Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

A novel protocol for the one-pot borylation/Suzuki reaction

A. Hooper,^a A. Zambon^{a+} and C. J. Springer^{a+*}

Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, SM2 5NG, UK.

1. Experimental	S2
1.1 Kinase Assay	S2
1.2. General Experiment Details	S2
1.3. General procedure for synthesis of small panel of kinase-like sca	affolds 4a-
4p 1.4. General procedure for synthesis of small panel of kinase-like sca 5d	affolds 5a- S8
2. NMR Spectra	
2.1 ¹ H NMR	
2.2 ¹ H NMR	

1. Experimental

1.1. Kinase Assay

 IC_{50} determinations performed by the SelectScreen[®] Biochemical Kinase Profiling Service (Invitrogen). To test the enzyme selectively of the inhibitors, ProfilerPro kits (Caliper Life Sciences, Inc.) were used as described in the protocol.

1.2. General Experimental Details

Unless otherwise stated, reagents and solvents were purchased from commercial suppliers (Acros, Apollo, Fisher, Fluorochem, Sigma-Aldrich, Strem Chemicals Inc. and VWR) and used without further purification. Chromatography solvents were HPLC grade and were used without further purification. All reactions were carried out in oven-dried flasks under a positive pressure of Argon, and air and moisture sensitive reagents transferred *via* syringe. Compound analysis was performed using MestReNova v7.1.0-9185.

Normal phase thin layer chromatography was conducted on standard commercial aluminium sheets pre-coated with a 0.2 mm layer of silica gel (Merck 60-254), and flash silica column chromatography was performed using a 10 g, 25 g and 50 g pre-packed Biotage Snap columns on a Biotage® IsoleraTM Four system.

Microwave-assisted reactions were performed in a Biotage® Initiator 2.5 microwave reactor. ¹H NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer using an internal deuterium lock. Chemical shifts were measured in parts per million (ppm) relative to tetramethylsilane (TMS, $\delta = 0$). Data is presented in the following format: chemical shift (multiplicity, coupling constant (*J* in Hz), integration, assignment).

¹³C NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer using an internal deuterium lock. Chemical shifts were measured in parts per million (ppm) relative to tetramethylsilane (TMS, $\delta = 0$).

LC-MS and HRMS analysis was performed on an Agilent 1200 series HPLC and diode array detector coupled to a 6210 time of flight mass spectrometer with dual multimode APCI/ESI source. Fast4mins: Analytical separation was carried out at 30°C on a Merck Purospher STAR column (RP-18e, 30 x 4 mm) using a flow rate of 1.5 mL/min in a 4-minute gradient elution with detection at 254 nm. The mobile phase was a mixture of methanol (solvent A) and water containing formic acid at 0.1% (solvent B). Gradient elution was as follows: 1:9 (A/B) to 9:1 (A/B) over 2.5 min, 9:1 (A/B) for 1 min, and then reversion back to 1:9 (A/B) over 0.3 min, finally 1:9 (A/B) for 0.2 min. Fast4minsLipo: Analytical separation was carried out at 30°C on a Merck Purospher STAR column (RP-18e, 30 x 4 mm) using a flow rate of 1.5 mL/min in a 4 minute gradient elution with detection at 254 nm. The mobile phase was a mixture of methanol (solvent A) and water containing formic acid at 0.1% (solvent B). Gradient elution with detection at 254 nm. The mobile phase was a mixture of methanol (solvent A) and water containing formic acid at 0.1% (solvent B). Gradient elution with detection at 254 nm. The mobile phase was a mixture of methanol (solvent A) and water containing formic acid at 0.1% (solvent B). Gradient elution was as follows: 1:9 (A/B) to 9:1 (A/B) over 1 min, 9:1 (A/B) for 2.5 min, and then reversion back to 1:9 (A/B) to 9:1 (A/B) over 1 min, 9:1 (A/B) for 0.2 min.

