Supporting Information

Synthesis of α-diazo-β-keto esters, phosphonates and sulfones via acylbenzotriazole-mediated acylation of diazomethyl anion Mukund M. D. Pramanik,^{a, b} and Namrata Rastogi^{*, a, b}

^aMedicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India ^bAcademy of Scientific and Innovative Research, New Delhi 110001, India

* Corresponding author. e-mail: namrata.rastogi@cdri.res.in

Table of Contents

Entry	Description	Page No.
1.	Experimental Section	4-14
2.	References	14
3.	Figure 1: ¹ H NMR spectrum of 1 i	15
4.	Figure 2: ¹³ C NMR spectrum of 1i	15
5.	Figure 3: ¹ H NMR spectrum of 1 l	16
6.	Figure 4: ¹³ C NMR spectrum of 1	16
7.	Figure 5: ¹ H NMR spectrum of 3a	17
8.	Figure 6: ¹³ C NMR spectrum of 3a	17
9.	Figure 7: ³¹ P NMR spectrum of 3a	18
10.	Figure 8: ¹ H NMR spectrum of 3b	18
11.	Figure 9: ¹³ C NMR spectrum of 3b	19
12.	Figure 10: ³¹ P NMR spectrum of 3b	19
13.	Figure 11: ¹ H NMR spectrum of 3c	20
14.	Figure 12: ¹³ C NMR spectrum of 3c	20
15.	Figure 13: ³¹ P NMR spectrum of 3c	21
16.	Figure 14: ¹ H NMR spectrum of 3d	21
17.	Figure 15: ¹³ C NMR spectrum of 3d	22
18.	Figure 16: ³¹ P NMR spectrum of 3d	22
19.	Figure 17: ¹ H NMR spectrum of 3e	23
20.	Figure 18: ¹³ C NMR spectrum of 3e	23
21.	Figure 19: ³¹ P NMR spectrum of 3e	24
22.	Figure 20: ¹ H NMR spectrum of 3f	24
23.	Figure 21: ¹³ C NMR spectrum of 3f	25
24.	Figure 22: ³¹ P NMR spectrum of 3f	25
25.	Figure 23: ¹ H NMR spectrum of 3g	26
26.	Figure 24: ¹³ C NMR spectrum of 3g	26
27.	Figure 25: ³¹ P NMR spectrum of 3g	27
28.	Figure 26: ¹ H NMR spectrum of 3h	27
29.	Figure 27: ¹³ C NMR spectrum of 3h	28
30.	Figure 28: ³¹ P NMR spectrum of 3h	28
31.	Figure 29: ¹ H NMR spectrum of 3i	29
32.	Figure 30: ¹³ C NMR spectrum of 3i	29
33.	Figure 31: ³¹ P NMR spectrum of 3i	30
34.	Figure 32: ¹ H NMR spectrum of 3 j	30
35.	Figure 33: ¹³ C NMR spectrum of 3 j	31
36.	Figure 34: ³¹ P NMR spectrum of 3 j	31
37.	Figure 35: ¹ H NMR spectrum of 3k	32

