Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Highly efficient Mukaiyama-Mannich reaction of *N*-Boc isatin ketimines and other active cyclic ketimines using difluoroenol silyl ethers catalyzed by Ph₃PAuOTf

Jin-Sheng Yu,^{*a*} and Jian Zhou^{*,*a*,*b*}

^{*a*} Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, P. R. China.

	Contents	Page
General	information	2
Part I	General procedure for the Mukaiyama-Mannich reaction	3-13
Part II	Total synthesis of CF ₂ -AG-041R	14-16
Part III	Initial NMR experiments	17-22
Part VI	¹ H, ¹⁹ F and ¹³ C NMR spectra	23-107

General: Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refered to pure isolated substances. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H, ¹⁹F, ¹³C NMR spectra were obtained using a Bruker DPX-400 or 300 spectrometer. Chemical shifts are reported in ppm from CDCl₃, acetone-*d*₆ with the solvent resonance or (CH₃)₄Si as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad. Coupling constants (*J*) are reported in Hertz.

Anhydrous toluene was prepared by distillation over sodium-benzophenone ketyl prior to use. Anhydrous CH_2Cl_2 and CH_3CN were prepared by first distillation over P_2O_5 and then from CaH_2 . Powdered MS 5Å was purchased from Aldrich and dried under vacuum at 150 °C for 12 hours, and then stored under nitrogen. The isatin derived ketimines 2^1 and cyclic ketimines 7^2 were prepared according to the corresponding literature report. The difluoroenoxysilanes 1 and mono-fluorinated analogue 9 were prepared according to literature reports.³ The enol silyl ether 10 was prepared according to literature reports.^{3c}

List of abbreviation:

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	Hexafluoroisopropyl alcohol	HFIP

¹ (*a*) Y.-L. Liu and J. Zhou, *Chem. Commun.*, 2013, **49**, 4421; (*b*) W. Yan, D. Wang, J. Feng, P. Li, D. Zhao and R. Wang, *Org. Lett.*, 2012, **14**, 2512.

² (*a*) H. Wang, T. Jiang and M.-H. Xu, *J. Am. Chem. Soc.*, 2013, **135**, 971; (*b*) S. Zhang, L. Li, Y. Hu, Z. Zha, Z. Wang and T.-P. Loh, *Org. Lett.*, 2015, **17**, 1050; (*c*) T. Kano, S. Song, Y. Kubota and K. Maruoka, *Angew. Chem., Int. Ed.*, 2012, **51**, 1191.

³ (a) H. Amii, T. Kobayashi, Y. Hatamoto and K. Uneyama, Chem. Commun. 1999, 1323; (b) G. K. S. Prakash, J. Hu and G. A. Olah,

J. Fluorine Chem. 2001, **112**, 357; (c) J. Eames, G. S. Coumbarides, M. J. Suggate and N. Weerasooriya, Eur. J. Org. Chem. 2003, 634.

Part I. General procedure for the Mukaiyama-Mannich reaction.

1) The Mukaiyama-Mannich reaction of N-Boc isatin ketimines 2.

Under an atmosphere of N₂, to a 25 mL dry Schleck tube were added Ph₃PAuCl (3.7 mg, 0.0075 mmol) and AgOTf (1.9 mg, 0.0075 mmol), followed by the addition of 2.5 mL of anhydrous CH₂Cl₂. The reaction mixture was stirred at room temperature for about 30 minutes, and then 200 mg activated MS 5Å was added, followed by the addition of *N*-Boc isatin ketimines **2** (0.25 mmol) and difluoroenoxysilanes **1** (0.375 mmol). The resulting mixture was stirred at room temperature till full conversion of **2** by TLC analysis and the reaction mixture was directly subjected to flash column chromatography to afford products **3**, using indicated eluent.

BocHN^F^F^O^O^{Ph} Me^{3a} Column chromatography (CH₂Cl₂/EtOAc = 50:1 to 30:1) afforded product **3a** in 92% yield as white solid, Mp: 118-120 °C. IR (neat): 3261, 1750, 1701, 1369, 1154, 754, 712 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.80 (m, 2H), 7.60-7.56 (m, 1H), 7.42-7.33 (m, 4H), 7.03-7.00 (m, 1H), 6.84-6.82 (m, 1H), 6.18 (s, 1H), 3.21 (s, 3H), 1.27 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.17 (d, *J* = 275 Hz, 1F), -108.29 (d, *J* = 275 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 188.73 (t, *J* = 28 Hz), 170.73, 153.24, 144.85, 134.43, 132.70, 130.46, 129.94 (t, *J* = 3.6 Hz), 128.41, 125.08, 123.71, 122.75, 115.32 (t, *J* = 265 Hz), 108.36, 80.88, 65.17 (t, *J* = 23 Hz), 27.92, 26.59. MS (EI): 416 (M⁺, 6), 316 (2), 205 (3), 161 (100), 105 (14), 77 (16), 57 (9), 44 (6). HRMS (EI): Exact mass calcd for C₂₂H₂₂N₂O₄F₂ [M]⁺: 416.1548, Found: 416.1551.

Column chromatography (CH₂Cl₂/EtOAc = 1:0 to 20:1) afforded product **3b** in 84% yield as white solid, Mp: 86-88 °C. IR (neat): 3348, 1718, 1494, 1272, 1160, 685 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 2H), 7.63-7.59

(m, 1H), 7.45-7.42 (m, 2H), 7.17-7.14 (m, 1H), 7.08-7.03 (m, 1H), 6.79-6.76 (m, 1H), 6.21 (s, 1H),

3.22 (s, 3H), 1.31 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.52 (d, *J* = 279 Hz, 1F), -108.11 (d, *J* = 279 Hz, 1F), -119.81 (s, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 188.36 (t, *J* = 28 Hz), 170.59, 159.10 (d, *J* = 240 Hz), 153.25, 140.95 (d, *J* = 2.1 Hz), 134.71, 132.44, 130.04 (t, *J* = 3.3 Hz), 128.57, 125.33 (d, *J* = 7.2 Hz), 116.71 (d, *J* = 23.4 Hz), 115.20 (t, *J* = 266 Hz), 113.47 (d, *J* = 25.6 Hz), 108.94 (d, *J* = 7.9 Hz), 81.22, 65.34 (t, *J* = 22.9 Hz), 28.00, 26.83. MS (EI): 434 (M⁺, 6), 334 (3), 205 (3), 179 (100), 105 (15), 77 (15), 57 (10), 44 (5). HRMS (EI): Exact mass calcd for C₂₂H₂₁N₂O₄F₃ [M]⁺: 434.1453, Found: 434.1450.

