Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

$\label{eq:cu_interm} \textbf{Cu_iII} \textbf{-} \textbf{catalyzed enantioselective oxygen atom transfer from}$

oxaziridine to oxindole derivatives with chiral phenanthroline

Yuki Naganawa,* Tomotaka Aoyama, and Hisao Nishiyama*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan

General Information. Infrared (IR) spectra were recorded on a JASCO FT/IR-230 spectrometer. ¹H NMR spectra were measured at 25 °C on a Varian Mercury 300 (300 MHz) spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = double-doublet, ddd = double-double-doublet, dt =double-triplet, m = multiplet, br = broad, and app = apparent), coupling constants (Hz), and assignment. ¹³C NMR spectra were measured at 25 °C on a Varian Mercury 300 (75 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High performance liquid chromatography (HPLC) was performed carried out on a JASCO GULLIVER 1500 series using 4.6 mm x 25 cm Daicel Chiral Coulmns. High-resolution mass spectra (HRMS) were performed on a double-focusing magnetic sector mass spectrometer JEOL JMS-700. For thin layer chromatography (TLC) analysis throughout this work, TLC Silica gel 60 F₂₅₄ were used. The products were purified by flash column chromatography on silica gel 60 N (Kanto, 60-210 µm).

In experiments requiring dry solvent, CH_2Cl_2 , diethyl ether and isopropyl alcohol were purchased from Wako Pure Chemical Industries as "Dehydrated". CPME was purchased from Sigma-Aldrich as "Dehydrated". Toluene and THF were purchased from Kanto Chemical as "Dehydrated" and further purified by passing through neutral alumina under nitrogen atmosphere. BinThro ligands (*S*)-1 were prepared according to our previous report.^{S1} Oxindole derivatives 2^{S2} and Davis' oxaziridine 3^{S3} were synthesized according to the literature, respectively.

•Spectroscopic data and NMR spectra for new oxindole derivatives (2) *N-t*-Butoxycarbonyl-3-(1-naphtyl)-2-oxindole (2g).

IR (KBr): 3050, 2976, 1784, 1598, 1511, 1480, 1394, 1352, 1299, 1143, 1092, 1048, 1023 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.33 (br, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.53 (br, 2H), 7.38 (t, J = 8.4 Hz, 2H), 7.13 (d, J = 6.6 Hz, 3H), 5.64 (br, 1H), 1.65 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 173.4, 149.2, 134.0, 128.7, 128.4, 127.9, 126.5, 125.8, 125.2, 124.5, 123.7, 115.0, 84.4,

48.1, 28.2 (Six peaks were overlapped.); HRMS (FAB) Calcd for $C_{23}H_{21}NO_3$ ([M]⁺) 359.1521. Found 359.1515.

N-t-Butoxycarbonyl-5-fluoro-3-(*p*-methoxyphenyl)-2-oxindole (2n).

OMe IR 114 7.89 F 3.80 Boc (d

IR (KBr): 2982, 1774, 1717, 1608, 1510, 1485, 1371, 1346, 1296, 1249, 1146, 1093, 1036 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.89-7.93 (m, 1H), 7.05-7.11 (m, 3H), 6.87-6.90 (m, 3H), 4.66 (s, 1H), 3.80 (s, 3H), 1.63 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 173.4, 159.6 (d, *J* = 242 Hz), 159.1, 149.1, 136.1 (d, *J* = 2.3 Hz), 129.3 (d, *J* = 9.1 Hz), 129.2, 127.4, 116.2 (d, *J* = 7.4 Hz), 115.0 (d, *J* = 22.2

Hz), 114.3, 112.3 (d, J = 24.0 Hz), 84.5, 55.4, 51.9 (d, J = 1.7 Hz), 28.2; HRMS (FAB) Calcd for C₂₀H₂₀FNO₄ ([M]⁺) 357.1376. Found 357.1376.

•General procedure for enantioselective C-H oxidation of oxindoles (2).

To a mixture of (*S*)-**1c** (3.0 mg, 5.5 μ mol) and Cu(OAc)₂·H₂O (1.0 mg, 5.0 μ mol) in schlenk tube under Ar atmosphere, dry diethyl ether (1 mL) were added at 25 °C. After stiring for 1 h at 25 °C, oxindole **2** (0.1 mmol) was added portion-wise to the mixture. After stiring another 5 min, Davis' oxaziridine **3** (33.0 mg, 0.12 mmol) was added portion-wise to the mixture and stirred for 24 h at the same temperature. The catalyst was removed by passing through short column chromatography on silica gel (eluting chloroform) and the solvent was evapolated. The residue was purified by column chromatography (eluting hexane/EtOAc) to give the desired product (*R*)-**4**.

