Supporting Information

Ni-Catalyzed Reductive Addition of Alkyl Halides to Isocyanides
Bo Wang, ${ }^{a}$ Yijing Dai, ${ }^{\text {b,* }}{ }^{\text {W Weiqi Tong }}{ }^{\text {a }, * ~ a n d ~ H e g u i ~ G o n g ~}{ }^{\text {a, } \text { * }}$
${ }^{a}$ Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
hegui_gong@shu.edu.cn
Daivijin@msu.edu
Table of Contents
I. Experimental Section S2-S12
Part 1. General Information S2-S2
Part 2. Details of Optimization S2-S3
Part 3. Phenanthridine Synthesis via Reductive
coupling. S4-S13
II. Spectral Data for New Compounds S14-S32
III. References S33

Experimental Section

Part 1. General Information

Experiments were conducted under a nitrogen atmosphere in oven-dried or flame-dried glassware with magnetic stirring, unless otherwise specified. For product purification by flash column chromatography, silica gel (300-400 mesh) and petroleum ether (bp $60-90^{\circ} \mathrm{C}$) were used. NMR spectra were measured on 500 MHz instruments at room temperature. Reference peaks for chloroform in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were set at 7.26 ppm and 77.0 ppm , respectively. High-resolution mass spectra (HRMS) were obtained using an Ion Spec 4.7 TESLA FTMS. Low resolution mass spectra were recorded on GCMS-QP2010 SE (SHIMADZU). Melting point was recorded on a micro melting point apparatus (X-4, YUHUA Co., Ltd, Gongyi, China).

The following chemicals were purchased and used as received: $\mathrm{Zn}\left(99.9 \%\right.$, powder), $\mathrm{NiI}_{2}(99.5 \%$, Alfa Aesar), $\mathrm{Ni}(\operatorname{cod})_{2}(99 \%, S t r e a m), \mathrm{NiCl}_{2}\left(99.5 \%\right.$, Alfa Aesar), $\mathrm{NiBr}_{2}\left(99.5 \%\right.$, Alfa Aesar), $\mathrm{Ni}(\mathrm{acac})_{2}$ (99\%, Alfa Aesar), $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (99.5%, Alfa Aesar), 1,3-di-iso-propylimidazolium chloride (4, >97\%, Alfa Aesar), 2,2'-bipyridine (5, Aldrich), DMA (99.8\%, Super Dry, with molecular sieves), DMF (99.8\%, Super Dry, with molecular sieves), 1,4-Dioxane (99.5\%, Super Dry, with molecular sieves), MgCl_{2} (99%, Alfa Aesar), TBAI (99%, Aladdin), Isocyanides ${ }^{1}$ were synthesized according to the literature procedures.

Part 2.Details of Optimization

A typical procedure for optimization reactions: To a flame-dried Schlenk tube equipped with a stir bar was loaded 4-iodo-1-tosylpiperidine ($54.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 100 \%$), followed by addition of zinc power ($29.4 \mathrm{mg}, 0.45 \mathrm{mmol}, 300 \%$), cesium carbonate ($77.4 \mathrm{mg}, 0.225 \mathrm{mmol}, 150 \%$), ligand ($20 \mathrm{~mol} \%$), and Ni catalyst ($10 \mathrm{~mol} \%$). The tube was capped with a rubber septum, and it was degassed and refilled nitrogen $\left(\mathrm{N}_{2}\right)$ for three times. Isocyanide and solvent $(1.0 \mathrm{~mL})$ were added via syringe. The resulting reaction mixture was stirred for 12 hours under N_{2} atmosphere at $90^{\circ} \mathrm{C}$, and was directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of DCM or eluent. Flash column chromatography provided the product as a solid or oil.