Clumn chromatography (pure CH₂Cl₂) afforded product **3c** in 86% yield as pale yellow solid, Mp: 100-102 °C. IR (neat): 3252, 2924, 1717, 1367, 1125, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 2H), 7.63-7.59 (m, 1H), 7.46-7.42 (m, 2H), 7.36-7.31 (m, 2H), 6.79-6.76 (m, 1H), 6.19 (s, 1H), 3.22 (s, 3H), 1.31 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.38 (d, *J* = 280 Hz, 1F), -107.87 (d, *J* = 280 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 188.20 (t, *J* = 28 Hz), 170.44, 153.24, 143.57, 134.75, 132.36, 130.36, 130.06 (t, *J* = 4 Hz), 128.58, 128.15, 125.55, 125.48, 115.22 (t, *J* = 266 Hz), 109.35, 81.29, 65.09 (t, *J* = 23 Hz), 28.02, 26.83. MS (EI): 452 [M(³⁷Cl)⁺, 2.6], 450[M(³⁵Cl)⁺, 7.7], 350 (3), 221 (3), 195 (100), 197 (33), 105 (20), 77 (20), 57 (12), 44 (8). HRMS (EI): Exact mass calcd for C₂₂H₂₁N₂O₄F₂³⁵Cl [M]⁺: 450.1158, Found: 450.1160.

Column chromatography (CH₂Cl₂/EtOAc = 100:1 to 30:1) afforded product **3f** in 69% yield as white solid, Mp: 155-157 °C. IR (neat): 3376, 1728, 1710, 1512, 1160, 659 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.81 (m, 2H), 7.60-7.56 (m, 1H), 7.43-7.39 (m, 2H), 7.26-7.24 (m, 1H), 6.50-6.47 (m, 1H), 6.40-6.39 (m,

1H), 6.11 (s, 1H), 3.81 (s, 3H), 3.19 (s, 3H), 1.30 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.18 (d, *J* = 275 Hz, 1F), -108.23 (d, *J* = 275 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 188.83 (t, *J* = 28 Hz), 171.26, 161.87, 153.35, 146.26, 134.43, 132.79, 130.02 (t, *J* = 3.8 Hz), 128.46, 126.21, 115.46 (t, *J* = 265 Hz), 115.37, 106.52, 96.46, 80.84, 64.79 (t, *J* = 23 Hz), 55.44, 28.05, 26.67. MS (EI): 446 (M⁺, 2), 346 (1), 291 (4), 191 (100), 148 (5), 105 (11), 77 (11), 57 (6), 44 (5). HRMS (EI): Exact mass calcd for C₂₃H₂₄N₂O₅F₂ [M]⁺: 446.1653, Found: 446.1654.

 190 (13), 189 (100), 146 (6), 105 (11), 77 (11), 57 (5), 44 (5). HRMS (EI): Exact mass calcd for $C_{24}H_{26}N_2O_4F_2$ [M]⁺: 444.1861, Found: 444.1862.

Column chromatography (pure CH₂Cl₂) afforded product **3h** in 75% yield as pale yellow solid, Mp: 181-183 °C. IR (neat): 3390, 1714, 1686, 1511, 1276, 1118, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.80 (m, 2H), 7.59-7.55 (m, 1H), 7.39-7.21 (m, 9H), 6.99 (t, J = 7.2 Hz, 1H), 6.72 (d, J = 8 Hz, 1H), 6.33 (s, 1H), 5.07, 4.80 (AB, J = 16 Hz, 2H), 1.30 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.54 (d, J = 275 Hz, 1F), -108.60 (d, J = 275 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 189.33 (t, J = 27 Hz), 171.13, 153.34, 144.26, 135.37, 134.48, 132.87, 130.37, 130.15 (t, J = 3.1 Hz), 128.70, 128.45, 127.57, 127.33, 125.24, 123.81, 122.88, 115.27 (t, J = 265 Hz), 80.99, 65.57 (t, J = 24 Hz), 44.50, 28.03. MS (EI): 492 (M⁺, 7), 237 (26), 195 (8), 179 (24), 149 (8), 105 (51), 77 (38), 56 (17), 44 (100). HRMS (EI): Exact mass calcd for C₂₈H₂₆N₂O₄F₂ [M]⁺: 492.1861, Found: 492.1863.

Column chromatography (PE/EtOAc = 10:1 to 6:1) afforded product **3i** in 78% yield as white solid, Mp: 128-130 °C. IR (neat): 3373, 2975, 1737, 1517, 1276, 1138, 772 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.79 (m, 2H), 7.60-7.56 (m, 1H), 7.42-7.38 (m, 2H), 7.32-7.28 (m, 2H), 7.08 (d, *J* = 8 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.18 (s, 1H), 4.71-4.68 (m, 1H), 4.03-3.98 (m, 1H), 3.79-3.49 (m, 5H), 1.27 (s, 9H), 1.17-1.10 (m, 6H); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.06 (d, *J* = 274 Hz, 1F), -108.54 (d, *J* = 274 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 189.07 (t, *J* = 28 Hz), 171.13, 153.23, 144.79, 134.43, 132.84, 130.12, 130.03 (t, *J* = 3.4 Hz), 128.42, 124.85, 123.42, 122.54, 115.37 (t, *J* = 265 Hz), 110.23, 101.07, 80.90, 65.01 (t, *J* = 23 Hz), 63.92, 63.80, 44.30, 27.98, 15.24, 15.21. MS (EI): 518 (M⁺, 6), 217 (8), 149 (5), 105 (46), 103 (100), 84 (17), 77 (22), 75 (23), 57 (9), 44 (33). HRMS (EI): Exact mass calcd for C₂₇H₃₂N₂O₆F₂ [M]⁺: 518.2228, Found: 518.2224.