38.	Figure 36: ¹³ C NMR spectrum of 3k	32
39.	Figure 37: ³¹ P NMR spectrum of 3k	33
40.	Figure 38: ¹ H NMR spectrum of 3	33
41.	Figure 39: ¹³ C NMR spectrum of 3	34
42.	Figure 40: ³¹ P NMR spectrum of 3	34
43.	Figure 41: ¹ H NMR spectrum of 3m	35
44.	Figure 42: ¹³ C NMR spectrum of 3m	35
45.	Figure 43: ³¹ P NMR spectrum of 3m	36
46.	Figure 44: ¹ H NMR spectrum of 3n	36
47.	Figure 45: ¹³ C NMR spectrum of 3n	37
48.	Figure 46: ³¹ P NMR spectrum of 3n	37
49.	Figure 47: ¹ H NMR spectrum of 30	38
50.	Figure 48: ¹³ C NMR spectrum of 30	38
51.	Figure 49: ³¹ P NMR spectrum of 30	39
52.	Figure 50: ¹ H NMR spectrum of 5a	39
53.	Figure 51: ¹³ C NMR spectrum of 5a	40
54.	Figure 52: ¹ H NMR spectrum of 5b	40
55.	Figure 53: ¹³ C NMR spectrum of 5b	41
56.	Figure 54: ¹ H NMR spectrum of 5c	41
57.	Figure 55: ¹³ C NMR spectrum of 5 c	42
58.	Figure 56: ¹ H NMR spectrum of 5e	42
59.	Figure 57: ¹³ C NMR spectrum of 5 e	43
60.	Figure 58: ¹ H NMR spectrum of 5 f	43
61.	Figure 59: ¹³ C NMR spectrum of 5 f	44
62.	Figure 60: ¹ H NMR spectrum of 5g	44
63.	Figure 61: ¹³ C NMR spectrum of 5 g	45
64.	Figure 62: ¹ H NMR spectrum of 5h	45
<u>65.</u>	Figure 63: ¹³ C NMR spectrum of 5h	46
<u> </u>	Figure 64: ¹ H NMR spectrum of 5j	46
<u>0</u> 7.	Figure 65: ¹³ C NMR spectrum of 5j	47
0ð.	Figure 66: "H NMR spectrum of $5k$	4/
09.	Figure 67: ^C C NMR spectrum of 5 k	48
70.	Figure 68: H NMR spectrum of 51	40
71.	Figure 69: C NMR spectrum of 5	49
72.	Figure 70: H NMR spectrum of 5m	4 <i>9</i> 50
73.	Figure 71: C NMR spectrum of 7	50
75	Figure 72: ¹ H NMR spectrum of 7b	51
76	Figure 74: ¹ H NMR spectrum of 7 0	51
70.	Figure 75: ¹ H NMR spectrum of 7f	52
78.	Figure 76: ¹ H NMR spectrum of 7i	52
79.	Figure 77: ¹ H NMR spectrum of 9 a	53
80.	Figure 78: 13 C NMR spectrum of 9	53
<u>81.</u>	Figure 79: ³¹ P NMR spectrum of 9a	54
82.	Figure 80: ¹ H NMR spectrum of 9h	54
83.	Figure 81: ¹³ C NMR spectrum of 9h	55
84.	Figure 82: ³¹ P NMR spectrum of 9h	55
85.	Figure 83: ¹ H NMR spectrum of 9 c	56
86.	Figure 84: ¹³ C NMR spectrum of 9c	56
		1

87.	Figure 85: ³¹ P NMR spectrum of 9c	57
88.	Figure 86: ¹ H NMR spectrum of 9d	57
89.	Figure 87: ¹³ C NMR spectrum of 9d	58
90.	Figure 88: ³¹ P NMR spectrum of 9d	58
91.	Figure 89: ¹ H NMR spectrum of 9e	59
92.	Figure 90: ¹³ C NMR spectrum of 9e	59
93.	Figure 91: ³¹ P NMR spectrum of 9e	60
94.	Figure 92: ¹ H NMR spectrum of 9f	60
95.	Figure 93: ¹³ C NMR spectrum of 9f	61
96.	Figure 94: ³¹ P NMR spectrum of 9f	61
97.	Figure 95: ¹ H NMR spectrum of 9g	62
9 8.	Figure 96: ¹³ C NMR spectrum of 9g	62
99.	Figure 97: ³¹ P NMR spectrum of 9g	63

Experimental Section

General experimental information

All reactions were monitored by TLC, visualization was effected with UV and/or by developing in iodine. Chromatography refers to open column chromatography on silica gel (Merck, 100-200 mesh). Melting points were recorded on a Precision melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer's RX I FTIR spectrophotometer. NMR spectra were recorded on a Brucker Avance spectrometer at 400 or 500 MHz (¹H), 100 or 125 MHz (¹³C), and 162 MHz (³¹P). Chemical shifts are reported in δ (ppm) relative to TMS as the internal standard for ¹H and ¹³C and phosphoric acid as the external standard for ³¹P. The ¹³C and ³¹P spectra were proton decoupled and in case of ¹H NMR, the standard abbreviations such as s, d, t, q, m, dd referring to singlet, doublet, triplet, quartet, multiplet and doublet of doublet respectively, are used to describe spin multiplicity. The coupling constants (*J*) are given in Hz. The ESI-HRMS spectra were recorded on Agilent 6520- Q-TofLC/MS system.