(R)-N-t-Butoxycarbonyl-3-hydroxy-3-phenyl-2-oxindole (4a).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.94 (d, J = 7.8 Hz, 1H), 7.17-7.49 (m, 8H), 3.37 (s, 1H), 1.64 (s, 9H). The detailed spectral data has been reported in the literature.^{S2}

^{Boc} The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.5 mL/min, retention time; 26.1 min (*R*) and 56.5 min (*S*)). [e.r. = 97.5/2.5][e.e. = 95.0%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-3-(4-methylphenyl)-2-oxindole (4b).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.96 (d, *J* = 8.1 Hz, 1H), 7.18-7.43 (m, 7H), 3.37 (s, 1H), 2.36 (s, 3H), 1.67 (s, 9H). The detailed spectral data has been reported in the literature.^{S2}

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate

= 0.5 mL/min, retention time; 15.1 min (*R*) and 28.3 min (*S*)). [e.r. = 98.0/2.0][e.e. = 96.0%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-3-(4-methoxyphenyl)-2-oxindole (4c).

IR (KBr): 3444, 2979, 1779, 1732, 1609, 1510, 1467, 1370, 1344, 1289, 1253, 1149, 1102, 1034 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.92 (d, *J* = 8.1 Hz, 1H), 7.20-7.42 (m, 5H), 6.85 (dd, *J* = 2.1 Hz, 6.9 Hz, 2H), 3.78 (s, 3H), 3.36 (s, 1H), 1.62 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 175.6, 159.5, 148.8, 139.3,

131.5, 129.9, 128.0, 126.9, 125.0, 124.8, 115.2, 113.8, 84.8, 77.2, 55.4, 28.2; $[\alpha]_D^{26} = +17.1$ (c = 0.98, CHCl₃); HRMS (FAB) Calcd for C₂₀H₂₁NO₅ ([M+Na]⁺) 378.1317. Found 378.1317.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.8 mL/min, retention time; 30.5 min (*R*) and 53.8 min (*S*)). [e.r. = 96.5/3.5][e.e. = 93.0%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-3-(4-trifluoromethylphenyl)-2-oxindole (4d).

IR (KBr): 3821, 3448, 2983, 1793, 1737, 1609, 1468, 1413, 1372, 1327, 1253, 1150, 1069, 1018 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.96 (d, *J* = 8.4 Hz, 1H), 7.43-7.61 (m, 5H), 7.22-7.26 (m, 2H), 3.44 (s, 1H), 1.64 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 174.8, 148.6, 143.3, 139.4, 130.5 (q, *J* = 32.5 Hz), 130.4, 129.4,

125.9, 125.4 (q, J = 4.0 Hz), 125.4, 124.8, 123.6 (q, J = 270 Hz), 115.5, 85.2, 77.2, 28.2; $[\alpha]_{D}^{26} = +19.1$ (c = 0.63, CHCl₃); HRMS (FAB) Calcd for C₂₀H₁₈FNO₄ ([M+Na]⁺) 416.1086. Found 416.1103.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, retention time; 9.4 min (*R*) and 14.6 min (*S*)). [e.r. = 97.4/2.6][e.e. = 94.8%]

(R)-N-t-Butoxycarbonyl-3-hydroxy -3-(4-fluorophenyl) -2-oxindole (4e).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.94 (d, J = 8.4 Hz, 1H), 7.22-7.44 (m, 5H), 7.20 (dt, J = 15 Hz, 0.9 Hz, 1H), 3.34 (s, 1H), 1.63 (s, 9H). The detailed spectral data has been reported in the literature.^{S2} The enantiomeric purity of the product was determined by HPLC

analysis (Daicel CHIRALCEL AD-H, hexane/iPrOH = 95/5, flow rate

= 1.0 mL/min, retention time; 13.8 min (*R*) and 24.1 min (*S*)). [e.r. = 97.5/2.5][e.e. = 95.0%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-3-(2-methylphenyl)-2-oxindole (4f).

IR (KBr): 3865, 3803, 3751, 3446, 3059, 2980, 2931, 1730, 1608, 1480, 1292, 1149, 1094, 1036 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.90-7.95 (m, 2H), 7.22-7.42 (m, 4H), 7.05-7.16 (m, 3H), 3.18 (s, 1H), 1.88 (s, 3H), 1.67 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 175.0, 148.8, 139.9, 137.3, 134.3, 131.4, 130.1, 128.7, 128.4, 125.9, 125.6, 125.1,

124.7, 115.2, 84.8, 77.3, 28.2, 19.8; $[\alpha]_{D}^{26}$ = +86.5 (c = 0.97, CHCl₃); HRMS (FAB) Calcd for C₂₀H₂₁NO₄ ([M+H]⁺) 340.1549. Found 340.1560.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.5 mL/min, retention time; 31.0 min (*R*) and 103.6 min (*S*)). [e.r. = 90.0/10.0][e.e. = 80.0%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-3-(1-naphtyl)-2-oxindole (4g).