Column chromatography (CH₂Cl₂/EtOAc = 20:1 to 10:1) afforded product **3j** in 72% BocHN Ph yield as white solid, Mp: 180-183 °C. IR (neat): 3277, 1749, 1682, 1280, 1158, 756 **3j** cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, br, 1H), 7.87-7.85 (m, 2H), 7.58-7.54 (m, 1H), 7.41-7.37 (m, 2H), 7.34-7.32 (m, 1H), 7.28-7.24 (m, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.81-6.79 (m, 1H), 6.33 (s, 1H), 1.31 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.71 (d, J = 276 Hz, 1F), -108.77 (d, J = 276 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 189.38 (t, J = 28 Hz), 172.72, 153.48, 142.20, 134.59, 132.82, 130.46, 130.16 (t, J = 3.6 Hz), 128.52, 125.37, 124.27, 122.83, 115.15 (t, J = 265 Hz), 110.52, 81.35, 65.87 (t, J = 25 Hz), 28.02. MS (EI): 402 (M⁺, 4), 302 (1), 247 (4), 147 (100), 105 (23), 77 (20), 57 (15), 44 (13). HRMS (EI): Exact mass calcd for $C_{21}H_{20}N_2O_4F_2$ [M]⁺: 402.1391, Found: 402.1395.

BocHN Column chromatography (pure CH₂Cl₂) afforded product **3k** in 62% yield as white solid, Mp: 112-114 °C. IR (KBr): 3369, 2984, 1780, 1739, 1705, 1499, 1292, 1156, **b**cc **3k** 759 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.91 (m, 1H), 7.83-7.81 (m, 2H), 7.61-7.57 (m, 1H), 7.42-7.35 (m, 4H), 7.13-7.09 (m, 1H), 6.20 (s, 1H), 1.63 (s, 9H), 1.25 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ -106.53 (d, J = 280 Hz, 1F), -107.64 (d, J = 280 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 188.25 (t, J = 29 Hz), 168.98 (t, J = 3 Hz), 153.23, 148.81, 141.30, 134.69, 132.32, 130.61, 130.10 (t, J = 4 Hz), 128.51, 124.70, 124.48, 123.02, 115.37 (t, J = 267 Hz), 115.26, 84.50, 81.58, 65.25 (t, J = 23 Hz), 28.02, 27.83. MS (EI): 502 (M⁺, 1), 402 (2), 346 (5), 191 (8), 147 (100), 119 (30), 105 (95), 77 (38), 57 (34), 43 (77). HRMS (EI): Exact mass calcd for C₂₆H₂₈N₂O₆F₂ [M]⁺: 502.1915, Found: 502.1919.

OMe Column chromatography (CH₂Cl₂/EtOAc = 80:1 to 20:1) afforded product **3I** in 99% yield as white solid, Mp: 140-142 °C. IR (neat): 3399, 2934, 1744, 1716, 1594, 1467, 1268, 1147, 759 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.83 (m, 2H), 7.35-7.31 (m, 2H), 7.02-6.98 (m, 1H), 6.87-6.82 (m, 3H), 6.23 (s, 1H), 3.85 (s, 3H), 3.22 (s, 3H), 1.27 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.81 (d, *J* = 274 Hz, 1F), -107.69 (d, *J* = 274 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 186.66 (t, *J* = 28 Hz), 170.90, 164.68, 153.30, 144.93, 132.81 (t, *J* = 4 Hz), 130.35, 125.46, 125.11, 123.98, 122.68, 115.63 (t, *J* = 265 Hz), 113.82, 108.29, 80.83, 65.23 (t, *J* = 24 Hz), 55.52, 27.96, 26.65. MS (EI): 446 (M⁺, 12), 346 (2), 285 (9), 225 (17), 187 (16), 161 (100), 135 (46),77 (14), 57 (21), 44 (32). HRMS (EI): Exact mass calcd for C₂₃H₂₄N₂O₅F₂[M]⁺: 446.1653, Found: 446.1657. Column chromatography (pure CH₂Cl₂) afforded product **3m** in 67% yield as white foamy solid, Mp: 55-58 °C. IR (neat): 3419, 2976, 1721, 1490, 1253, 1139, 869, 764 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.75 (m, 2H), 7.40-7.34 (m, 4H), 7.05-7.01 (m, 1H), 6.84 (d, *J* = 8 Hz, 1H), 6.14 (s, 1H), 3.22 (s, 3H), 1.27 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.01 (d, *J* = 274 Hz, 1F), -108.68 (d, *J* = 274 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 187.78 (t, *J* = 30 Hz), 170.74, 153.24, 144.86, 141.32, 131.45 (t, *J* = 3.3 Hz), 131.11, 130.60, 128.90, 125.19, 123.64, 122.92, 115.35 (t, *J* = 265 Hz), 108.47, 81.07, 65.31 (t, *J* = 23 Hz), 27.99, 26.71. MS (EI): 450 (M⁺, 4), 350 (1), 205 (3), 161 (100), 139 (10), 111 (9), 75 (4), 57 (9), 44 (6). HRMS (EI): Exact mass calcd for C₂₂H₂₁N₂O₄F₂³⁵Cl [M]⁺: 450.1158, Found: 450.1157.

Column chromatography (PE/EtOAc = 6:1 to 5:1) afforded product **3n** in 88% yield as white solid, Mp: 121-123 °C. IR (neat): 3386, 2928, 1709, 1522, 1284, 1132, 763 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.32 (m, 2H), 7.29-7.26 (m, 2H), 7.21-7.18 (m, 1H), 7.15-7.06 (m, 3H), 6.82 (d, *J* = 8 Hz, 1H), 6.16 (s, 1H), 3.23 (s, 3H), 2.91-2.84 (m, 4H), 1.26 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -112.29 (d, *J* = 261 Hz, 1F), -118.49 (d, *J* = 261 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 200.12 (dd, *J* = 33 Hz, *J* = 24 Hz), 170.94, 153.13, 144.68, 139.89, 130.60, 128.52, 128.34, 126.31, 124.80, 123.50, 123.10, 113.09 (dd, *J* = 264 Hz, *J* = 259 Hz), 108.56, 81.03, 65.31 (dd, *J* = 28 Hz, *J* = 23 Hz), 40.75, 28.38, 27.97, 26.72. MS (EI): 444 (M⁺, 6), 344 (2), 196 (4), 161 (100), 131 (4), 105 (7), 91 (14), 77 (5), 57 (8), 44 (8). HRMS (EI): Exact mass calcd for C₂₄H₂₆N₂O₄F₂ [M]⁺: 444.1861, Found: 444.1859.