Since diazo compounds are potentially hazardous (toxic and explosive), all the reactions were performed in fume hood with proper safety measures. All reactions were conducted in oven-dried glass wares under Nitrogen. THF was dried over sodium benzophenone ketyl. All other solvents and reagents were used as obtained from commercial sources. EDA, DAMP and diazomethylphenylsulfone were prepared according to the standard protocols.¹ Acyl benzotriazoles were prepared from corresponding carboxylic acids following the literature procedure.² The spectroscopic data for novel acyl benzotriazoles (**1i & 1l**) is provided below.

General procedure for the DBU catalyzed acylation of diazo compounds with acyl benzotriazoles 1

To a stirred solution of acyl benzotriazole 1 (1.1 mmol) in dry MeCN (5 mL) was added the diazo substrate (1.0 mmol) followed by DBU (0.5 - 1.0 mmol, see tables 2, 3, 4) and the reaction mixture was stirred at room temperature for 10 min. to 2 hours (see Tables 2, 3, 4). Acetonitrile was distilled off under reduced pressure and crude residue was directly subjected to column chromatograpy on silica gel using hexane/ethyl acetate as eluent to afford the pure product 3/5/9.

General procedure for the LDA catalyzed acylation of EDA 6 with acyl benzotriazoles 1 To diisopropylamine (1.5 mmol, 0.2 mL) in anhydrous THF (5 mL) was added n-BuLi (1.4 mmol, 0.9 mL, 1.6 M in hexane) dropwise at -78 °C to generate LDA. The mixture was stirred for 30 minutes followed by dropwise addition of EDA **6** (1 mmol, 114 mg) dissolved in 1 mL of THF. After stirring for another 30 minutes the acyl benzotriazole **1**(1.1 mmol) dissolved in 1 mL THF was added into the reaction mixture in one portion. The reaction mixture was stirred at -78 $^{\circ}$ C for 1h before gradually warming it to the room temperature. The reaction was quenched by saturated solution of NH₄Cl (aq.) upon completion (TLC monitoring). The reaction mixture was extracted with ethyl acetate (15 mL x 3) and the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The crude mixture was subjected to column chromatograpy on silica gel using hexane/ethyl acetate as eluent to afford the pure product **7**.

(1H-benzo[d][1,2,3]triazol-1-yl)(2-(phenylethynyl)phenyl)methanone (1i). Colourless solid (243 mg, 75%), Mp 118-120 °C. R_f 0.50 (30% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.32 (m, 2H), 8.01 – 8.04 (m, 2H), 7.67 – 7.69 (m, 2H), 7.58 – 7.64 (m, 2H), 7.39 – 7.52 (m, 2H), 7.07 – 7.11 (m, 2H), 6.99 – 7.03 (m, 2H), 6.83 – 6.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3 (CO), 146.2 (C_{Ar}), 135.2 (C_{Ar}), 132.8 (C_{Ar}H), 131.7 (C_{Ar}H), 131.6 (C_{Ar}), 131.4 (C_{Ar}H x 2), 130.5 (C_{Ar}H), 129.6 (C_{Ar}H), 128.6 (C_{Ar}H), 128.1 (C_{Ar}H x 2), 128.0 (C_{Ar}H), 126.4 (C_{Ar}H), 123.4 (C_{Ar}), 122.2 (C_{Ar}), 120.3 (C_{Ar}H), 114.3 (C_{Ar}H), 94.6 (C=C), 86.2 (C=C); HRMS for C₂₁H₁₃N₃O: calcd. (M + Na⁺): 346.0951, found: 346.0957.

(1H-benzo[d][1,2,3]triazol-1-yl)(quinolin-2-yl)methanone (1l). Brown solid (219 mg, 80%), Mp 120-123 °C, R_f 0.50 (50% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.37 (m, 2H), 8.20 (d, J = 6.8 Hz, 1H), 8.12 (d, J = 6.6 Hz, 1H), 8.04 (d, J = 6.7 Hz, 1H), 7.89 (d, J = 6.5 Hz, 1H), 7.75 – 7.78 (m, 1H), 7.62 – 7.70 (m, 2H), 7.50 – 7.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7 (CO), 150.0 (C_{Ar}), 147.5 (C_{Ar}), 145.9 (C_{Ar}), 137.1 (C_{Ar}H), 132.1 (C_{Ar}), 130.7 (C_{Ar}H), 130.6 (C_{Ar}H), 130.5 (C_{Ar}H), 129.2 (C_{Ar}), 129.0 (C_{Ar}H), 127.7 (C_{Ar}H), 126.6 (C_{Ar}H), 121.6 (C_{Ar}H), 120.4 (C_{Ar}H), 114.6 (C_{Ar}H); **HRMS** for C₁₆H₁₀N₄O: calcd. (MH⁺): 275.0927, found: 275.0930.

