Design, Synthesis and Evaluation of *N*-Aryl-Glyoxamide Derivatives as Structurally Novel Bacterial Quorum Sensing Inhibitors

Shashidhar Nizalapur,^a Önder Kimyon,^b Nripendra Nath Biswas,^a Christopher R. Gardner,^a Renate Griffith,^c Scott A. Rice,^{d, e} Mike Manefield,^b Mark Willcox,^f David StC. Black^a and Naresh Kumar^a*

- a. School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
- b. School of Biotechnology and Biomolecular Sciences (BABS), UNSW Australia, Sydney, NSW 2052, Australia.
- c. School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
- d. Centre for Marine Biology, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
- e. The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore.
- f. School of Optometry and Vision Science, UNSW Australia, Sydney, NSW 2052, Australia

* Corresponding author

E-mail: n.kumar@unsw.edu.au* Tel: +61 29385 4698; Fax:+61 29385 6141.

Table of contents

•	¹ HNMR and ¹³ CNMR spectra of 1-phenylindoline-2,3-dione (10)	4
•	¹ HNMR and ¹³ CNMR spectra of 1-(4-methoxyphenyl) indoline-2,3-dione (11)	5
•	¹ HNMR and ¹³ CNMR spectra of 1-(3-fluorophenyl) indoline-2, 3-dione (12)	6
•	¹ HNMR and ¹³ CNMR spectra of 1-(4-fluorophenyl) indoline-2,3-dione (13)	7
•	¹ HNMR and ¹³ CNMR spectra of 1-(4-nitrophenyl) indoline-2, 3-dione (14)	8
•	¹ HNMR and ¹³ CNMR spectra of 1-(2,4-dinitrophenyl)indoline-2,3-dione (15)	9
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-(phenylamino) phenyl)-2-(pyrrolidin-1-yl) ethane-1,2- dione (16)	10
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-(phenylamino)phenyl)-2-(piperidin-1-yl)ethane-1,2- dione (17)	11
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((3-fluorophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (18)	13
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((4-fluorophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (19)	15
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((4-fluorophenyl)amino)phenyl)-2-(piperidin-1- yl)ethane-1,2-dione (20)	17
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((4-nitrophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (21)	19
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((4-methoxyphenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (22)	20
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((2,4-dinitrophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (23)	21
•	¹ HNMR and ¹³ CNMR spectra of 1-(2-((2,4-dinitrophenyl)amino)phenyl)-2-(piperidin-1-yl)ethane-1,2-dione (24)	23
•	¹ HNMR and ¹³ CNMR spectra of <i>N</i> -butyl-2-oxo-2-(2-(phenylamino)phenyl)acetamide (25)	24
•	¹ HNMR and ¹³ CNMR spectra of <i>N</i> -octyl-2-oxo-2-(2-(phenylamino)phenyl)acetamide (26)	25
•	¹ HNMR and ¹³ CNMR spectra of <i>N</i> -butyl-2-(2-((3-fluorophenyl)amino)phenyl)-2-oxoacetam (27)	ide 26
•	¹ HNMR and ¹³ CNMR spectra of <i>N</i> -butyl-2-(2-((4-methoxyphenyl)amino)phenyl)-2- oxoacetamide (28)	28
•	¹ HNMR and ¹³ CNMR spectra of <i>N</i> -butyl-2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetamide (29)	29

•	¹ HNMR and ¹³ CNMR spectra of 2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxo- <i>N</i> -pentylacetamide (30).	31
•	¹ HNMR and ¹³ CNMR spectra of Ethyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetyl)glycinate(31)	32
•	¹ HNMR and ¹³ CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetyl)-L-alaninate (32)	33
•	¹ HNMR and ¹³ CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetyl)-L-valinate (33)	34
•	¹ HNMR and ¹³ CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetyl)-L-leucinate (34)	35
•	¹ HNMR and ¹³ CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetyl)-L-phenylalaninate (35)	37
•	¹ HNMR and ¹³ CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2- oxoacetyl)-L-tryptophanate (36)	38
•	Table 1: Growth inhibition by the synthesized compounds against the PAMH602 and <i>E. col</i> . MT102 strains at three different concentrations.	i 39

NMR Spectra

<u>1-phenylindoline-2,3-dione (10)</u>

¹HNMR and ¹³CNMR spectra of 1-(3-fluorophenyl) indoline-2, 3-dione (12)

¹HNMR and ¹³CNMR spectra of 1-(2-(phenylamino) phenyl)-2-(pyrrolidin-1-yl) ethane-1,2dione (16)

¹HNMR and ¹³CNMR spectra of 1-(2-(phenylamino)phenyl)-2-(piperidin-1-yl)ethane-1,2-dione (17)