Column chromatography (PE/EtOAc = 5:1 to 4:1) afforded product **11** in 99% yield as white solid, dr value was 9:1 determined by ¹H NMR analysis of crude mixture. Mp: 136-138°C. IR (KBr): 3410, 2989, 1720, 1709, 1610, 1490, 1254, 750 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.70 (m, 2H), 7.58-7.54 (m, 1H), 7.39-7.31 (m, 3H), 7.16-7.14 (m, 1H), 6.94-6.90 (m, 1H), 6.88-6.86 (m, 1H), 6.33 (s, 1H), 5.70 (d, *J* = 46 Hz, 1H), 3.27 (s, 3H), 1.28 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -193.27 (s, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 196.61 (d, *J* = 22 Hz), 153.43, 144.65, 135.00 (d, *J* = 2.9 Hz), 134.29, 130.03, 129.63, 129.57,

128.46, 125.70, 124.70, 122.61, 108.39, 92.50 (d, J = 195 Hz), 80.69, 63.49 (d, J = 26 Hz), 28.03, 26.70. HRMS (EI): Exact mass calcd for C₂₂H₂₃N₂O₄F [M]⁺: 398.1642, Found: 398.1639.

Ph Column chromatography (PE/EtOAc = 5:1 to 4:1) afforded product **12** in 99% yield as pale yellow oil. IR (KBr): 3421, 2976, 2361, 1718, 1615, 1458, 1366, 1165, 751, 689 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.77 (m, 2H), 7.55-7.51 (m, 1H), 7.41-7.37 (m, 3H), 7.28-7.24 (m, 1H), 6.96-6.92 (m, 1H), 6.87-6.85 (m, 1H), 6.51 (s, 1H), 3.63, 3.35 (AB, *J* = 16.8 Hz, 2H), 3.29 (s, 3H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.23, 175.87, 153.94, 143.28, 136.39, 133.66, 129.74, 128.92, 128.54, 128.06, 123.94, 122.54, 108.09, 80.06, 59.86, 43.64, 27.98, 26.52. HRMS (EI): Exact mass calcd for C₂₂H₂₄N₂O₄ [M]⁺: 380.1736, Found: 380.1733.

Under an atmosphere of N₂, to a 25 mL dry Schleck tube were added Ph₃PAuCl (3.7 mg, 0.0075 mmol) and AgOTf (1.9 mg, 0.0075 mmol), followed by the addition of 2.5 mL of anhydrous CH₂Cl₂. The reaction mixture was stirred at room temperature for about 30 minutes, and then 200 mg activated MS 5Å was added, followed by the addition of ketimines **7** (0.25 mmol) and difluoroenoxysilanes **1** (0.375 mmol). The resulting mixture was stirred at room temperature till full conversion of **7** by TLC analysis and the reaction mixture was directly subjected to flash column chromatography to afford products **8**, using the indicated eluent.

Column chromatography (PE/EtOAc = 5:1 to 3:1) afforded product **8a** in 94% yield as white solid, Mp: 173-175 °C. IR (neat): 3266, 2923, 1753, 1698, 1319, 1249, 1091, 677 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.96-7.94 (m, 1H), 7.88-7.86 (m, 1H), 7.76-7.67 (m, 3H), 7.52-7.48 (m, 2H), 6.00 (s, 1H), 4.43-4.37 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -99.69 (d, J = 298 Hz, 1F), -105.73 (d, J = 298 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 187.75 (t, J = 32 Hz), 165.57 (d, J = 7.4 Hz), 136.53, 135.23, 133.58, 131.80, 131.10 (dd, J = 3.8 Hz, J = 2.9 Hz), 130.39 (dd, J = 3.8 Hz, J = 2.1 Hz), 130.29 (d, J = 2.1 Hz), 128.82, 127.01 (d, J = 5.6 Hz), 121.93, 115.38 (t, J = 268 Hz), 68.49 (dd, J = 26 Hz, J = 24 Hz), 64.39, 13.83. MS (EI): 395 (M⁺, 0.2), 322 (15), 240 (22), 212 (7), 166 (6), 105 (100), 77 (31), 51 (6). HRMS (EI): Exact mass calcd for C₁₈H₁₅NO₅F₂S [M]⁺: 395.0639, Found: 395.0640.

Column chromatography (PE/EtOAc = 4:1 to 2:1) afforded product **8b** in 88% yield as white solid, Mp: 189-191 °C. IR (neat): 3270, 1734, 1695, 1263, 1189, 1096, 817, 659 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.75-7.65 (m, 3H), 7.53-7.48 (m, 3H), 5.95 (s, 1H), 4.44-4.36 (m, 2H), 2.54 (s, 3H), 1.35 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -99.71 (d, *J* = 298 Hz, 1F), -105.94 (d, *J* = 298 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 187.81 (t, *J* = 29 Hz), 165.63 (d, *J* = 7.4 Hz), 144.84, 135.19, 133.90, 132.71, 131.15 (t, *J* = 3.7 Hz), 130.59 (d, *J* = 1.7 Hz), 130.39 (dd, *J* = 3.7 Hz, *J* = 2.0 Hz), 128.81, 127.09 (d, *J* = 5.5 Hz), 121.63, 115.41 (t, *J* = 268 Hz), 68.30 (t, *J* = 25 Hz), 64.28, 21.91, 13.85. MS (EI): 409 (M⁺, 0.2), 336 (16), 254 (23), 226 (6), 180 (5), 105 (100), 77 (28), 51 (4). HRMS (EI): Exact mass calcd for C₁₉H₁₇NO₅F₂S [M]⁺: 409.0796, Found: 409.0793.

