Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Supplementary figure 1

High cone voltage fragmentation of vitexin and isovitexin products from incubating UDP-glucose and $[2',3',5',6'^{-2}H_4]2$ -hydroxynaringenin with *D. incanum* soluble proteins. The fragmentation pattern of $[2',3',5',6'^{-2}H_4]$ vitexin (**8**) and $[2',3',5',6'^{-2}H_4]$ isovitexin (**9**) shows a molecular ion of $[M+4-H]^-$ 435 due to incorporation of four deuterium atoms, and ions at $[M+4-90-H]^-$ 345 and $[M+4-120]^-$ 315 proving the hexose is *C*-linked.

[2',3',5',6'-²H₄]vitexin (8)

Supplementary figure 2

High cone voltage fragmentation of $[2',3',5',6'^{2}H_{4}]$ ischaftoside (**4**) and $[2',3',5',6'^{2}H_{4}]$ soschaftoside (**5**) products from incubating UDP-arabinose and $[2',3',5',6'^{2}H_{4}]$ 6-*C*-glucosyl-2-hydroxynaringenin (**10**) with *D. incanum* soluble proteins. The fragmentation pattern shows molecular ions of $[M+4-H]^{-}$ 567 and ions at $[M+4-60-H]^{-}$ 507, $[M+4-90-H]^{-}$ 477, $[M+4-120-H]^{-}$ 447, $[M+4-180-H]^{-}$ 387 and $[M+4-90-H]^{-}$ 487, $[M+4-180-H]^{-}$ 387 and $[M+4-90-H]^{-}$ 387 and $[M+4-90-H]^$

210]⁻ 357 proving both sugars are *C*-linked. The analogous fragmentation patterns relating to [M-H]⁻ 563 are unlabelled, co-eluting natural products.

[2',3',5',6'-²H₄]schaftoside (5)

Supplementary figure 3

HPLC traces demonstrating conversion of UDP-glucose to UDP-galactose (blue) and UDP-galactose to UDP-glucose (pink) by *D. incanum* soluble protein fraction.

Supplementary figure 4

High cone voltage ESIMS fragmentation of **11a** [M-H]⁻ 433, demonstrating *C*- linked hexose through fragment ions of [M-H-90]⁻ 343 and [M-H-120]⁻ 313.

High cone voltage ESIMS fragmentation of **11b** [M-H]⁻ 433, demonstrating *C*- linked hexose through fragment ions of [M-H-90]⁻ 343 and [M-H-120]⁻ 313.

High cone voltage ESIMS fragmentation of **12a** [M-H]⁻ 449, demonstrating *C*- linked hexose through fragment ions of [M-H-90]⁻ 359 and [M-H-120]⁻ 329.

High cone voltage ESIMS fragmentation of **12b** [M-H]⁻ 449, demonstrating *C*- linked hexose through fragment ions of [M-H-90]⁻ 359 and [M-H-120]⁻ 329.

Supplementary figure 5A

LCMS PDA trace (lower) and ion trace (higher) showing 3 novel compounds (**13**, **14** and **15**) with molecular weight [M-H]⁻ 595 derived from UDP-glucose, **11a** and *D. incanum* root protein.

LCMS PDA trace (lower) and ion trace (higher) showing 3 novel compounds (**13**, **14** and **15**) with molecular weight [M-H]⁻ 595 derived from UDP-galactose, **11a** and *D. incanum* root protein.

High cone voltage ESIMS mass spectrum of the three novel metabolites **13**, **14**, and **15**, from the ion trace at 595 amus, demonstrating they are di-*C*-linked hexose moieties through fragment ions at [M-H-90]⁻ 505, [M-H-120]⁻ 475, [M-H-180]⁻ 415, [M-H-210]⁻ 385 and [M-H-240]⁻ 355.

Metabolite 13

Metabolite 14

Supplementary figure 5B

LCMS PDA trace (lower) and ion trace (higher) showing 3 novel compounds (**16**, **17** and **18**) with molecular weight [M-H]⁻ 611 derived from UDP-glucose, **12a** and *D. incanum* leaf protein.

LCMS PDA trace (lower) and ion trace (higher) showing 3 novel compounds (**16**, **17** and **18**) with molecular weight [M-H]⁻ 611 derived from UDP-galactose, **12a** and *D. incanum* leaf protein.

High cone voltage ESIMS mass spectrum of the three novel metabolites **16**, **17**, and **18**, from the ion trace at 611 amus, demonstrating they are di-*C*-linked hexose moieties through fragment ions at [M-H-90]⁻ 521, [M-H-120]⁻ 491, [M-H-180]⁻ 431, [M-H-210]⁻ 401 and [M-H-240]⁻ 371.

Metabolite 16

Supplementary figure 6A

ESIMS spectra showing incorporation of UDP- α -D-[UL-¹³C₆]glucose or UDP- α -D-[UL-¹³C₆]galactose into metabolites **13**, **14** and **15** by the soluble leaf protein of *D. incanum*.

Supplementary figure 6B

4'-fluoro-8-C-glucosylchrysin 11b

F