¹HNMR and ¹³CNMR spectra of 1-(2-((3-fluorophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (18)

¹HNMR and ¹³CNMR spectra of 1-(2-((4-fluorophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (19)

¹HNMR and ¹³CNMR spectra of 1-(2-((4-fluorophenyl)amino)phenyl)-2-(piperidin-1-yl)ethane-1,2-dione (**20**)

¹HNMR and ¹³CNMR spectra of 1-(2-((4-nitrophenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (**21**)

<u>¹HNMR and ¹³CNMR spectra of 1-(2-((4-methoxyphenyl)amino)phenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (22)</u>

¹HNMR and ¹³CNMR spectra of 1-(2-((2,4-dinitrophenyl)amino)phenyl)-2-(pyrrolidin-1yl)ethane-1,2-dione (**23**)

<u>¹HNMR and ¹³CNMR spectra of 1-(2-((2,4-dinitrophenyl)amino)phenyl)-2-(piperidin-1-yl)ethane-1,2-dione (24)</u>

¹HNMR and ¹³CNMR spectra of *N*-octyl-2-oxo-2-(2-(phenylamino)phenyl)acetamide (26)

¹HNMR and ¹³CNMR spectra of *N*-butyl-2-(2-((3-fluorophenyl)amino)phenyl)-2-oxoacetamide (27)

¹HNMR and ¹³CNMR spectra of *N*-butyl-2-(2-((4-methoxyphenyl)amino)phenyl)-2oxoacetamide (**28**)

¹HNMR and ¹³CNMR spectra of *N*-butyl-2-(2-((2,4-dinitrophenyl)amino)phenyl)-2oxoacetamide (**29**)

¹HNMR and ¹³CNMR spectra of 2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxo-*N*-pentylacetamide (**30**)

¹HNMR and ¹³CNMR spectra of Ethyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2oxoacetyl)glycinate(**31**)

<u>¹HNMR and ¹³CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxoacetyl)-</u> L-alaninate (**32**)

<u>¹HNMR and ¹³CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxoacetyl)-</u> L-valinate (**33**)

<u>¹HNMR and ¹³CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxoacetyl)-</u> <u>L-leucinate (34)</u>

<u>¹HNMR and ¹³CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxoacetyl)-</u> L-phenylalaninate (**35**)

<u>¹HNMR and ¹³CNMR spectra of Methyl (2-(2-((2,4-dinitrophenyl)amino)phenyl)-2-oxoacetyl)-</u> L-tryptophanate (**36**)

Optical Density (OD) Measurements

	PAMH602			E. coli MT102				
Compound	Concentration (µM)							
	250	125	62.5	250	125	62.5		
16	0	0	0	4.6±8.2	2.8±1.1	0		
17	0	0	0	14.9±1.3	4.2±0.3	1.7±0.2		
18	1.3±1.2	0	0	17.2±5.2	4±0.7	0		
19	0	0	0	14.8±6.8	4±0.6	0		
20	0	0	0	17.8±6.0	8.1±1.8	0		
21	0	0	0	20.6±3.7	18.6±2.5	12.1±1.2		
22	0	0	0	15.4±5.8	0	5.6±1.0		
23	0	0	0	20.6±3.7	18.6±2.5	12.1±1.2		
24	0	0	0	8.9±2.1	0	0		
25	0	0	0	3.6±5.7	0	0		
26	0.1±0.9	0	0	12.7±3.4	0	0		
27	8.3±3.0	5.2±2.5	0	17.2±5.2	4.0±0.7	0		
28	0	0	0	5.1±2.1	0	0		
29	0	0	0	19.3±3.5	19.5±1.1	11±0.9		
30	0	0	0	17.9±2.1	13.2±1.5	9.8±0.8		
31	0	0	0	18.1±2.3	1.6±0.7	-1.6±0.6		
32	0	0	0	22.5±1.4	0.6±0.4	0		
33	0	0	0	37±2.4	9.9±2.4	6.1±0.8		
34	3.3±2.6	0.8±1.6	0	26.1±6.7	5.2±0.8	0		
35	0	0	0	12.2±4.4	0	0		
36	1.2±2.2	0	0	26.4±1.1	2.3±1.5	0		
Fu-30	51.9±0.2	36.9±1.6	4.3±0.6	98.8±11.7	99.7±0.3	75.6±0.5		

Table 1: Growth inhibition by the synthesized compounds against the PAMH602 and *E. coli* MT102 strains at three different concentrations.

Growth inhibition \pm standard deviation of mean from at least two independent experiments. Compounds tested thrice in triplicate. 0 = No growth inhibition.