Column chromatography (PE/EtOAc = 4:1 to 2:1) afforded product **8c** in 99% yield as white solid, Mp: 158-160 °C. IR (neat): 3255, 2923, 1752, 1699, 1595, 1260, 1171, 717, 665 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.08

(m, 2H), 7.76 (d, J = 8.8 Hz, 1H), 7.69-7.65 (m, 1H), 7.50 (t, J = 8 Hz, 2H), 7.37-7.36 (m, 1H), 7.22-7.20 (m, 1H), 5.96 (s, 1H), 4.48-4.34 (m, 2H), 3.93 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -99.83 (d, J = 297 Hz, 1F), -106.10 (d, J = 297 Hz, 1F); ¹³C NMR (100 MHz,

CDCl₃): δ 187.74 (dd, J = 32 Hz, J = 29 Hz), 165.50 (d, J = 7.4 Hz), 163.73, 135.20, 132.78 (d, J = 1.8 Hz), 131.11 (t, J = 3.7 Hz), 130.39 (dd, J = 3.7 Hz, J = 1.9 Hz), 128.81, 128.49, 123.21, 118.25, 115.38 (t, J = 269 Hz), 111.30 (d, J = 5.8 Hz), 68.10 (t, J = 24 Hz), 64.33, 56.04, 13.88. MS (EI): 425 (M⁺, 1), 352 (15), 270 (19), 242 (3), 196 (5), 105 (100), 77 (26), 51 (4). HRMS (EI): Exact mass calcd for C₁₉H₁₇NO₆F₂S [M]⁺: 425.0745, Found: 425.0749.

Column chromatography (PE/EtOAc = 4:1 to 2:1) afforded product **8d** in 94% yield as white solid, Mp: 146-148 °C. IR (neat): 3259, 2923, 1737, 1696, 1254, 1180, 1094, 708, 665 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.09-8.08 (m, 2H), 7.92-7.91 (m, 1H), 7.81-7.79 (m, 1H), 7.72-7.67 (m, 2H), 7.53-7.49 (m, 2H), 6.05 (s, 1H), 4.46-4.40 (m, 2H), 1.37 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -99.50 (d, J = 298 Hz, 1F), -105.42 (d, J = 298 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 187.44 (dd, J = 32 Hz, J = 29 Hz), 165.03 (d, J = 5.2 Hz), 140.19, 135.37, 135.10, 132.33, 132.26 (d, J = 1.8 Hz), 130.93 (t, J = 3.6 Hz), 130.40 (dd, J = 3.7 Hz, J = 2.1 Hz), 128.88, 127.18 (d, J = 6.0 Hz), 123.05, 115.27 (t, J = 269 Hz), 68.09 (dd, J = 26 Hz, J = 24 Hz), 64.73, 13.84. MS (EI): 429 (M⁺, 0.3), 356 (7), 274 (13), 246 (4), 156 (5), 105 (100), 77 (31), 51 (5). HRMS (EI): Exact mass calcd for C₁₈H₁₄NO₅F₂S³⁵Cl [M]⁺: 429.0249, Found: 429.0247.

Column chromatography (PE/EtOAc = 5:1 to 3:1) afforded product **8e** in 97% yield as white solid, Mp: 151-153 °C. IR (neat): 3308, 1750, 1674, 1594, 1245, 1090, 1020, 761 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.09-8.07 (m, 2H), 7.96-7.93 (m, 1H), 7.88-7.86 (m, 1H), 7.76-7.72 (m, 2H), 6.98-6.94 (m, 2H), 5.98 (s, 1H), 4.43-4.35 (m, 2H), 3.89 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -99.3 (dd, *J* = 296 Hz, *J* = 4 Hz, 1F), -105.10 (dd, *J* = 298 Hz, *J* = 5 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 185.89 (t, *J* = 31 Hz), 165.69 (d, *J* = 7.4 Hz), 165.24, 136.59, 133.53, 133.09 (t, *J* = 20 Hz), 131.72, 130.46, 127.05 (d, *J* = 5.7 Hz), 123.96, 121.90, 115.75 (t, *J* = 268 Hz), 114.20, 68.55 (t, *J* = 24 Hz), 64.26, 55.66, 13.85. MS (EI): 425 (M⁺, 2), 352 (4), 240 (2), 212 (2), 186 (12), 135 (100), 92 (6), 77 (9). HRMS (EI): Exact mass calcd for C₁₉H₁₇NO₆F₂S [M]⁺: 425.0745, Found: 425.0749. Using 5 mol% of PPh₃AuOTf. Column chromatography (PE/EtOAc = 4:1 to 3:1) afforded product **8f** in 96% yield as white solid, Mp: 131-133 °C. IR (neat): 3258, 1739, 1699, 1590, 1091, 771, 709 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.04-8.02 (m, 2H), 7.96-7.93 (m, 1H), 7.88-7.85 (m, 1H), 7.78-7.71 (m, 2H), 7.49-7.47 (m, 2H), 6.00 (s, 1H), 4.43-4.37 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -99.88 (d, *J* = 297 Hz, 1F), -105.87 (d, *J* = 297 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 186.76 (dd, *J* = 32 Hz, *J* = 29 Hz), 165.30 (d, *J* = 5.4 Hz), 142.04, 136.55, 133.62, 131.85, 131.75 (dd, *J* = 3.9 Hz, *J* = 2.1 Hz), 130.12 (d, *J* = 1.6 Hz), 129.49 (d, *J* = 3.5 Hz), 129.26, 126.97 (d, *J* = 5.3 Hz), 121.93, 115.27 (t, *J* = 268 Hz), 68.43 (dd, *J* = 26 Hz, *J* = 24 Hz), 64.48, 13.81. MS (EI): 429 (M⁺, 0.2), 356 (15), 240 (24), 212 (8), 166 (7), 141 (33), 139 (100), 111 (24), 75 (9). HRMS (EI): Exact mass calcd for C₁₈H₁₄NO₅F₂S³⁵C1 [M]⁺: 429.0249, Found: 429.0236.