Dimethyl 1-diazo-2-oxo-2-phenylethylphosphonate (**3a**).³ Yellow viscous liquid (219 mg, 86%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1039, 1216, 1279, 1390, 1636, 2117, 3016; ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.58 (m, 2H), 7.43 – 7.48 (m, 1H), 7.35 – 7.39 (m, 2H), 3.73 (d, ³*J*_{H-P} = 11.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 187.4 (d, ²*J*_{C-P} = 9.2 Hz, C_{Ar}), 136.7 (d, ³*J*_{C-P} = 2.9 Hz, C_{Ar}), 132.5 (C_{Ar}H), 128.7 (C_{Ar}H x 2), 127.3 (C_{Ar}H x 2), 62.9 (d, ¹*J*_{C-P} = 217.4 Hz, CN₂), 54.0 (d, ²*J*_{C-P} = 5.9 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 13.82; **HRMS** for C₁₀H₁₁N₂O₄P: calcd. (MH⁺): 255.0529, found: 255.0522.

Dimethyl 1-diazo-2-(4-methoxyphenyl)-2-oxoethylphosphonate (3b). Yellow viscous liquid (244 mg, 86%). R_f 0.50 (70% EtOAc/hexane); **IR** (film, cm⁻¹): 1035, 1217, 1260, 1409, 1511, 1605, 2113, 3016; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.78 (d, ${}^{3}J_{\text{H-P}} = 12.0$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 185.8 (d, ${}^{2}J_{\text{C-P}} = 9.3$ Hz, CO), 163.1 (C_{Ar}H), 129.8 (C_{Ar}H x 2), 129.3 (d, ${}^{3}J_{\text{C-P}} = 2.7$ Hz, C_{Ar}), 113.8 (C_{Ar}H x 2), 62.1 (d, ${}^{1}J_{\text{C-P}} = 217.1$ Hz, CN₂), 55.5 (OCH₃), 54.0 (d, ${}^{2}J_{\text{C-P}} = 5.9$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 14.02; HRMS for C₁₁H₁₃N₂O₅P: calcd. (MH⁺): 285.0635, found: 285.0632.

Dimethyl 1-diazo-2-(4-nitrophenyl)-2-oxoethylphosphonate (**3c**). Light yellow solid (260 mg, 87%), Mp 78-80 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1043, 1218, 1277, 1400, 1529, 1639, 2122; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.9 Hz, 2H), 7.77 (d, J = 8.9 Hz, 2H), 3.74 (d, ${}^{3}J_{\text{H-P}} = 11.9$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 185.6 (d, ${}^{2}J_{\text{C-P}} = 10.9$ Hz, CO), 149.6 (C_{Ar}), 142.0 (C_{Ar}), 128.4 (C_{Ar}H x 2), 123.6 (C_{Ar}H x 2), 65.0 (d, ${}^{1}J_{\text{C-P}} = 217.6$ Hz, CN₂), 54.0 (d, $J_{\text{C-P}} = 5.8$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 12.45; **HRMS** for C₁₀H₁₀N₃O₆P: calcd. (MH⁺): 300.0380, found: 300.0379.

Dimethyl 2-(2-bromophenyl)1-diazo-2-oxoethylphosphonate (3d). Colorless solid (283 mg, 85%), Mp 78-80 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1039, 1216, 1297, 1389, 1643, 2125, 3016; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.9 Hz, 1H), 7.22 – 7.33 (m, 3H), 3.75 (d, ${}^{3}J_{\text{H-P}} = 12.0$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0 (d, ${}^{2}J_{\text{C-P}} = 9.4$ Hz, CO), 138.8 (d, ${}^{3}J_{\text{C-P}} = 3.3$ Hz, C_{Ar})133.2 (C_{Ar}H), 131.9 (C_{Ar}H), 128.1 (C_{Ar}H), 127.6 (C_{Ar}H), 118.5 (C_{Ar}), 54.1 (d, ${}^{2}J_{\text{C-P}} = 5.9$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 11.97; **HRMS** for C₁₀H₁₀BrN₂O₄P: calcd. (MH⁺): 332.9634, found: 332.9634.

