Supporting Information

Total Synthesis and Preliminary SAR Study of (±)-Merochlorins A and B

Hongzhi Yang,^a Xue Liu,^b Qingong Li,^a Longbo Li,^a Jingren Zhang,^{*,b,c} and Yefeng Tang^{*,a,b}

^aComprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China

^bDepartment of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China ^cCollaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China

Table of Contents

I:	Comparison of NMR Data of Natural and Synthetic Merochlorins	2-5
II:	NMR Spectrum	6-16
III:	X-ray Crystallographic Study	17-18

I: Comparison of NMR Data of Natural and Synthetic Merochlorins

Note: Some of the NMR data of natural product 1 and 2 were misreported in the original isolation paper, which have been corrected in the following synthetic work by George¹ and Trauner,² respectively. The NMR data of our samples are in good agreement with those reported in reference 1 and 2.

1) Merochlorin A

	¹ H NMR $\delta_{\rm H}$ [ppm, mult, <i>J</i> (Hz)] d_6 -DMSO			
No.	Notural (600 MHz)	Synthetic (Ref.1)	Synthetic (This work)	
		(400 MHz)	(400 MHz)	
1				
2				
4	6.16, d (2.0)	6.28, d (2.0)	6.28, d (2.0)	
5				
6	6.38, d (2.0)	6.46, d (2.0)	6.46, d (2.0)	
7				
8				
9	2.24, dd (9.4, 4.0)	2.33, dd (9.1, 4.2)	2.33, dd (8.1, 4.5)	
12				
12	2.87, d (13.0); 2.65,	2.95, d (15.2);	2.95, d (15.2);	
15	d(13.0)	2.73, d (15.2)	2.73, d (15.2)	
14				
15	2.36, dd (14.0, 4.0);	2.45-2.38 m 2.46-2.29	2.46.2.29 m	
15	2.33, dd (14.0, 9.4)	2.43-2.38, 111	2.40-2.58, 11	
16	1.14, q (6.0);	1.20, dt (13.2, 4.9);	1.20, dt (12.9, 4.1);	
10	1.40, dt (14.8, 4.8)	1.47, dt (13.2, 4.9)	1.46, dt (13.4, 4.9)	
17	2.03, m; 1.75m	2.10, m;1.83, m	2.10, m;1.83, m	
18	4.92, t (6.5)	5.01, t (7.1)	5.01, t (7.1)	
19				
20	1.45, s	1.54, s	1.54, s	
21	1.53, s	1.61, s	1.61, s	
22	1.56, s	1.63, s	1.63, s	
23				
24	1.65, s	1.73, s	1.73, s	
25	0.81, s	0.88, s	0.88, s	
3-OH	11.9, br, s	12.00, br, s	11.99, br, s	
5-OH		11.35, br, s	11.36, br, s	

Ref 1: J. P. Pepper and J. H. George, Angew. Chem. Int. Ed., 2013, 52, 1-5.

Ref 2: R. Meier, S. Strych, D. Trauner, Org. Lett., 2014, 16, 2634-2637.

	¹³ C NMR δ_c [ppm] d_6 -DMSO		
No.	Natural	Synthetic (Ref.1)	Synthetic (This work)
	(150 MHz)	(100 MHz)	(100 MHz)
1	193.2	193.0	193.0
2	109.8	109.6	109.6
3	165.4	165.8	165.8
4	102.1	101.8	101.8
5	166.5	166.6	166.6
6	103.7	103.3	103.3
7	150.5	150.3	150.3
8	61.5	61.3	61.3
9	58.8	58.1	58.1
10	45.3	45.1	45.1
11	91.3	91.0	91.0
12	200.1	199.8	199.8
13	29.3	29.0	29.0
14	132.1	132.4	132.4
15	31.9	31.9	31.7
16	39.2	39.4	39.4
17	22.8	22.6	22.5
18	124.2	124.3	124.3
19	131.6	131.6	131.6
20	18.1	17.9	17.9
21	26.1	25.8	25.8
22	20.9	21.0	21.0
23	123.1	123.0	123.0
24	21.1	21.3	21.3
25	16.5	16.5	16.5
3-OH			
5-OH			