Using 5 mol% of PPh₃AuOTf. Column chromatography (PE/EtOAc = 4:1 to 3:1) afforded product **8g** in 96% yield as white solid, Mp: 85-87 °C. IR (neat): 3261, 1744, 1401, 1205, 1037, 774, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.90 (m, 1H), 7.83-7.81 (m, 1H), 7.75-7.68 (m, 2H), 7.31-7.26 (m, 2H), 7.23-7.18 (m, 3H), 5.90 (s, 1H), 4.43-4.35 (m, 2H), 3.13 (t, *J* = 7.6 Hz, 2H), 2.94 (t, *J* = 7.2 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.89 (d, *J* = 278 Hz, 1F), -113.60 (d, *J* = 278 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 198.81 (t, *J* = 28 Hz), 165.12 (d, *J* = 5.7 Hz), 139.67, 136.25, 133.67, 131.80, 130.02, 128.57, 128.32, 127.00 (d, *J* = 3.3 Hz), 126.42, 121.83, 113.22 (t, *J* = 266 Hz), 68.21 (t, *J* = 26 Hz), 64.74, 39.25, 28.24, 13.81. MS (EI): 423 (M⁺, 2), 403 (22), 350 (5), 330 (39), 240 (25), 133 (75), 105 (100), 91 (95), 77 (14). HRMS (EI): Exact mass calcd for C₂₀H₁₉NO₅F₂S [M]⁺: 423.0952, Found: 423.0953.

Using 5 mol% of PPh₃AuOTf. Column chromatography (PE/EtOAc = 5:1 to 4:1) afforded product **8h** in 67% yield as yellow solid, Mp: 80-82 °C. IR (neat): 3347, 2924, 1780, 1716, 1258, 1028, 743, 663 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ

8.10-8.08 (m, 2H), 7.68-7.64 (m, 1H), 7.52-7.49 (m, 2H), 7.08-7.02 (m, 2H), 6.93-6.86 (m, 2H), 5.05 (s, 1H), 4.32-4.27 (m, 2H), 1.21 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -103.84 (d,

J = 301 Hz, 1F), -106.07 (d, J = 301 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 187.78 (dd, J = 31 Hz, J = 28 Hz), 164.92, 158.61, 139.98, 134.81, 131.53, 130.23 (dd, J = 3.6 Hz, J = 2.3 Hz), 128.74, 128.53, 125.57, 121.39, 116.86, 115.70, 115.10 (dd, J = 270 Hz, J = 265 Hz), 67.21 (t, J = 22 Hz), 63.72, 13.76. GC-MS: 375 (M⁺, 11), 302 (4), 220 (46), 192 (15), 174 (30), 146 (10), 105 (100), 77 (36). HRMS (EI): Exact mass calcd for C₁₉H₁₅NO₅F₂ [M]⁺: 375.0918, Found: 375.0919.

Using 5 mol% of PPh₃AuOTf. Column chromatography (PE/EtOAc = 5:1 to 3:1) afforded product **8i** in 99% yield as yellow solid, Mp: 90-92 °C. IR (KBr): 3316, 2979, 2360, 1764, 1733, 1598, 1031, 881, 742 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.08 (m, 2H), 7.08-7.01 (m, 2H),

6.99-6.95 (m, 2H), 6.91-6.84 (m, 2H), 5.06 (s, 1H), 4.32-4.27 (m, 2H), 3.89 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -102.92 (d, J = 301 Hz, 1F), -104.81 (d, J = 301 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 184.82 (t, J = 29 Hz), 165.00, 158.47, 139.94, 132.95 (t, J = 3 Hz), 128.59, 125.50, 124.14 (t, J = 3.4 Hz), 121.17, 116.80, 115.55 (t, J = 268 Hz), 115.54, 114.13, 67.11 (d, J = 22 Hz), 63.63, 55.61, 13.76. GC-MS: 405 (M⁺, 18), 322 (4), 313 (5), 220 (13), 186 (84), 135 (100), 107 (18), 92 (15),77 (24). HRMS (EI): Exact mass calcd for C₂₀H₁₇NO₆F₂ [M]⁺: 405.1024, Found: 405.1022.

Part II. Total synthesis of CF₂-AG-041R.

To a 100 mL seal tube were added *N*-Boc-triphenyliminophosphorane (943 mg, 2.5 mmol) and isatin **4** (580 mg, 2.2 mmol), followed by 10.0 mL of anhydrous toluene.⁴ The reaction mixture was stirred vigorously at 120 °C until isatin **4** was completed (about 10 h), and cooled to room temperature. The resulting mixture was directly purified by column chromatography (PE/EtOAc = 10/1 to 7/1) to afford **2i** (680 mg) in 85% yield as yellow solid.⁵ ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 7.47-7.43 (m, 1H), 7.09-7.05 (m, 2H), 4.68-4.66 (m, 1H), 3.81-3.71 (m, 4H), 3.56-3.47 (m, 1H), 1.63 (s, 9H), 1.15 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 160.46, 157.50, 153.05, 148.09, 135.01, 123.94, 123.23, 119.14, 111.09, 100.64, 83.33, 63.79, 43.55, 27.96, 15.17.