Dimethyl 2-(4-bromophenyl)-1-diazo-2-oxoethylphosphonate (3e). Yellow viscous liquid (293 mg, 88%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1039, 1216, 1395, 1590, 1634, 2117; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.54 (m, 4H), 3.74 (d, ³ $J_{\text{H-P}}$ = 11.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.2 (d, ² $J_{\text{C-P}}$ = 9.9 Hz, CO), 135.5 (C_{Ar}), 131.9 (C_{Ar}H x 2), 129.0 (C_{Ar}H x 2), 127.3 (C_{Ar}), 63.6 (d, ¹ $J_{\text{C-P}}$ = 217.7 Hz, CN₂), 54.0 (d, ² $J_{\text{C-P}}$ = 5.8 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 13.39; **HRMS** for C₁₀H₁₀BrN₂O₄P: calcd. (MH⁺): 332.9634, found: 332.9624.

Dimethyl 2-(4-chlorophenyl)-1-diazo-2-oxoethylphosphonate (3f). Yellow viscous liquid (263 mg, 91%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1040, 1217, 1400, 1635, 2117; ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.59 (m, 2H), 7.35 – 7.38 (m, 2H), 3.75 (d, ³J_{H-P} = 11.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.0 (d, ²J_{C-P} = 9.8 Hz, CO), 138.8 (C_{Ar}), 135.0 (C_{Ar}), 128.9 (C_{Ar}H x 4), 63.5 (d, ¹J_{C-P} = 217.3 Hz, CN₂), 54.0 (d, ²J_{C-P} = 5.9 Hz,

{PO}OCH₃ x 2); ³¹**P** NMR (161.9 MHz, CDCl₃) δ 13.40; HRMS for C₁₀H₁₀ClN₂O₄P: calcd. (MH⁺): 289.0139, found: 289.0139.

Dimethyl 1-diazo-2-(2-fluorophenyl)-2-oxoethylphosphonate (3g). Yellow viscous liquid (223 mg, 82%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1057, 1218, 1264, 1310, 1403, 1637, 2126; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.46 (m, 2H), 7.17 – 7.20 (m, 1H), 7.06 – 7.10 (m, 1H), 3.78 (d, ³J_{H-P} = 12.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 183.7 (d, ²J_{C-P} = 8.6 Hz, CO), 158.8 (d, J_{C-F} = 248.6 Hz, C_{Ar}), 133.6 (d, J_{C-F} = 8.3 Hz, C_{Ar}H), 129.6 (C_{Ar}H), 125.3 (d, J_{C-F} = 12.7 Hz, C_{Ar}), 124.8 (C_{Ar}H), 116.1 (d, J_{C-F} = 21.7 Hz, C_{Ar}H), 64.9 (d, ¹J_{C-P} = 217.2 Hz, CN₂), 54.0 (d, J_{C-P} = 5.7 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 12.73; **HRMS** for C₁₀H₁₀FN₂O₄P: calcd. (MH⁺): 273.0435, found: 273.0436.

Dimethyl 1-diazo-2-oxo-2-(4-(trifluoromethyl)phenyl)ethylphosphonate (3h). Yellow viscous liquid (245 mg, 76%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1059, 1217, 1280, 1323, 1407, 1639, 2120, 3018; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 3.75 (d, ³J_{H-P} = 12.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.3 (d, ²J_{C-P} = 10.6 Hz, CO), 139.8 (C_{Ar}), 133.9 (d, ²J_{C-F} = 32.7 Hz, C_{Ar}), 125.7 (br q, CF₃), 127.8 (C_{Ar}H x 4), 64.2 (d, ¹J_{C-P} = 219.7 Hz, CN₂), 54.1 (d, ²J_{C-P} = 5.8 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 12.99; **HRMS** for C₁₁H₁₀F₃N₂O₄P: calcd. (MH⁺): 323.0403, found: 323.0405.