Table S1: Screening of catalysts

Table S2: Solvent screening

Part 3. Phenanthridine Synthesis via Reductive Coupling

General procedure for Phenanthridine synthesis via reductive coupling of alkyl iodides with isocyanides: To a flame-dried Schlenk tube equipped with a stir bar was loaded alkyl iodides $(0.15$ $\mathrm{mmol}, 100 \%$, if solid) and isocyanide $(0.45 \mathrm{mmol}, 300 \%$, if solid), followed by addition of zinc power ($29.4 \mathrm{mg}, 0.45 \mathrm{mmol}, 300 \%$), Cesium carbonate $(77.4 \mathrm{mg}, 0.225 \mathrm{mmol}, 150 \%$). The tube was capped with a rubber septum, and it was evacuated and refilled nitrogen $\left(\mathrm{N}_{2}\right)$ three times through glove box. followed by addition of 1,3-dimethyl-1 H -imidazol-3-ium chloride ($4.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \%$), NiI_{2} ($4.7 \mathrm{mg}, 0.015 \mathrm{mmol}, 10 \%$) in glove box, alkyl iodides ($0.15 \mathrm{mmol}, 100 \%$, if liquid) and isocyanide ($0.45 \mathrm{mmol}, 300 \%$, if liquid) was added via syringe. 1,4-Dioxane (2.0 mL) was added via syringe. After the reaction mixture was allowed to stir for 12 hours under N_{2} atmosphere at $90{ }^{\circ} \mathrm{C}$, it was directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of DCM or eluent. Flash column chromatography provided the product as a solid or oil

6-(1-Tosylpiperidin-4-yl)phenanthridine (3a)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 10 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in ($54.9 \mathrm{mg}, 0.132 \mathrm{mmol}$) 88% yield as a yellow solid
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l 3}\right): \delta 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=$ $21.7,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58$ (m, 2H), $7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{dt}, J=11.9,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{td}, J=11.9$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{qd}, J=12.0,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 162.22,143.60,143.47,133.29,133.12,130.17,130.08,129.65$, $128.61,127.89,127.22,126.60,124.90,124.33,123.37,122.86,121.84,46.57,38.99,30.53,21.60$.

HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 417.1631$, found 417.1631.
M.p. $235-237^{\circ} \mathrm{C}$.

2-Methyl-6-(1-tosylpiperidin-4-yl)phenanthridine (3b)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography ($\mathrm{SiO}_{2}: 10 \%$ ethyl acetate in petroleum ether), this compound was obtained in (61.3 mg , $0.142 \mathrm{mmol}) 95 \%$ yield as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 8.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.9,1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=$ $8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=11.7,7.8,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{td}, J=11.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l} 3\right): ~ \delta 161.18,143.47,141.92,136.40,133.28,132.87,130.29,129.94$, $129.79,129.66,127.89,127.07,124.85,124.37,123.18,122.81,121.47,46.60,38.90,30.54,21.97$, 21.60.

HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+} 431.1788$; found : 431.1788.
M.p. $268-270^{\circ} \mathrm{C}$.
 8-Methoxy-2-methyl-6-(1-tosylpiperidin-4-yl)phenanthridine (3c) This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography
$\left(\mathrm{SiO}_{2}: 10 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in $(44.2 \mathrm{mg}, 0.096 \mathrm{mmol})$ 64% yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 8.54(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=13.5 \mathrm{~Hz}, \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.43(\mathrm{~s}, 3 \mathrm{H})$, $2.40-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13}$ C NMR (125 MHz, CDCl3): $\delta 160.29,158.52,143.45,141.07,136.46,133.37,129.74,129.66$, $129.33,127.89,127.16,125.67,124.51,123.27,120.96,119.33,106.29,55.62,46.52,38.91,30.38$, 21.98, 21.60

HRMS (ESI):calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 461.1893$; found: 461.1894.
M.p.287-289 ${ }^{\circ}$ C.

8-Methoxy-6-(1-tosylpiperidin-4-yl)phenanthridine (3d)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 10 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in (48.8 mg , $0.110 \mathrm{mmol}) 73 \%$ yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): ~ \delta 8.57(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{td}, J=11.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$ $(\mathrm{s}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10 \mathrm{~s}(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 161.34,158.65,143.45,142.74,133.39,130.03,129.66,127.89$, $127.64,127.39,126.67,125.63,124.57,123.45,121.33,119.54,106.38,55.65,46.49,38.99,30.38$, 21.60.

HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 447.1737$; found : 447.1737.
M.p. $280-282^{\circ} \mathrm{C}$.

8-Fluoro-6-(1-tosylpiperidin-4-yl)phenanthridine (3e)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 10 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in ($44.3 \mathrm{mg}, 0.102 \mathrm{mmol}$) 68% yield as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 8.94(\mathrm{dd}, J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ $(\mathrm{dd}, J=10.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{td}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.72(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=9.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{dt}, J=10.2,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{td}, J=11.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.86(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, DMSO-d6) $\delta 163.14,162.75,160.80,143.92,143.01,133.02,130.32,130.11$, 129.87, 129.79, 129.78, 128.11, 127.57, 126.56, 125.87, 125.82, 123.12, 123.00, 120.39, 120.20 , 111.17, 110.99, 79.70, 79.44, 79.17, 46.45, 37.91, 30.80, 21.50

HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 435.1537$, found 435.1540.
M.p. $178-180^{\circ} \mathrm{C}$.

5-(1-tosylpiperidin-4-yl)benzo[i]phenanthridine (3f)

According to the general procedure. After purification of the crude material by column chromatography (SiO_{2} : 10% ethyl acetate in petroleum ether). This compound was obtained in ($17.5 \mathrm{mg}, 0.038 \mathrm{mmol}$) 25% yield as a yellow solid
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.57(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.42-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.04-7-98$ $(\mathrm{m}, 1 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $3.97-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 7 \mathrm{H}), 2.07(\mathrm{~d}, J=10,1 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 161.57,143.40,133.56,133.25,129.66,129.61,129.01,127.84$, 126.66, 126.38, 122.83, 122.36, 11.74, 120.34, 46.49, 42.70, 31.69, 21.57

HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 467.1715$; found 467.1715 .
M.p. 295-297 ${ }^{\circ} \mathrm{C}$.

(4-(tert-butyl)Phenyl)(4-(2-methylphenanthridin-6-yl)piperidin-1-yl)methanone (3g)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography (SiO_{2} : 10% ethyl acetate in petroleum ether), this compound was obtained in (53.0 mg , $0.122 \mathrm{mmol}) 81 \%$ yield as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.37$ (m, 4H), 5.21-4.58 (m, 1H), 4.31-4.01 (m, 1H), 4.04-3.75 (m, 1H), 3.44-3.23(m, 1H), 3.22-3.02(m, $1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.10(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 170.66,161.58,152.72,141.98,136.38,133.45,132.93,130.31$, $130.01,129.73,127.16,126.92,125.36,125.04,124.48,123.25,122.81,121.53,39.97,34.81,31.46$, 31.28, 21.98.

HRMS (ESI):calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 437.2587$, found 437.2587.
M.p. $270-271^{\circ} \mathrm{C}$.

3-(Phenanthridin-6-yl)butyl 4-methoxybenzoate (3h)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography ($\mathrm{SiO}_{2}: 10 \%$ ethyl acetate in petroleum ether), this compound was obtained in $(52.8 \mathrm{mg}, 0.136 \mathrm{mmol}) 91 \%$ yield as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right): \delta 8.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{dt}, J=11.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dt}, J=11.1$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, CDCl3): $\delta 166.35,164.17,163.21,143.77,133.14,131.48,130.11,129.98$, $128.49,127.25,126.36,125.38,124.98,123.43,122.85,122.67,121.86,113.50,63.59,55.41,34.68$, 33.53, 20.83.

HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 386.1751$; found: 386.1751 .
M.p. $77-79^{\circ} \mathrm{C}$.

3-(8-Methoxy-2-methylphenanthridin-6-yl)butyl

4-methoxybenzoate (3i)

This compound was obtained according to the general procedure.
After purification of the crude material was performed by column chromatography ($\mathrm{SiO}_{2}: 10 \%$ ethyl acetate in petroleum ether), this compound was obtained in ($50.8 \mathrm{mg}, 0.119 \mathrm{mmol}$) 79% yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 8.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.41(\mathrm{dd}, J=9.0,2.6,1 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 2.84-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 166.35,163.23,162.22,158.59,141.28,136.14,131.50,129.63$, $129.20,127.23,126.32,124.30,123.34,122.87,120.99,120.07,113.48,105.89,63.56,55.43,55.41$,
34.74, 33.45, 21.97, 20.51.

HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 430.2013$, found 430.2014.
M.p. $134-136^{\circ} \mathrm{C}$.

3-(8-Methoxyphenanthridin-6-yl)butyl 4-methoxybenzoate (3j)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography ($\mathrm{SiO}_{2}: 10 \%$ ethyl acetate in petroleum ether), this compound was obtained in $(44.2 \mathrm{mg}, 0.107 \mathrm{mmol}) 71 \%$ yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l 3}\right): \delta 8.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, CDCl3): $\delta 166.35,163.29,163.24,158.72,142.94,131.50,129.90,127.50$, $127.45,126.42,126.27,124.34,123.53,122.83,121.38,120.29,113.49,105.96,63.54,55.46,55.42$, 34.74, 33.56, 20.56.

HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 416.1856$; found: 416.1855 .
M.p. $104-106^{\circ} \mathrm{C}$

3-(2-Methylphenanthridin-6-yl)butyl 4-methoxybenzoate (3k)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography ($\mathrm{SiO}_{2}: 10 \%$ ethyl acetate in petroleum ether), this compound was obtained in $(56.8 \mathrm{mg}, 0.142 \mathrm{mmol}) 95 \%$ yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 8.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{ddd}, J=8.3,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, J=8.4,2 \mathrm{H}), 4.49(\mathrm{dt}, J=10.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dt}, J=11.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ $(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{dq}, J=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dq}, J=13.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz CDCl3): $\delta 166.36,163.21,163.12,142.07,136.10,132.92,131.49,130.18$, $129.91,129.68,127.08,125.34,125.02,123.24,122.87,122.63,121.49,113.49,63.61,55.41,34.70$, 33.70, 33.42, 21.96, 20.78.

HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 400.1907$; found: 400.1907.
M.p. $100-101^{\circ} \mathrm{C}$.

6-(2,3-Dihydro-1H-inden-2-yl)phenanthridine (31)
This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 5 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in $(29.2 \mathrm{mg}, 0.099 \mathrm{mmol}) 66 \%$ yield as a yellow solid. Purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 5 \%\right.$ ethyl acetate in petroleum ether)
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 8.68(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{dd}$, $J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{ddd}, J=8.3,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.67(\mathrm{~m}, 2 \mathrm{H})$, $7.64(\mathrm{ddd}, J=8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=5.5,3.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.90-4.63(m, 1H), $3.82(\mathrm{dd}, J=15.7,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=15.7,8.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l} 3\right): ~ \delta 162.51,142.82,133.27,130.36,129.84,128.66,128.44,127.37$, $126.57,126.49,126.06,125.30,124.46,123.66,122.70,121.90$.

HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$296.1434; found: 296.1434.
M.p. $201-203^{\circ} \mathrm{C}$.

6-(2,3-Dihydro-1H-inden-2-yl)-2-methylphenanthridine (3m)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 5 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in ($29.7 \mathrm{mg}, 0.096 \mathrm{mmol}$) 64% yield as a yellow solid.
${ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \delta 8.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{ddd}, J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.31(\mathrm{dd}, J=5.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=5.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=15.7,9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=15.8,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3): $\delta 161.47,143.02,141.98,136.35,133.08,130.35,130.09,129.83$, $127.23,126.51,126.04,125.51,124.52,123.53,122.71,121.61$.

HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 310.1590$, found 310.1591.
M.p. $220-221^{\circ} \mathrm{C}$.

6-(2,3-Dihydro-1H-inden-2-yl)-8-methoxyphenanthridine (3n)
This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography ($\mathrm{SiO}_{2}: 5 \%$ ethyl acetate in petroleum ether), this compound was obtained in ($28.3 \mathrm{mg}, 0.087 \mathrm{mmol}$) 58% yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 8.58(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$, $7.64-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.67(\mathrm{~m}$, $1 \mathrm{H}), 3.89$ (s, 3H), 3.79 (dd, $J=15.9,8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (dd, $J=16.0,8.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 161.84,158.68,142.88,130.46,130.16,129.85,127.62,126.55$, $124.49,124.35,123.75,121.38$. 120.62, 114.04, 114.78, 106.38, 55.38, 44.23, 38.69.

HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 326.1539$; found: 326.1539 .
M.p. $240-242^{\circ} \mathrm{C}$.

3-(phenanthridin-6-yl)propyl benzoate (30)

According to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 5 \%\right.$ ethyl acetate in petroleum ether). This compound was obtained in (19.4 0.057 mmol$) 38 \%$ yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27 \quad(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=7.6,2 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.66,160.69,132.97,132.87,130.33,129.57,128.71,128.33$,

HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 342.1416$; found:342.1416.
M.p. $146-148^{\circ} \mathrm{C}$.

6-(tert-Butyl)phenanthridine (3p)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 1 \%\right.$ ethyl acetate in petroleum ether)
this compound was obtained in ($22.1 \mathrm{mg}, 0.090 \mathrm{mmol}$) 60% yield as a yellow liquid.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 8.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 1.75$ ($\mathrm{s}, 9 \mathrm{H}$) .
${ }^{13}$ C NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l 3}$): $\delta 166.67,142.96,134.04,130.28,129.28,128.40,128.28,126.48$, $125.96,124.33,123.44,123.00,121.62,40.22,31.23$

HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$236.1434, found 236.1433.

6-(tert-Butyl)-2-methylphenanthridine (3q)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 1 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in $(15.7 \mathrm{mg}, 0.063 \mathrm{mmol}) 42 \%$ yield as a yellow liquid.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 8.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.03$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}$, $3 H), 1.75(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3): $\delta 165.64,141.27,136.18,133.82,130.08,130.02,129.05,128.23$, $125.78,124.40,123.23,122.95,121.28,40.09,31.24,22.02$

HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}]+250.1590$; found: 250.1590 .

6-(tert-Butyl)-8-methoxy-2-methylphenanthridine (3r)

This compound was obtained according to the general procedure. After
purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 1 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in ($23.0 \mathrm{mg}, 0.083 \mathrm{mmol}$) 55% yield as a yellow solid. Purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 1 \%\right.$ ethyl acetate in petroleum ether)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l 3}$): $\delta 8.58(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J$ $=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, CDCl3): $\delta 164.71,157.15,140.52,136.25,129.97,129.12,128.04,125.55$, 124.42, 123.31, 120.78, 118.94, 109.63, 55.47, 39.95, 30.09, 22.01

HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$280.1696, found: 280.1696 .
M.p. $127-129^{\circ} \mathrm{C}$.

6-(But-3-en-1-yl)phenanthridine (3s)

This compound was obtained according to the general procedure. After purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 1 \%\right.$ ethyl acetate in petroleum ether), this compound was obtained in ($21.2 \mathrm{mg}, 0.093 \mathrm{mmol}$) 62% yield as a yellow solid. Purification of the crude material was performed by column chromatography $\left(\mathrm{SiO}_{2}: 1 \%\right.$ ethyl acetate in petroleum ether)
${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}, \mathbf{C D C l} 3): \delta 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=$ $8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dddd}, J=8.2,7.0,5.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ (ddd, $J=8.3,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.49(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l 3}$): $\delta 161.52,137.64,133.19,131.16,129.01,128.70,127.65,126.88$, $126.53,124.94,123.73,122.65 .122 .01,115.43,34.76,33.39$

HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{16}[\mathrm{M}+\mathrm{H}]^{+} 234.1204$; found:234.1204
M.p. $110-112^{\circ} \mathrm{C}$.

II. Spectral Data for New Compounds

$$
\begin{aligned}
& \text { N్ర్ర్ర心. }
\end{aligned}
$$

$3 \mathrm{\sim}{ }^{N_{T s}}$

 (1)

ツスNN

|

Hu
 l

3n

III. References

(1) Studer, A. Org. Lett. 2013 , 15, 6286-6289.