The references used for HRMS analysis were: hexakis (2,2-difluroethoxy)phosphazene $[M+H]^+$ 622.02896 and hexakis(1*H*,1*H*,3*H*-tetrafluoropentoxy)phosphazene $[M+H]^+$ 922.009798

All melting points were determined on a Reichert Thermovar melting point apparatus and are uncorrected.

1.3. General procedure for synthesis of small panel of kinase-like scaffolds 4a-4p.

To the appropriate first bromide (1 eq.) and bis(pinocolato)diboron (1.2 eq.) dissolved in 1,4-dioxane (0.5 M) were added KOAc (3 eq.) and tetrakis(triphenylphosphine)palladium(0) (10 mol%) and the reaction mixture was heated under μ W irradiation to 120 °C for 45 min. To the crude reaction mixture was added the appropriate second bromide (1 eq.) and a 2M solution Na₂CO₃ (2 eq.) and the reaction mixture was heated under μ W irradiation to 120 °C for 30 min. The reaction mixture is then filtered through celite and the organics reduced in vacuo. The residue was then purified by flash silica column chromatography (0-50% EtOAc in cyclohexane) to afford product.

5-(pyridin-3-yl)-2,3-dihydro-1*H***-inden-1-one, 4a.** 5-bromo-1-indanone (50 mg, 0.24 mmol) and 3-bromopyridine (20 μL, 0.24 mmol) were reacted respectively, following general procedure. Product obtained as a cream solid (35 mg, 70%). Mp: 96–100 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.91 (d, J = 2.3 Hz, 1H), 8.68 (d, J = 2.3 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.71 – 7.70 (m, 1H), 7.62 – 7.60 (m, 1H), 7.45 – 7.41 (m, 1H), 3.27 – 3.23 (m, 2H), 2.81 – 2.77 (m, 2H); ¹³C NMR (126 MHz, Chloroform-d3) δ 155.95, 149.44, 148.51, 134.69, 132.06, 128.54, 128.44, 126.73, 125.32, 124.44, 123.68, 123.22, 36.49, 25.90; LC-MS: $t_R = 1.39$ min; m/z: 210 (M + H)+ (C₁₄H₁₂NO); HRMS: (M + H)+ calcd for C₁₄H₁₂NO 210.0919, found 210.0923.

5-(1H-pyrrolo[2,3-b]pyridin-5-yl)-2,3-dihydro-1H-inden-1-on, 4b. 5-bromo-1-indanone (50 mg, 0.24 mmol) and 5-bromo-7-azaindole (47 mg, 0.24 mmol) were reacted respectively, following general procedure. Product obtained as a yellow solid (7 mg, 12%). Mp: 264–266 °C; ¹H NMR (500 MHz, DMSO-d6) δ 11.80 (s, 1H), 8.60 (d, J = 2.2 Hz, 1H), 8.32 (d, J = 2.2 Hz, 1H), 7.94 – 7.92 (m, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.64 – 7.62 (m, 1H), 7.56 – 7.53 (m, 1H), 3.20 – 3.16 (m, 2H), 2.70 – 2.66 (m, 2H); ¹³C NMR (126 MHz, DMSO-d6) δ 156.64, 148.90, 145.90, 142.25, 135.60, 132.48, 131.97, 129.14, 127.75, 126.73, 125.44, 123.89, 120.17, 100.85, 36.62, 25.99; LC-MS: $t_{\rm R}$ = 2.63 min; m/z: 249 (M + H)⁺ (C₁₆H₁₃N₂O); HRMS: (M + H)⁺ calcd for C₁₆H₁₃N₂O 249.1028, found 249.1021.