Dimethyl 1-diazo-2-oxo-2-(2-(phenylethynyl)phenyl)ethylphosphonate (3i). Yellow viscous liquid (291 mg, 82%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1059, 1219, 1380, 1639, 1718; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.54 (m, 9H), 3.74 (d, ³ $J_{\text{H-P}}$ = 12.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 187.9 (CO), 139.7 (C_{Ar}, ³ $J_{\text{C-P}}$ = 4.1 Hz), 132.7 (C_{Ar}H), 131.6 (C_{Ar}H x 2), 130.8 (C_{Ar}H), 129.0 (C_{Ar}H), 128.7 (C_{Ar}H), 128.5 (C_{Ar}H x 2), 127.3 (C_{Ar}H), 122.3 (C_{Ar}), 120.4 (C_{Ar}), 93.9 (C=C), 85.8 (C=C), 64.8 (d, ¹ $J_{\text{C-P}}$ = 213.4 Hz, CN₂), 54.1 (d, ² $J_{\text{C-P}}$ = 5.4 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 13.16; HRMS for C₁₈H₁₅N₂O₄P: calcd. (MH⁺): 355.0842, found: 355.0843.

Dimethyl 1-diazo-2-(furan-2-yl)-2-oxoethylphosphonate (3j). Yellow viscous liquid (195 mg, 80%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1068, 1156, 1216, 1385, 1638, 2127; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 0.9 Hz, 1H), 7.18 (d, J = 3.7 Hz, 1H), 6.50 (dd, J = 3.6 Hz, J = 1.7 Hz, 1H), 3.79 (d, ${}^{3}J_{\text{H-P}} = 12.1$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3 (d, ${}^{2}J_{\text{C-P}} = 8.2$ Hz, CO), 151.3 (d, ${}^{3}J_{\text{C-P}} = 5.1$ Hz, C_{fur}), 145.3 (C_{fur}H), 117.3 (C_{fur}H), 112.5 (C_{fur}H), 60.7 (d, ${}^{1}J_{\text{C-P}} = 218.9$ Hz, CN₂), 54.0 (d, $J_{\text{C-P}} = 5.9$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 14.24; HRMS for C₈H₉N₂O₅P: calcd. (MH⁺): 245.0322, found: 245.0314.

Dimethyl 1-diazo-2-(1H-indol-2-yl)-2-oxoethylphosphonate (3k). Yellow solid (258 mg, 88%), Mp 140-142 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1035, 1155, 1217, 1387, 1617, 2118; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.05 – 7.37 (m, 4H), 3.81 (d, ${}^{3}J_{\text{H-P}} = 12.0$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9 (d, ${}^{2}J_{\text{C-P}} = 10.5$ Hz, CO), 136.8 (C_{Ar}), 132.6 (C_{Ar}), 127.5 (C_{Ar}), 126.5 (C_{Ar}H), 123.2 (C_{Ar}H), 121.2 (C_{Ar}H), 112.1 (C_{Ar}H), 108.7 (C_{Ar}H), 54.1 (d, ${}^{2}J_{\text{C-P}} = 5.4$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 14.20; HRMS for C₁₂H₁₂N₃O₄P: calcd. (MH⁺): 294.0638, found: 294.0639.

Dimethyl 1-diazo-2-oxo-2-(quinolin-2-yl)ethylphosphonate (3l). Brown viscous liquid (250 mg, 82%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1039, 1149, 1216, 1332, 1388, 1634, 2130, 3016; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.5 Hz, 1H), 7.99 – 8.04 (m, 2H), 7.82 (d, J = 8.0 Hz, 1H), 7.70 – 7.74 (m, 1H), 7.58 – 7.62 (m, 1H), 3.85 (d, ³ $J_{\text{H-P}}$ = 12.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 183.3 (d, ² $J_{\text{C-P}}$ = 8.2 Hz, CO), 152.5 (d, ³ $J_{\text{C-P}}$ = 5.5 Hz, C_{Ar}), 146.2 (C_{Ar}), 137.5 (C_{Ar}H), 130.4 (C_{Ar}H), 129.7 (C_{Ar}H), 129.6 (C_{Ar}), 128.9 (C_{Ar}H), 127.8 (C_{Ar}H), 118.4 (C_{Ar}H), 61.9 (d, ¹ $J_{\text{C-P}}$ = 219.2 Hz, CN₂), 54.1 (d, ² $J_{\text{C-P}}$ = 5.8 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 12.99; HRMS for C₁₃H₁₂N₃O₄P: calcd. (MH⁺): 306.0638, found: 306.0643.