IR (KBr): 3444, 2980, 1733, 1607, 1511, 1479, 1287, 1155, 1101, 1002, cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.03 (d, *J* = 8.1 Hz, 1H), 7.91 (d, *J* = 6.9 Hz, 1H), 7.84-7.90 (m, 2H), 7.70 (d, 1H), 7.33-7.53 (m, 5H), 7.18-7.20 (m, 1H), 7.06-7.12 (m, 1H), 3.41 (s, 1H), 1.68 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 175.0, 149.0, 139.4, 134.3, 134.1, 130.3, 130.1, 129.8, 129.7, 128.9, 126.4, 125.4, 125.1, 124.8, 124.71,

124.68, 124.0, 115.6, 84.9, 78.3, 28.2; $[\alpha]_D^{26} = +93.0$ (c = 1.0, CHCl₃); HRMS (FAB) Calcd for C₂₃H₂₁NO₄ ([M]⁺) 375.1471. Found 375.1466.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.5 mL/min, retention time; 40.0 min (*R*) and 98.0 min (*S*)). [e.r. =83.5/16.5][e.e. = 67.0%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-5-methyl-3-phenyl-2-oxindole (4h).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.81 (d, *J* = 8.4 Hz, 1H), 7.30-7.35 (m, 5H), 7.11-7.21 (m, 2H), 7.11 (d, *J* = 0.6 Hz, 1H) 3.26 (s, 1H), 2.33 (s, 3H) 1.64 (s, 9H); The detailed spectral data has been reported in the literature.^{S2}

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.8 mL/min, retention time; 18.6 min (*R*) and 32.0 min (*S*)). [e.r. = 97.8/2.2][e.e. = 95.6%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-5-methoxy-3-phenyl-2-oxindole (4i).

= 1.0, CHCl₃). The detailed spectral data has been reported in the literature.^{S2}

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.8 mL/min, retention time; 30.0 min (*R*) and 54.0 min (*S*)). [e.r. = 96.9/3.1][e.e. = 93.8%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-5-fluoro-3-phenyl-2-oxindole (4j).

IR (KBr): 3429, 2927, 1789, 1732, 1610, 1511, 1485, 1371, 1341, 1297, 1252, 1149, 1108, 1034, cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.94 (dd, *J* = 4.8 Hz, 9.0 Hz, 1H), 7.33 (m, 5H), 7.01-7.13 (m, 2H), 3.35 (s, 1H), 1.64 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 175.2, 159.9 (d, *J* = 243 Hz), 148.6, 139.0, 135.2 (d, *J* = 2.3 Hz), 131.6

(d, J = 8.0 Hz), 128.6, 125.9, 125.1, 116.8 (d, J = 4.0 Hz), 116.6 (d, J = 19.4 Hz), 112.3 (d, J = 2.4 Hz), 85.1, 77.6 (d, J = 1.7 Hz), 28.2; $[\alpha]_{D}^{23} = +69.6$ (c = 0.71, CHCl₃). HRMS (FAB) Calcd for C₁₉H₁₈FNO₄ ([M+Na]⁺) 366.1118. Found 366.1122.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.8 mL/min, retention time; 14.5 min (*R*) and 25.5 min (*S*)). [e.r. = 97.3/2.7][e.e. = 94.6%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-5-methyl-3-(4-methylphenyl)-2-oxindole (4k).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.80 (d, *J* = 8.4 Hz, 1H), 7.12-7.23 (m, 6H), 3.25 (s, 1H), 2.33 (s, 3H), 2.32 (s, 3H), 1.63 (s, 9H). The detailed spectral data has been reported in the literature.^{S2} The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow

rate =1.0 mL/min, retention time; 16.5 min (*R*) and 27.0 min (*S*)). [e.r. =97.3/2.7][e.e. = 94.6%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-5-methoxy-3-(4-methylphenyl)-2-oxindole (4l).