5-(quinolin-6-yl)-2,3-dihydro-1*H***-inden-1-one, 4c.** 5-bromo-1-indanone (50 mg, 0.24 mmol) and 6-bromoquinoline (32 μL, 0.24 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (42 mg, 67%). Mp: 147–151 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.98 (d, J = 4.3 Hz, 1H), 8.27 – 8.25 (m, 1H), 8.23 (d, J = 8.7 Hz, 1H), 8.09 (d, J = 2.1 Hz, 1H), 8.02 (d, J = 8.7 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.84 – 7.82 (m, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.71 – 7.66 (m, 1H), 3.28 – 3.25 (m, 2H), 2.82 – 2.78 (m, 2H); ¹³C NMR (126 MHz, Chloroform-d3) δ 188.18, 150.95, 148.03, 146.75, 138.34, 136.38, 132.06, 130.26, 129.04, 128.54, 128.39, 127.08, 126.39, 125.58, 124.29, 121.77, 36.56, 25.93; LC-MS: $t_{\rm R}$ = 2.55 min; m/z: 260 (M + H)⁺ (C₁₈H₁₄NO); HRMS: (M + H)⁺ calcd for C₁₈H₁₄NO 260.1075, found 260.1067.

5-(4-chloroquinolin-6-yl)-2,3-dihydro-1*H***-inden-1-one, 4d.** 5-bromo-1indanone (50 mg, 0.24 mmol) and 6-bromo-4-chloroquinoline (58 mg, 0.24 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (70 mg, 100%). Mp: 128–131 °C; ¹H NMR (500 MHz, Chloroformd3) δ 8.84 (d, J = 4.7 Hz, 1H), 8.49 – 8.48 (m, 1H), 8.25 (d, J = 8.7 Hz, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.87 – 7.85 (m, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 4.7 Hz, 1H), 3.30 – 3.27 (m, 2H), 2.82 – 2.79 (m, 2H); ¹³C NMR (126 MHz, Chloroform-d3) δ 184.38, 150.30, 143.48, 132.14, 131.92, 130.67, 129.99, 128.85, 128.40, 127.21, 125.76, 124.38, 124.03, 122.73, 121.88, 121.38, 36.57, 24.87; LC-MS: $t_{\rm R}$ = 3.15 min; *m/z*: 294 (M + H)⁺ (C₁₈H₁₃ClNO); HRMS: (M + H)⁺ calcd for C₁₈H₁₃ClNO 294.0686, found 294.0694.

tert-butyl (4-(pyridin-3-yl)phenyl)carbamate, 4e. *Tert*-butyl (4-bromophenyl)carbamate (50 mg, 0.18 mmol) and 3-bromopyridine (18 μ L, 0.18 mmol) were reacted respectively, following general procedure. Product obtained as a cream solid (26 mg, 52%). Mp: 147–149 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.84 – 8.83 (m, 1H), 8.58 – 8.56 (m, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.54 (d, J =

8.6 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 7.9 Hz, 1H), 6.65 (s, 1H), 1.55 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d3) δ 152.63, 148.10, 148.00, 138.53, 136.09, 133.92, 132.36, 127.67, 123.52, 118.96, 80.82, 28.34; LC-MS: $t_{\rm R}$ = 2.38 min; *m/z*: 271 (M + H)⁺ (C₁₆H₁₉N₂O₂); HRMS: (M + H)⁺ calcd for C₁₆H₁₉N₂O₂ 271.1447, found 271.1441.

tert-butyl (4-(1*H*-pyrrolo[2,3-*b*]pyridin-5-yl)phenyl)carbamate, 4f. *Tert*butyl (4-bromophenyl)carbamate (500 mg, 1.57 mmol) and 5-bromo-7azaindole (309 mg, 1.57 mmol) were reacted respectively, following general procedure. Product obtained as an orange solid (301 mg, 53%). Mp: 187–190 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 9.29 (s, 1H), 8.54 (d, J = 2.1 Hz, 1H), 8.10 (d, J = 2.1 Hz, 1H), 7.57 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.38 – 7.36 (m, 1H), 6.59 (s, 1H), 6.58 – 6.55 (m, 1H), 1.56 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d3) δ 151.82, 142.21, 140.76, 137.49, 134.33, 129.43, 127.88, 127.00, 125.52, 120.18, 119.04, 101.23, 28.37, 24.87; LC-MS: $t_{\rm R}$ = 2.85 min; *m/z*: 310 (M + H)⁺ (C₁₈H₂₀N₃O₂); HRMS: (M + H)⁺ calcd for C₁₈H₂₀N₃O₂ 310.1556, found 310.1554.