Dimethyl 2-cyclohexyl-1-diazo-2-oxoethylphosphonate (3m). Yellow viscous liquid (206 mg, 79%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1034, 1216, 1264, 1393, 1648, 2118, 2935; ¹H NMR (400 MHz, CDCl₃) δ 3.77 (d, ³ $J_{\text{H-P}}$ = 11.9 Hz, 6H), 2.58 – 2.64 (m, 1H), 1.61 – 1.79 (m, 5H), 1.34 – 1.43 (m, 2H), 1.13 – 1.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1 (d, ² $J_{\text{C-P}}$ = 12.7 Hz, CO), 62.0 (d, ¹ $J_{\text{C-P}}$ = 222.7 Hz, CN₂), 53.6 (d, ² $J_{\text{C-P}}$ = 5.6 Hz, {PO}OCH₃ x 2), 47.3 (CH), 28.8 (CH₂ x 2), 25.5 (CH₂), 25.4 (CH₂ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 14.57; **HRMS** for C₁₀H₁₇N₂O₄P: calcd. (MH⁺): 261.0999, found: 261.1001.

Dimethyl 1-diazo-2-oxo-3-phenylpropylphosphonate (**3n**). Light yellow viscous liquid (231 mg, 86%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1032, 1217, 1268, 1390, 1654, 2124, 3017; ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.26 (m, 5H), 3.79 (s, 2H), 3.69 (d, ${}^{3}J_{\text{H-P}} = 11.9$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 190.2 (d, ${}^{2}J_{\text{C-P}} = 13.2$ Hz, CO), 133.4 (C_{Ar}), 129.4 (C_{Ar}H x 2), 128.6 (C_{Ar}H x 2), 127.3 (C_{Ar}H), 63.5 (d, ${}^{1}J_{\text{C-P}} = 218.0$ Hz, CN₂), 53.6 (d, ${}^{2}J_{\text{C-P}} = 5.4$ Hz, {PO}OCH₃ x 2), 45.8 (CH₂); ³¹P NMR (161.9 MHz, CDCl₃) δ 13.92; HRMS for C₁₁H₁₃N₂O₄P: calcd. (MH⁺): 269.0686, found: 269.0691.

Dimethyl 1-diazo-3-(4-methoxyphenyl)-2-oxopropylphosphonate (30). Yellow viscous liquid (248 mg, 83%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1033, 1218, 1402, 1640, 2125; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H),

3.73 (s, 2H), 3.70 (d, ${}^{3}J_{\text{H-P}} = 12.0$ Hz, 6H), 3.71 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 190.6 (d, ${}^{2}J_{\text{C-P}} = 13.3$ Hz, CO), 158.8 (C_{Ar}), 130.5 (C_{Ar}H x 2), 125.3 (C_{Ar}), 114.1 (C_{Ar}H x 2), 63.2 (d, ${}^{1}J_{\text{C-P}} = 218.0$ Hz, CN₂), 55.3 (CH₃), 53.6 (d, ${}^{2}J_{\text{C-P}} = 5.5$ Hz, {PO}OCH₃ x 2), 44.9 (CH₂); 31 P NMR (161.9 MHz, CDCl₃) δ 14.02; HRMS for C₁₂H₁₅N₂O₅P: calcd. (MH⁺): 299.0791, found: 299.0790.

2-Diazo-1-phenyl-2-(phenylsulfonyl)ethanone (5a).⁴ Yellow solid (258 mg, 90%), Mp 128-130 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1025, 1069, 1156, 1215, 1385, 1645, 2109, 2400; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 8.00 (m, 2H), 7.57 – 7.61 (m, 1H), 7.47 – 7.51 (m, 5H), 7.35 – 7.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 182.6 (CO), 141.5 (C_{Ar}), 135.8 (C_{Ar}), 134.2 (C_{Ar}H), 133.1 (C_{Ar}H), 129.1 (C_{Ar}H x 2), 128.9 (C_{Ar}H x 2), 128.1 (C_{Ar}H x 2), 127.5 (C_{Ar}H x 2), 83.4 (CN₂); **HRMS** for C₁₄H₁₀N₂O₃S: calcd. (MH⁺): 287.0485, found: 284.0476.