IR (KBr): 3444, 2979, 1779, 1733, 1609, 1510, 1467, 1370, 1344, 1289, 1252, 1149, 1102, 1034, cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.86 (d, *J* = 9.0 Hz, 1H), 7.23-7.26 (m, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 6.92 (dd, *J* = 2.7 Hz, 8.7 Hz 1H), 6.86 (d, *J* = 2.7 Hz 1H), 3.77 (s, 3H), 3.18 (s, 1H), 2.33 (s, 3H), 1.63 (s,

9H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 175.6, 157.0, 148.8, 138.2, 136.5, 132.6, 131.1, 129.1, 125.2, 116.3, 115.4, 110.1, 84.5, 77.8, 55.7, 28.2, 21.3; $[\alpha]_{D}^{25} = -1.0$ (c = 1.0, CHCl₃); HRMS (FAB) Calcd for C₂₁H₂₃NO₅ ([M+Na]⁺) 392.1474. Found 392.1479.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, retention time; 27.2 min (*R*) and 50.7 min (*S*)). [e.r. = 97.9/2.1][e.e. = 95.8%]

(R)-N-t-Butoxycarbonyl-3-hydroxy-5-fluoro-3-(4-methoxyphenyl)-2-oxindole (4m).

IR (KBr): 3821, 3448, 2983, 1793, 1737, 1609, 1468, 1413, 1372, 1327, 1254, 1150, 1069, 1018 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.90-7.95 (m, 1H), 7.28 (d, *J* = 2.1 Hz, 1H), 7.03-7.13 (m, 2H), 6.87 (dd, *J* = 6.9 Hz, 9.3 Hz, 2H), 3.79 (s, 3H), 3.33 (s, 1H), 1.63 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ

(ppm) = 175.3, 159.9 (d, J = 243 Hz), 159.6, 148.7, 135.2, 131.6 (d, J = 8.0 Hz), 131.0, 126.7, 116.8 (d, J = 7.4 Hz), 116.4, 114.0, 112.3 (d, J = 24.0 Hz), 85.0, 77.2 (d, J = 5.1 Hz), 55.4, 28.2; $[\alpha]_{D}^{27} = +21.0$ (c = 0.84, CHCl₃); HRMS (FAB) Calcd for C₂₀H₂₀FNO₅ ([M+Na]⁺) 396.1223. Found 396.1222.

The enantiomeric purity of the product was determined by HPLC analysis (Daicel CHIRALCEL AD-H, hexane/*i*PrOH = 95/5, flow rate = 0.5 mL/min, retention time; 25.1 min (*R*) and 41.5 min (*S*)). [e.r. = 97.24/2.76][e.e. = 94.48%]

•General procedure for the preparation of Cu complex (S)-7.

A yellow solution of BinThro (*S*)-**1a** (52.4 mg, 0.1 mmol) in CH₂Cl₂ (5 mL) was added to a pale blue solution of Cu(OAc)₂·H₂O (20.0 mg, 0.1 mmol) in MeOH (5 mL). The color of the mixture changed to dark red. Then, the mixture was concentrated to ca. 2 mL to form dark red solids, which were collected by filtration. The crude products were recrystallized with acetone to give dark red crystals (*S*)-**7** of 54.0 mg (84% yield).

X-ray crystallographic analysis of (S)-7.

A clear dark orange columun-like specimen of $C_{40}H_{26}CuN_2O_3$, approximate dimensions 0.100 mm x 0.400 mm x 0.400 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The integration of the data using a monoclinic unit cell yielded a total of 23913 reflections to a maximum θ angle of 25.06° (0.84 Å resolution), of which 11568 were independent (average redundancy 2.067, completeness = 99.4%, R_{int} = 1.87%) and 10939 (94.56%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 15.2618(6) Å, <u>b</u> = 13.0327(5) Å, <u>c</u> = 17.7452(8) Å, β = 108.0781(12)°, volume = 3355.3(2) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 $\sigma(I)$. The calculated minimum and maximum

transmission coefficients (based on crystal size) are 0.7700 and 0.9340.

The final anisotropic full-matrix least-squares refinement on F^2 with 876 variables converged at R1 = 5.77%, for the observed data and wR2 = 18.26% for all data. The goodness-of-fit was 1.507. The largest peak in the final difference electron density synthesis was 2.510 e⁻/Å³ and the largest hole was -0.539 e⁻/Å³ with an RMS deviation of 0.129 e⁻/Å³. On the basis of the final model, the calculated density was 1.279 g/cm³ and F(000), 1332 e⁻.