4g (4-(quinolin-6-yl)phenyl)carbamate, 4g. *Tert*-butyl *tert*-butyl (4bromophenyl)carbamate (50 mg, 0.18 mmol) and 6-bromoquinoline (25 µL, 0.18 mmol) were reacted respectively, following general procedure. Product obtained as a cream solid (27 mg, 46%). Mp: 158-160 °C; ¹H NMR (500 MHz, Chloroformd3) δ 8.92 (d, J = 4.2 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.19 – 8.15 (m, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.98 – 7.97 (m, 1H), 7.68 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.4 Hz, 1H), 6.60 (s, 1H), 1.56 (s, 9H); ¹³C NMR (126 MHz, Chloroformd3) δ 150.20, 147.54, 138.72, 136.15, 132.33, 129.86, 128.98, 128.52, 127.96, 126.77, 124.81, 121.46, 118.87, 109.53, 104.08, 28.36; LC-MS: $t_{\rm R}$ = 2.89 min; m/z: 321 (M + H)⁺ ($C_{20}H_{21}N_2O_2$); HRMS: (M + H)⁺ calcd for $C_{20}H_{21}N_2O_2$ 321.1603, found 321.1602. BocHN

tert-butyl (4-(4-chloroquinolin-6-yl)phenyl)carbamate, 4h. *Tert*-butyl (4-bromophenyl)carbamate (50 mg, 0.18 mmol) and 6-bromo-4-chloroquinoline (44 mg, 0.18 mmol) were reacted respectively, following general procedure. Product obtained as a cream solid (26 mg, 40%). Mp: 124–126 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.78 (d, J = 4.6 Hz, 1H), 8.39 – 8.38 (m, 1H), 8.19 (d, J =

8.8 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 4.6 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H), 6.61 (s, 1H), 1.57 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d3) & 162.75, 149.52, 148.59, 139.67, 137.83, 137.79, 132.39, 130.29, 129.89, 128.13, 124.56, 121.59, 121.10, 118.90, 99.99, 28.36; LC-MS: $t_{\rm R}$ = 3.35 min; m/z: 355 (M + H)⁺ (C₂₀H₂₀ClN₂O₂); HRMS: (M + H)⁺ calcd for C₂₀H₂₀ClN₂O₂ 355.1213, found 355.1212.

3-(4-chlorophenyl)pyridine, 4i. 1-bromo-4-chlorobenzene (50 mg, 0.26 mmol) and 3-bromopyridine (25 μL, 0.26 mmol) were reacted respectively, following general procedure. Product obtained as a colourless oil (21 mg, 42%). ¹H NMR (500 MHz, Chloroform-d3) δ 8.84 – 8.82 (m, 1H), 8.63 – 8.61 (m, 1H), 7.85 (d, J = 7.9 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 7.38 (d, J = 7.9 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ 148.81, 148.14, 136.28, 135.49, 134.38, 134.18, 129.29, 128.39, 123.61; LC-MS: $t_{\rm R}$ = 2.44 min; *m/z*: 190 (M + H)⁺ (C₁₁H₉ClN); HRMS: (M + H)⁺ calcd for C₁₁H₉ClN 190.0424, found 190.0418.

4j

5-(4-chlorophenyl)-1*H***-pyrrolo[2,3-***b***]pyridine, 4j. 1-bromo-4-chlorobenzene (50 mg, 0.26 mmol) and 5-bromo-7-azaindole (52 mg, 0.26 mmol) were reacted respectively, following general procedure. Product obtained as a cream solid (19 mg, 32%). Mp: 210–212 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 9.70 (s, 1H), 8.55 (d, J = 2.1 Hz, 1H), 8.12 (d, J = 2.1 Hz, 1H), 7.58 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 7.42 – 7.40 (m, 1H), 6.60 – 6.58 (m, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ 142.16, 138.09, 133.18, 129.07, 128.63, 127.24, 125.82, 120.21, 101.33, 99.99, 29.72; LC-MS: t_{\rm R} = 3.06 min;** *m/z***: 229 (M + H)⁺ (C₁₃H₁₀ClN₂); HRMS: (M + H)⁺ calcd for C₁₃H₁₀ClN₂ 229.0533, found 229.0524.**

