absolute CH_2Cl_2 , according to the general procedure, with the altered rates of addition, regulated by settings on the syringe pump. A parallel instance was performed for each reaction, differing by having 13 mg (0.10 mmol, 0.5 eq) of $CuCl_2$ added after the activation step and stirred for 60 min more before the DIBAL-H reduction. Enantiopurity was determined by chiral GC-FID.

rate of add.	CDI [eq]	DIBAL-H [eq]	no additive	0.5 eq of CuCl ₂
[mL/h]			ee [%]	ee [%]
1,00	1.0	2.1	28,9	69,9
1,50	1.0	2.1	36,5	78,0
2,00	1.0	2.1	54,1	79,7
2,50	1.0	2.1	51,0	79,6

Table S1 Dependence of ee of Boc-phenylglycinal on the rate of addition of DIBALH.

Dependence of yield of Boc-phenylglycinal on the temperature maintained during the addition of DIBAL-H

Figure S2 Dependence of yield of Boc-phenylglycinal on the temperature during addition DIBALH. Each reaction instance was performed using a 2.0 mL aliquot of a stock solution of 270 mg (1.07 mmol) of Boc-L-Phg-OH and 135 μ L (1.07 mmol) of *p*-xylene (internal standard) in 10.8 mL of absolute CH₂Cl₂, according to the general procedure with altered temperatures used during the reduction step (-78 °C, -50 °C, -30 °C, 0 °C and 24 °C respectively). For other temperatures relative yield was calculated using the determined isolated yield at -78 °C and the integrated GC-based peak areas (*A*), according to the following equation:

$$Yield = \frac{A(aldehyde) / A(xylene)}{A(aldehyde)_{-7\%C} / A(xylene)_{-7\%C}} * Yield_{-7\%C}$$

Table S2 Dependence of yield of Boc-phenylglycinal on the temperature during the addition of DIBALH.

temp. [°C]	A (ald)	A (xyl)	yield [%]
24	673713	2245673	43
0	1764540	3959756	63
-30	2654574	4478668	84
-50	2760001	4425637	89
-78	2444543	3694009	94

Figure S3 ¹H NMR spectra of the crude Boc-phenylglycinal isolated from the reactions at 24 °C, 0 °C, -30 °C, -50 °C and -78 °C, top to bottom, respectively. Interestingly, fairly pure aldehyde was isolated after reduction at each temperature, though optimum seems to be -78 °C.

Dependence of *ee* of Boc-phenylglycinal on the temperature during the addition of DIBAL-H

Figure S4 Dependence of yield of Boc-phenylglycinal on the temperature during addition DIBALH. Each reaction instance was performed using 50 mg (0.20 mmol) Boc-L-Phg-OH, 36 mg (0.22 mmol, 1.1 eq) CDI and 0.42 mL (0.42 mmol, 2.1 eq) 1M DIBAL-H in 2.0 mL of absolute CH_2CI_2 , according to the general procedure with altered temperatures used during the reduction step (-78 °C, -50 °C, -30 °C, 0 °C and 24 °C respectively). Enantiopurity was determined by chiral GC-FID.

temp. [°C]	CDI [eq]	DIBAL-H [eq]	ee [%]
24	1.1	2.1	37
0	1.1	2.1	59
-30	1.1	2.1	63
-50	1.1	2.1	72
-78	1.1	2.1	72

Table S3 Dependence of *ee* of Boc-phenylglycinal on the temperature during addition of DIBALH.

No additive 0.5 eq CuCl₂ Time after CDI is added vs 5 min 30 min 60 min 15 min after DIBAL-H addition had been completed

Figure S5 Appearance of the reaction solution during the time of activation with CDI and after the treatment with DIBAL-H. Reactions were performed in Schlenk tubes, under N_2 atmosphere.

References

[1] H. A. Staab and K. Wendel, Org. Synth. 1968, 48, 44.

[2] J. Fehrentz, B. Castro, Synthesis 1983, 676–678.

[3] Y. Hamada, T. Shiori, Chem. Pharm. Bull. 1982, 30, 1921–1924.

[4] E. A. Jares-Erijman, C. P. Bapat, A. Lithgow-Bertelloni, K. L. Rinehart, R. Sakai, *J. Org. Chem.*, **1993**, *58*, 5732–5737.

[5] C. L. Moore, D. D. Leatherwood, T. S. Diehl, D. J. Selkoe, M. S. Wolfe, *J. Med. Chem.* **2000**, *43*, 3434–3442.

[6] M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem. Soc. 2009, 131, 251–262.

[7] D. J. Morris, A. S. Partridge, C. V. Manville, D. T. Racys, G. Woodward, G. Docherty, M. Wills, *Tetrahedron Lett.* **2010**, *51*, 209–212.

[8] J. Ahlfors, K. Mekouar, WO 2009140765.

[9] H. Khatri, C. H. Stammer, J.C.S. Chem. Comm. 1979, 79–80.

[10] T. James, I. Simpson, J. A. Grant, V. Sridharan, A. Nelson, Org. Lett. 2013, 15, 6094–6097.

[11] M. Nakamura, H. Miyashita, M. Yamaguchi, Y. Shirasaki, Y. Nakamura, J. Inoue, *Bioorg. Med. Chem.* **2003**, *11*, 5449–5460.

[12] B. Schmidt, S. Hauke, N. Muehlenberg, Synthesis 2014, 46, 1648–1658.

[13] R. I. McDonald, G. W. Wong, R. P. Neupane, S. S. Stahl, C. R. Landis, *J. Am. Chem. Soc.* **2010**, *132*, 14027–14029.

[14] J. Bondebjerg, Z. Xiang, R. M. Bauzo, C. Haskell-Luevano, M. Meldal, J. Am. Chem. Soc. **2002**, *124*, 11046–11055.

[15] A. Boeijen, J. van Ameijde, R. M. J. Liskamp, J. Org. Chem. 2001, 66, 8454–8462.

[16] G. Chennakrishnareddy, B. Vasantha, N. Narendra, Vommina V. Sureshbabu, *International Journal of Peptide Research and Therapeutics* **2011**, *17*, 185–191.

[17] A. E. Wroblewski, D. G. Piotrowska, *Tetrahedron: Asymmetry* **2002**, *13*, 2509–2512.

[18] R. Chinchilla, D. Dodsworth, C. Najera, J. M. Soriano, M. Yus, ARKIVOC 2003, 10, 41–47.

[19] D. Crich, K. Sana, S. Guo, Org. Lett. 2007, 9, 4423–4426.

[20] S. Maity, P. Kumar, D. Haldar, Soft Matter 2011,7, 5239–5245.

[21] D. Krois, M. Simonetti, E. Wünsch, Monatsh. Chem. 1989, 120, 1029–1041.

[22] B. Kammermaier, G. Beck, W. Holla, D. Jacobi, B. Napierski, H. Jendralla, *Chem. Eur. J.* **1996**, *2*, 307–315.

[23] A. R. Katritzky, N. E. Abo-Dya, S. R. Tala, K. Gyanda, Z.K. Abdel-Samii, Org. Biomol. Chem. 2009, 7, 4444–4447.