Identification code	e Naganawa5420				
Chemical formula	$C_{40}H_{26}CuN_2O_3$				
Formula weight	646.17				
Temperature	93(2) K				
Wavelength	0.71073 Å				
Crystal size	0.100 x 0.400 x 0.4	0.100 x 0.400 x 0.400 mm			
Crystal habit	clear dark orange columun				
Crystal system	monoclinic				
Space group	P 1 21 1				
Unit cell dimensions	a = 15.2618(6) Å	$\alpha = 90^{\circ}$			
	b = 13.0327(5) Å	$\beta = 108.0781(12)^{\circ}$			
	c = 17.7452(8) Å	$\gamma = 90^{\circ}$			
Volume	3355.3(2) Å ³				
Z	4				
Density (calculated)	1.279 g/cm ³				
Absorption coefficient	0.691 mm ⁻¹				
F(000)	1332				

Table 1. Sample and crystal data for Naganawa5420.

Table 2. Data collection and structure refinement for Naganawa5420.

Theta range for data	$2.10 \pm 25.06^{\circ}$
collection	2.19 10 23.00
Index ranges	-18<=h<=17, -15<=k<=15, -20<=l<=20
Reflections collected	23913

Independent reflections	11568 [R(int) = 0.018	37]
Max. and min. transmission	0.9340 and 0.7700	
Refinement method	Full-matrix least-squa	ares on F ²
Refinement program	SHELXL-2013 (Shel	drick, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	11568 / 1 / 876	
Goodness-of-fit on F ²	1.507	
Δ / σ_{max}	0.008	
Final R indices	10939 data; I>2σ(I)	R1 = 0.0577, wR2 = 0.1798
	all data	R1 = 0.0603, wR2 = 0.1826
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.1000 where P=(F_o^2 +2 F_c^2)/3)P) ²]
Absolute structure parameter	0.0(0)	
Largest diff. peak and hole	2.510 and -0.539 eÅ ⁻³	3
R.M.S. deviation from mean	0.129 eÅ ⁻³	

Figure S1. The relationship between ee of (*S*)-**2a** and ee of the product (*R*)-**1a**. (refer to Table 3)

·References.

- (S1) Y. Naganawa, T. Namba, T. Aoyama, K. Shoji, H. Nishiyama, H. Chem. Commun. 2014, 50, 13224.
- (S2) T. Ishimaru, N. Shibata, J. Nagai, S. Nakamura, T. Toru, S. Kanemasa, *J. Am. Chem. Soc.* **2006**, *128*, 16488.
- (S3) J. L. G. Ruano, J. Alemán, C. Fajardo, A. Parra, Org. Lett. 2005, 7, 5493.

S16

S19

					the second s	
#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	27.810	9875771	303755	50.713	69.363	17193
 2	60.390	9597944	134168	49.287	30.637	16524

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
. 1	26.097	28173821	838718	97.500	98.738	14989
2	56.455	722418	10722	2.500	1.262	15850

1							
	#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
	1	15.067	19605027	824811	97.998	98.889	9700
	2	28.328	400605	9270	2.002	1.111	9676

and the second se		and the second se	and the second se	the state of the s	and the second se
10968	97.802	96.484	516734	23454450	30.463
11981	2.198	3.516	11611	854797	53.845

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	9.407	10480863	752510	97.401	98.256	11092
2	14.617	279634	13353	2.599	1.744	10796

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	13.798	22120005	1132308	97.530	98.407	12179
2	24.118	560306	18326	2.470	1.593	13495

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	31.028	80474784	1819777	90.048	96.202	11082
2	103.642	8893538	71845	9.952	3.798	15469

	-	> 10 TM					
	#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
	1	40.450	52530848	984454	49.550	70.774	13645
	2	98.313	53485254	406522	50.450	29.226	12650
1		and the second se	Concernant and the second second second second		A REAL PROPERTY AND A REAL		

	#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
J	1	40.052	51990823	973956	83.479	92.525	13278
1	2	98.017	10289149	78679	16.521	7.475	12621

Ľ-	ビーク情報								
#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP			
1	18.568	43622131	1522324	97.808	98.426	10242			
2	32.013	977792	24343	2.192	1.574	13510			

Lº.	_ /1	(ele	# 0	
L-		旧	ŦK	

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	30.085	24941729	541600	96.902	97.987	10532
2	53.967	797299	11129	3.098	2.013	12565

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	14.485	4324876	221218	97.285	98.389	13245
2	25.493	120709	3623	2.715	1.611	12733

#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	16.465	39865810	1423247	97.256	98.096	8232
2	27.023	1124867	27624	2.744	1.904	9564

L	719 HX					
#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
1	27.230	18734285	400042	97.912	98.733	8252
2	50.698	399463	5133	2.088	1.267	9072

I	#	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	NTP
	1	25.147	8052601	217439	97.241	98.207	11239
	2	41.480	228490	3970	2.759	1.793	11569