4k

6-(4-chlorophenyl)quinoline, 4k. 1-bromo-4-chlorobenzene (50 mg, 0.26 mmol) and 6-bromoquinoline (36 μL, 0.26 mmol) were reacted respectively, following general procedure. Product obtained as a yellow waxy solid (39 mg, 62%). Mp: 56–60 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.94 (d, J = 4.2 Hz, 1H), 8.23 – 8.21 (m, 1H), 8.20 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 2.1 Hz, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 7.47 – 7.44 (m, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ 150.60, 147.73, 138.76, 138.07, 136.23, 133.95, 130.11, 129.14, 128.87, 128.69, 128.43, 125.46, 121.63; LC-MS: $t_{\rm R}$ = 3.08

min; m/z: 240 (M + H)⁺ (C₁₅H₁₁ClN); HRMS: (M + H)⁺ calcd for C₁₅H₁₁ClN 240.0580, found 240.0575.

4-chloro-6-(4-chlorophenyl)quinoline, 4l. 1-bromo-4-chlorobenzene (50 mg, 0.26 mmol) and 6-bromo-4-chloroquinoline (63 mg, 0.26 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (35 mg, 49%). Mp: 101–104 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.81 (d, J = 4.7 Hz, 1H), 8.40 – 8.39 (m, 1H), 8.21 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 4.7 Hz, 1H), 7.51 (d, J = 8.6 Hz, 2H); ¹³C NMR (126 MHz, Chloroform-d3) δ 149.95, 148.56, 142.74, 139.23, 138.47, 135.88, 134.34, 130.56, 129.79, 129.24, 128.83, 126.70, 121.80; LC-MS: $t_{\rm R}$ = 3.54 min; *m/z*: 274 (M + H)⁺ (C₁₅H₁₀Cl₂N); HRMS: (M + H)⁺ calcd for C₁₅H₁₀Cl₂N 274.0190, found 274.0185.

3-phenylpyridine, 4m. Bromobenzene (32 µL, 0.32 mmol) and 3bromopyridine (31 µL, 0.32 mmol) were reacted respectively, following general procedure. Product obtained as a yellow oil (40 mg, 81%). ¹H NMR (500 MHz, Chloroform-d3) δ 8.88 – 8.86 (m, 1H), 8.61 – 8.59 (m, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.50 (t, J = 7.6 Hz, 2H), 7.44 – 7.40 (m, 1H), 7.38 (d, J = 7.9 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ δ 148.48, 137.84, 136.65, 134.36, 132.14, 129.08, 128.11, 127.16, 123.55; LC-MS: $t_{\rm R}$ = 1.25 min; m/z: 156 (M + H)⁺ (C₁₁H₁₀N); HRMS: (M + H)⁺ calcd for C₁₁H₁₀N 156.0813, found 156.0816.

4n

5-phenyl-1*H***-pyrrolo[2,3-***b***]pyridine, 4n.** Bromobenzene (32 μL, 0.32 mmol) and 5-bromo-7-azaindole (63 mg, 0.32 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (28 mg, 45%). Mp: 156–160 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 10.07 (s, 1H), 8.60 (d, J = 2.1 Hz, 1H), 8.17 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 7.1 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.43 – 7.40 (m, 1H), 7.40 – 7.37 (m, 1H), 6.60 – 6.59 (m, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ 148.13, 142.39, 139.63, 132.28, 129.89, 128.92, 127.44, 127.01, 125.65, 120.24, 101.24; LC-MS: $t_{\rm R}$ = 2.78 min; *m/z*: 195 (M + H)⁺ (C₁₃H₁₁N₂); HRMS: (M + H)⁺ calcd for C₁₃H₁₁N₂ 195.0922, found 195.0917.