According to the general procedure of Mukaiyama-Mannich reaction described above, product **30** was obtained in 88% yield (688.1 mg) as white foamy solid after column chromatography (using pure CH₂Cl₂ to CH₂Cl₂/EtOAc = 30/1 as the eluent). Mp = 103-105 °C. IR (neat): 3379, 2979, 1710, 1681, 1595, 1491, 1265, 1120, 747 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.83 (m, 2H), 7.31-7.27 (m, 2H), 7.09-7.07 (m, 1H), 6.98-6.95 (m, 1H), 6.87-6.85 (m, 2H), 6.22 (s, 1H), 4.71-4.69 (m, 1H), 4.03-3.98 (m, 1H), 3.86 (s, 3H), 3.78-3.51 (m, 5H), 1.27 (s, 9H), 1.17-1.11 (m, 6H); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.80 (d, *J* = 273 Hz, 1F), -107.90 (d, *J* = 273 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 186.92 (t, *J* = 28 Hz), 171.24, 164.67, 153.28, 144.84, 132.86 (t, *J* = 4.2 Hz), 129.99, 125.59, 124.85, 123.67, 122.44, 115.67 (t, *J* = 265 Hz), 113.78, 110.13, 101.09, 80.79, 65.06 (t, *J* = 24 Hz), 63.89, 63.76, 55.53, 44.33, 27.98, 15.24, 15.22. MS (EI): 548 (M⁺, 6), 402 (8), 217 (44), 135 (72), 103 (100), 92 (7), 77 (15), 75 (25), 44 (18). HRMS (EI): Exact mass calcd for C₂₈H₃₄N₂O₇F₂ [M]⁺: 548.2334, Found: 548.2336.

⁴ W. Yan, D. Wang, J. Feng, P. Li, D. Zhao and R. Wang, Org. Lett., 2012, 14, 2512.

⁵ N. Hara, S. Nakamura, M. Sano, R. Tamura, Y. Funahashi and N. Shibata, *Chem. Eur. J.*, 2012, 18, 9276.

The product **3o** (129.6 mg, 0.25 mmol) was dissolved in CH₂Cl₂/HFIP (2:1, 3.0 mL), followed by the addition of *m*-chloroperoxybenzoic acid (*m*-CPBA) (78.7 mg, 0.375 mmol, 85%) and phosphate buffer (0.25 mL, pH = 7.6) at ambient temperature.⁶ The mixture was stirred until full consumption of **3o** by TLC analysis (ca. 2 h), and then quenched by saturated Na₂S₂O₃ (aq), followed by extraction using CH₂Cl₂ (10.0 mL × 3). The combined organic layers were washed with saturated NaHCO₃ and brine (10.0 mL × 3), and then dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was directly used for the next step.

Under N₂ atmosphere, 5.0 mL HFIP was added to the crude ester and the mixture was warmed to 70 °C and stirred at 70 °C until full consumption of crude ester by TLC analysis (about 72 h). Then the reaction mixture was concentrated under reduced pressure, and the residue was directly used for the next step.⁵ To a solution of crude mixture in MeCN (1.0 mL) was added *p*-tolyl isocyanate (50.5 mg, 0.38 mmol) at room temperature. After the reaction was stirred overnight, the mixture was concentrated under reduced pressure, and the residue was purified by column chromatography (using PE/EtOAc = 5/1 to 4/1 as eluent) to afford 5 (66.0 mg, 44% yield for 3 steps) as a white foamy solid. Mp = 55-58 °C. IR (KBr): 3369, 2976, 2828, 1779, 1733, 1613, 1548, 1502, 1315, 1180, 816, 754 cm⁻¹. ¹H NMR (400 MHz, acetone- d_6): 8.45 (s, 1H), δ 7.46-7.40 (m, 2H), 7.24-7.20 (m, 2H), 7.15-7.11 (m, 4H), 7.02-6.96 (m, 4H), 4.78-4.75 (m, 1H), 3.97-3.92 (m, 1H), 3.82 (s, 3H), 3.77-3.66 (m, 3H), 3.63-3.47 (m, 2H), 2.20 (s, 3H), 1.11-1.06 (m, 6H); ¹⁹F NMR (376 MHz, acetone- d_6): δ 63.70 (d, J = 255 Hz, 1F), 61.90 (d, J = 255 Hz, 1F); ¹³C NMR (100 MHz, acetone- d_6): δ 171.71 (d, J = 5 Hz), 161.43 (t, J = 31 Hz), 159.19, 153.84, 146.15, 144.16, 137.98, 132.18, 130.92, 129.96, 125.18, 125.10, 123.32, 122.94, 118.97, 118.88, 115.48, 114.37 (t, *J* = 265 Hz), 111.07, 101.47, 65.66 (dd, J = 27 Hz, J = 22 Hz), 63.76 (d, J = 5.9 Hz), 55.98, 45.09, 20.65, 15.64. MS (ESI): 620.03 $[(M+Na)^+, 100]$. HRMS (EI): Exact mass calcd for $C_{31}H_{33}N_3O_7F_2$ $[M]^+$: 597.2287, Found: 597.2285.

⁶ S. Kobayashi, H. Tanaka, H. Amii and K. Uneyama, *Tetrahedron*, 2003, 59, 1547.

KOH (7.5 mg, 0.13 mmol) was added to a solution of 5 (29.5 mg, 0.05 mmol) in EtOH/H2O (9:1, v/v, 5.0 mL) at 0 °C, and the mixture was warmed to room temperature and stirred until the complete conversion of 5 by TLC analysis (about 4 h). The reaction was poured onto H₂O (15 mL) and 1 N HCl (5.0 mL), extracted with EtOAc, washed with brine, dried over Na₂SO₄, concentrated in vacuo. To a solution of crude mixture in CH2Cl2 (3.0 mL) at 0 °C were added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC • HCl, 14.5 mg, 0.075 mmol) and p-toluidine (8.1 mg, 0.075 mmol) at 0 °C. The mixture was stirred for 2 h at 0 °C. The reaction was poured onto H₂O (15 mL) and 1 N HCl (5.0 mL), extracted with CH₂Cl₂. The combined organic layers were washed with brine (10.0 mL \times 3), and then dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (using PE/EtOAc = 5/1 to 3/1 as eluent) to give CF₂-AG-041R (6) (21.1 mg, 73% yield for 2 steps) as white solid. Mp = 125-127 °C. IR (neat): 3298, 2919, 1684, 1611, 1536, 1371, 1127, 1062, 812, 751 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.89 (s, 1H), 7.38-7.31 (m, 4H), 7.14-7.03 (m, 8H), 6.97-6.95 (m, 2H), 4.76-4.73 (m, 1H), 4.04-3.99 (m, 1H), 3.79-3.65 (m, 3H), 3.59-3.48 (m, 2H), 2.32 (s, 3H), 2.23 (s, 3H), 1.12 (t, J = 6.8 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃): δ -111.33 (d, J = 262 Hz, 1F), -113.46 (d, J = 261 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 172.36, 160.29 (t, J = 28 Hz), 153.46, 144.41, 136.03, 135.48, 132.89, 132.82, 130.14, 129.67, 129.34, 124.86, 123.91, 122.98, 121.29, 120.16, 113.47 (t, J = 260 Hz), 110.40, 100.68, 65.23 (t, J = 25 Hz), 63.59, 44.37, 20.96, 20.72, 15.25, 15.22. MS (EI): 580 (M⁺, 2), 427 (14), 370 (4), 133 (33), 106 (81), 103 (100), 75 (31), 44 (32); HRMS (EI): Exact mass calcd for $C_{31}H_{34}N_4O_5F_2[M]^+$: 580.2497, Found: 580.2499.