1) Merochlorin B

	¹ H NMR $\delta_{\rm H}$ [ppm, mult, J (Hz)] d_6 -DMSO			
	Natural	Synthetic (Ref.2)	Synthetic (This work)	
	(600 MHz)	(400 MHz)	(400 MHz)	
1				
2				
3				
4	6.17, d (2.0)	6.18, d (2.1)	6.18, d (2.0)	
5				
6	6.15, d (2.0)	6.16, d (2.2)	6.16, d (2.0)	
7				
8				
9	2.99, d (7.8)	3.00, d (7.9)	2.99, d (7.6)	
10				
11				
12				
13	2.81, d (17.0);	2.82, d (18.6);	2.81, d (18.4);	
15	2.47, d(17.0)	2.48, d (18.2)	2.47, d (18.3)	
14				
15	2.82, d (17.8);	2.89, d (18.6);	2.85, d (18.6);	
15	2.70, d (17.8)	2.73, d (18.6)	2.72, d (17.9)	
16	1.73-1.74, m	1.77-1.71, m	1.76-1.71, m	
17	1.99, m; 1.74, m	2.04-1.93, m	2.04-1.93, m	
18	5.05, t (7.5)	5.05, t (7.0)	5.05, t (6.6)	
19				
20	1.48, s	1.48, s	1.48, s	
21	1.57, s	1.57, s	1.56, s	
22	1.70, s	1.48, s	1.48, s	
23				
24	1.62, s	1.70, s	1.70, s	
25	1.41, s	1.41, s	1.41, s	
3-OH	12.9, br, s	12.91, br, s	12.91, br, s	
5-OH		10.55, br, s	10.55, br, s	

	¹³ C NMR δ_c [ppm] d_6 -DMSO		
No.	Natural	Synthetic (Ref.1)	Synthetic (This work)
	(150 MHz)	(100 MHz)	(100 MHz)
1	184.0	184.1	184.1
2	106.4	105.9	105.9
3	163.7	163.4	163.4
4	101.9	101.0	101.0
5	163.0	163.3	163.3
6	104.4	103.6	103.6
7	148.4	147.7	147.7
8	60.7	60.1	60.1
9	52.5	52.0	52.0
10	98.6	97.9	97.9
11	174.0	176.0	176.0
12	99.8	99.7	99.7
13	49.8	49.1	49.1
14	131.0	130.6	130.6
15	35.3	34.4	34.4
16	42.9	43.2	43.2
17	22.6	21.9	21.9
18	124.5	123.3	123.3
19	131.4	131.3	131.3
20	18.1	17.4	17.4
21	25.6	25.4	25.4
22	21.9	21.3	21.3
23	126.2	125.5	125.5
24	17.0	21.3	21.3
25	22.6	22.1	22.1
3-OH			
5-OH			

II: NMR Spectrum

¹H-NMR spectrum for **9** (CDCl₃, 400 MHz)

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

¹H-NMR spectrum for **7** (CDCl₃, 400 MHz)

¹H-NMR spectrum for **8** (CDCl₃, 400 MHz)

¹H-NMR spectrum for **15** (CDCl₃, 400 MHz)

¹³C-NMR spectrum for **15** (CDCl₃, 100 MHz)

¹H-NMR spectrum for **16** (CDCl₃, 400 MHz)

¹³C-NMR spectrum for **16** (CDCl₃, 100 MHz)

¹H-NMR spectrum for **1** (CDCl₃, 400 MHz)

¹H-NMR spectrum for $1 (d_6$ -DMSO, 400 MHz)

 13 C-NMR spectrum for **1** (*d*₆-DMSO, 100 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H-NMR spectrum for **18** (CDCl₃, 400 MHz)

¹³C-NMR spectrum for **18** (CDCl₃, 100 MHz)

¹H-NMR spectrum for **19** (CDCl₃, 400 MHz)

1

¹H-NMR spectrum for **2** (CDCl₃, 400 MHz)

¹H-NMR spectrum for **2** (d_6 -DMSO, 400 MHz)

¹³C-NMR spectrum for **2** (d_6 -DMSO, 100 MHz)

III: X-ray Crystallographic Study

1) X-ray Crystallographic Study for 8

Figure S-1. X-ray structure of 8

Table S-1. Details crystallographic data for 8

Compound	8
formula	C ₂₁ H ₂₇ ClO ₂
FW	346.88
crystal system	triclinic
space group	P-1
a/Å	9.418(2)
b/Å	10.301(3)
c/Å	10.919(3)
α/deg	75.398(15)
eta/deg	77.071(16)
γ/deg	72.538(15)
V/Å ³	965.1(5)
Z	2
$D_{\rm c}/{\rm g~cm^{-3}}$	1.194
μ /mm ⁻¹	0.208
$R_1^{a}(l>2\sigma)$	0.0654
wR_2^{b} (all data)	0.1530
GOF	1.143

2) X-ray Crystallographic Study for 18

Figure S-2. X-ray structure of 18

Table S-2. Detai	ils crystallogra	aphic data for 18
------------------	------------------	--------------------------

Compound	18
formula	C ₂₆ H ₃₃ ClO ₄
FW	444.97
crystal system	monoclinic
space group	P 1 21/c 1
a/Å	12.8200(5)
b/Å	14.6670(7)
c/Å	12.6709(7)
lpha/deg	90
β/deg	101.774(5)
γ/deg	90
V/Å ³	2332.4(2)
Z	4
$D_{\rm c}/{\rm g~cm^{-3}}$	1.267
$\mu/{ m mm}^{-1}$	0.193
$R_1^{a}(l>2\sigma)$	0.0488
wR_2^{b} (all data)	0.1114
GOF	1.030