6-phenylquinoline, 4o. Bromobenzene (32 μL, 0.32 mmol) and 6-bromoquinoline (43 μL, 0.32 mmol) were reacted respectively, following general procedure. Product obtained as a yellow solid (58 mg, 87%). Mp: 51–55 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.94 (d, J = 4.2 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.03 – 8.01 (m, 1H), 8.00 (d, J = 2.1 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.47 – 7.45 (m, 1H), 7.44 – 7.41 (m, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ 150.38, 147.68, 140.33, 139.34, 136.25, 129.90, 129.24, 128.97, 128.47, 127.76, 127.47, 125.48, 121.48; LC-MS: t_R = 2.80 min; *m/z*: 206 (M + H)⁺ (C₁₅H₁₂N); HRMS: (M + H)⁺ calcd for C₁₅H₁₂N 206.0970, found 206.0967.

4p

4-chloro-6-phenylquinoline, 4p. Bromobenzene (32 μL, 0.32 mmol) and 6-bromo-4-chloroquinoline (78 mg, 0.32 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (52 mg, 68%). Mp: 79–81 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.94 (d, J = 4.2 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.03 – 8.01 (m, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 4.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.47 – 7.45 (m, 1H); ¹³C NMR (126 MHz, Chloroform-d3) δ 149.72, 148.50, 142.76, 140.49, 140.03, 130.33, 130.15, 129.05, 128.08, 127.61, 126.70, 121.83, 121.61; LC-MS: $t_{\rm R}$ = 3.36 min; *m/z*: 240 (M + H)⁺ (C₁₅H₁₁ClN); HRMS: (M + H)⁺ calcd for C₁₅H₁₁ClN 240.0580, found 240.0575.

1.4. General procedure for synthesis of small panel of kinase-like scaffolds 5a-5d.

To the appropriate first bromide (1 eq.) and bis(pinocolato)diboron (1.2 eq.) dissolved in 1,4-dioxane (0.4 M) were added KOAc (3 eq.) and tetrakis(triphenylphosphine)palladium(0) (10 mol%) and the reaction mixture was heated under μ W irradiation to 120 °C for 90 min. To the crude reaction mixture was added the appropriate second bromide (1 eq.) and a 2M solution Na₂CO₃ (2 eq.) and the reaction mixture was heated under μ W irradiation to 120 °C for 60 min. The reaction mixture is then filtered through celite and the organics reduced in vacuo. The residue was then purified by flash silica column chromatography (0-50% EtOAc in cyclohexane) to afford product.

5-(3-(pyridin-4-yl)-1-trityl-1*H***-pyrazol-4-yl)-2,3-dihydro-1***H***-inden-1-one, 5a.** 4-(4-bromo-1-trityl-1*H*-pyrazol-3-yl)pyridine (2.00 g, 4.30 mmol) and 5bromo-1-indanone (0.90 g, 4.30 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (1.27 g, 57%). Mp: 48-51 °C; ¹H NMR (500 MHz, MeOD-d4) δ 8.52 (d, J = 6.1 Hz, 2H), 7.71 (d, J = 7.9 Hz, 1H), 7.49 (s, 1H), 7.41 (d, J = 6.1 Hz, 2H), 7.37 (d, J = 7.9 Hz, 1H), 7.38 – 7.36 (m, 10H), 7.26 – 7.25 (m, 1H), 7.25 – 7.24 (m, 5H), 3.12 – 3.08 (m, 2H), 2.74 – 2.70 (m, 2H); ¹³C NMR (126 MHz, MeOD-d4) δ 206.31, 155.62, 149.81, 145.99, 142.73, 140.95, 139.44, 138.47, 135.81, 133.55, 130.28, 128.23, 128.04, 127.85, 126.57, 123.94, 122.61, 119.66, 36.38, 24.87; LC-MS: $t_{\rm R}$ = 3.72 min; *m/z*: 518 (M + H)⁺ (C₃₆H₂₈N₃O); HRMS: (M + H)⁺ calcd for C₃₆H₂₈N₃O 518.2232, found 518.2220. BocHN