Part III. Initial NMR experiments

To probe the mechanism of Mukaiyama-Mannich reaction of ketimine and difluoroenoxysilane **1a** catalyzed by Ph₃PAuOTf, NMR analysis was attempted. The ¹⁹F, ³¹P and ¹³C NMR studies were recored using a Bruker Ascend 500 MHz spectrometer at room temperature in CDCl₃, which was used after distilled from CaH₂. The general procedure was as follows: To a 5 mm NMR tube was added imine **7a** (0.1 mmol) or difluoroenoxysilane **1a** (0.1 mmol), and then a solution of pre-prepared Ph₃PAuOTf in CDCl₃ (0.025 mmol in 0.5 mL CDCl₃) was added. The resulting mixture was shaking vigorously and then for NMR analysis. The ³¹P NMR studies was conducted using H₃PO₄ (δ = 0.00 ppm) as the external standard. The ¹⁹F NMR studies was conducted using CFCl₃ (δ = 0.00 ppm) as the internal standard.

The NMR analysis suggested there might be some interaction between Ph₃PAuOTf and imine **7a** at room temperature, as obvious difference between the characteristic peak of free Ph₃PAuOTf and that of the mixture of ketimine **7a** and Ph₃PAuOTf (25 mol%) were monitored by ¹⁹F, ³¹P and ¹³C NMR analysis. On ¹⁹F NMR spectra, the characteristic peak of CF₃ group of Ph₃PAuOTf was at -77.258 ppm, which was shifted to -77.413 in the mixture of **7a** and Ph₃PAuOTf (Figure S1). By ³¹P NMR analysis, the peak corresponding to the bounded Ph₃P of Ph₃PAuOTf at 28.374 ppm was shifted to 28.727 ppm in the mixture of **7a** and Ph₃PAuOTf (Figure S2). In addition, the addition of Ph₃PAuOTf to the solution of **7a** induced obvious shift of the characteristic peak of both CO₂Et and imine group on ¹³C NMR spectra, although we could not assign them currently (Figure S3).

Figure S1. The ¹⁹F NMR study of the mixture of imine 7a (0.1 mmol) and Ph₃PAuOTf (25 mol%).

Figure S2. The ¹⁹P NMR study of the mixture of imine 7a (0.1 mmol) and Ph₃PAuOTf (25 mol%).

Figure S3. The ¹³C NMR study of the mixture of imine 7a (0.1 mmol) and Ph₃PAuOTf (25 mol%).

Because difluoroenoxysilane **1a** contained a C=C double bond that might interact with Au(I), an excellent π acid capable of activating C=C bond, we then investigated whether there might be some interaction between difluoroenoxysilane **1a** and Ph₃PAuOTf at room temperature. It was found that when mixing a solution of difluoroenoxysilane **1a** and Ph₃PAuOTf, a group of new peaks appeared at around -105 ppm and -115 ppm in ¹⁹F NMR spectra (Figure S4). Meanwhile, the peak corresponding to PhCOCF₂H generated from the hydrolysis of difluoroenoxysilane **1a** was also detected. On the other hand, on ³¹P NMR spectra, a new signal at 45.636 ppm developed after mixing **1a** and Ph₃PAuOTf, whilst the corresponding peak of Ph₃PAuOTf changed from 28.374 to 28.612 ppm (Figure S5). Currently, we cannot give a reasonable explanation for these observations. **Figure S4.** The ¹⁹P NMR study of the mixture of difluoroenoxysilane **1a** (0.1 mmol) and Ph₃PAuOTf (25 mol%).

Figure S5. The ¹⁹P NMR study of the mixture of difluoroenoxysilane **1a** (0.1 mmol) and Ph₃PAuOTf (25 mol%).

Part IV. ¹H, ¹⁹F, ¹³C NMR spectra

-99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 f1 (ppm)

yjs-yn-16

-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 -155 -165 f1 (ppm)

yjs-yn-26 F

74 1 -106 -110 f1 (ppm) -78 -122 -82 -86 -90 -94 -98 -102 -114 -118 -126 -130 -134 -138

yjs-yn-21

-108 f1 (ppm) -94 -96 -98 -100 -102 -104 -106 -110 -112 -114 -116 -118 -120 -122

-105 f1 (ppm) -110 -120

yjs-yn-29 F

-82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 f1 (ppm)

-116 -107 -108 f1 (ppm) -99 -100 -101 -102 -103 -104 -105 -106 -109 -110 -111 -112 -113 -114 -115

yjs-yn-75

-82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -108 f1 (ppm) -116 -104 -112 -120 -124 -128

yjs-yo-58

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -104 -108 -112 -116 -120 -124 -128 f1 (ppm)

-95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 f1 (ppm) -50 -55 -60 -65 -70 -75 -80 -85 -90

-88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 f1 (ppm)

37 -89 -91 -93 -95 -97 -99 -102 -105 -108 -111 -114 -117 -120 -123 -126 f1 (ppm)

-102.516 -103.316 -104.412 -105.212

--106. 435 --107. 162 --107. 538 --108. 264

yjs-yn-79-3

~-110.983 ~-111.680 ~-113.110 yjs-yn-88 ,OEt 6 ÒEt

-86 -134 -114 -118 f1 (ppm) -90 -94 -98 -102 -106 -110 -122 -126 -130 -138 -142