tert-butyl (4-(3-(pyridin-4-yl)-1-trityl-1*H*-pyrazol-4-yl)phenyl)carbamate, 5b. 4-(4-bromo-1-trityl-1*H*-pyrazol-3-yl)pyridine (100 mg, 0.22 mmol) and *tert*butyl (4-bromophenyl)carbamate (58 mg, 0.22 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (41 mg, 33%). Mp: 204–206 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.48 (d, J = 6.2 Hz, 2H), 7.44 (d, J = 6.2 Hz, 2H), 7.37 – 7.35 (m, 12H), 7.33 (s, 1H), 7.27 – 7.25 (m, 3H), 7.24 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.53 (s, 1H), 1.54 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d3) δ 149.70, 147.37, 145.50, 142.98, 141.31, 138.61, 137.48, 134.53, 133.18, 130.32, 129.58, 127.88, 127.75, 127.38, 122.30, 120.05, 118.53, 28.35; LC-MS: $t_{\rm R}$ = 3.40 min; m/z: 579 (M + H)⁺ (C₃₈H₃₅N₄O₂); HRMS: (M + H)⁺ calcd for C₃₈H₃₅N₄O₂ 579.2760, found 579.2932.

5c

4-(4-(4-chlorophenyl)-1-trityl-1H-pyrazol-3-yl)pyridine, **5c.** 4-(4-bromo-1-trityl-1*H*-pyrazol-3-yl)pyridine (100 mg, 0.22 mmol) and 1-bromo-4-chlorobenzene (41 mg, 0.22 mmol) were reacted respectively, following general

procedure. Product obtained as a white solid (52 mg, 49%). Mp: 186–190 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.51 (d, J = 6.1 Hz, 2H), 7.40 (d, J = 6.1 Hz, 2H), 7.39 (s, 1H), 7.37 – 7.35 (m, 10H), 7.30 (d, J = 8.6 Hz, 2H), 7.25 – 7.23 (m, 5H), 7.20 (d, J = 8.6 Hz, 2H); ¹³C NMR (126 MHz, Chloroform-d3) δ 149.81, 145.63, 142.85, 141.46, 141.01, 139.90, 138.06, 133.22, 130.29, 130.20, 128.78, 127.96, 127.80, 122.38, 94.63; LC-MS: $t_{\rm R}$ = 3.67 min; m/z: 498 (M + H)⁺ (C₃₃H₂₅ClN₃); HRMS: (M + H)⁺ calcd for C₃₃H₂₅ClN₃ 498.1737, found 498.1732.

5d

4-(4-phenyl-1-trityl-1*H***-pyrazol-3-yl)pyridine, 5d.** 4-(4-bromo-1-trityl-1*H*-pyrazol-3-yl)pyridine (100 mg, 0.22 mmol) and bromobenzene (21 mL, 0.22 mmol) were reacted respectively, following general procedure. Product obtained as a white solid (65 mg, 65%). Mp: 238–242 °C; ¹H NMR (500 MHz, Chloroform-d3) δ 8.48 (d, J = 6.2 Hz, 2H), 7.43 (d, J = 6.2 Hz, 2H), 7.40 (s, 1H), 7.37 – 7.34 (m, 12H), 7.35 (d, J = 7.8 Hz, 2H), 7.33 – 7.30 (m, 1H), 7.27 – 7.24 (m, 3H), 7.25 (t, J = 7.6 Hz, 2H); ¹³C NMR (126 MHz, Chloroform-d3) δ 149.70, 148.23, 142.96, 142.34, 141.20, 140.70, 138.47, 133.34, 130.32, 128.97, 128.56, 127.90, 127.76, 122.38, 99.99; LC-MS: $t_{\rm R}$ = 3.67 min; m/z: 464 (M + H)⁺ (C₃₃H₂₆N₃); HRMS: (M + H)⁺ calcd for C₃₃H₂₆N₃ 464.2127, found 464.2119.

2. NMR Spectra

2.1. ¹H NMR

2.2. ¹³C NMR

S25