2-Diazo-1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethanone (5b). Yellow solid (288 mg, 91%), Mp 85-87 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1075, 1159, 1216, 1261, 1338, 1406, 1602, 2106, 3022; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 8.00 (m, 2H), 7.56 – 7.60 (m, 1H), 7.46 – 7.52 (m, 4H), 6.84 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.2 (CO), 163.6 (C_{Ar}), 141.7 (C_{Ar}), 134.1 (C_{Ar}H), 129.9 (C_{Ar}H x 2), 129.1 (C_{Ar}H x 2), 128.4 (C_{Ar}), 128.1 (C_{Ar}H x 2), 114.1 (C_{Ar}H x 2), 82.5 (CN₂), 55.6 (CH₃); **HRMS** for C₁₅H₁₂N₂O₄S: calcd. (MH⁺): 317.0591, found: 317.0587.

2-Diazo-1-(4-nitrophenyl)-2-(phenylsulfonyl)ethanone (5c). Yellow solid (282 mg, 85%), Mp 148-150 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1083, 1152, 1216, 1340, 1404, 1586, 2116, 3022; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.51 (m, 2H), 7.59 – 7.63 (m, 3H), 7.88 (d, J = 7.6 Hz, 2H), 8.21 (d, J = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 181.3 (CO), 150.1 (C_{Ar}), 141.2 (C_{Ar}), 140.8 (C_{Ar}), 134.5 (C_{Ar}H), 129.4 (C_{Ar}H x 2), 128.7 (C_{Ar}H x 2), 128.0 (C_{Ar}H x 2), 124.0 (C_{Ar}H x 2), 85.2 (CN₂); **HRMS** for C₁₄H₉N₃O₅S: calcd. (MH⁺): 332.0336, found: 332.0333.

1-(4-Bromophenyl)-2-Diazo-2-(phenylsulfonyl)ethanone (5e). Yellow solid (340 mg, 93%), Mp 120-12 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1070, 1155, 1218, 1393, 1644, 2110; ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.96 (m, 2H), 7.57 – 7.61 (m, 1H), 7.47 – 7.53 (m, 4H), 7.34 – 7.37 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 181.6 (CO), 141.4 (C_{Ar}), 134.5 (C_{Ar}), 134.3 (C_{Ar}H), 132.2 (C_{Ar}H x 2), 129.2 (C_{Ar}H x 2), 129.0 (C_{Ar}H x 2), 128.1 (C_{Ar}H x 2), 128.0 (C_{Ar}), 83.8 (CN₂); **HRMS** for C₁₄H₉BrN₂O₃S: calcd. (MH⁺): 364.9590, found: 364.9589.

1-(4-Chlorophenyl)-2-Diazo-2-(phenylsulfonyl)ethanone (5f). Yellow solid (301 mg, 94%), Mp 125-128 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1083, 1155, 1216, 1327, 1642, 2111; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.4 Hz, 2H), 7.57 – 7.61 (m, 1H), 7.43 – 7.51 (m, 4H), 7.33 – 7.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 181.5 (CO), 141.4 (C_{Ar}), 139.5 (C_{Ar}), 134.3 (C_{Ar}H), 134.1 (C_{Ar}), 129.2 (C_{Ar}H x 4), 129.0 (C_{Ar}H x 2), 128.1 (C_{Ar}H x 2), 83.8 (CN₂); **HRMS** for C₁₄H₉ClN₂O₃S: calcd. (MH⁺): 321.0095, found: 321.0096.

2-Diazo-1-(2-fluorophenyl)-2-(phenylsulfonyl)ethanone (5g). Yellow solid (253 mg, 83%), Mp 85-87 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1088, 1122, 1158, 1216, 1341, 1643, 2119, 2403; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 2H), 7.58 – 7.61 (m, 1H), 7.38 – 7.51 (m, 4H), 7.14 – 7.19 (m, 1H), 7.01 – 7.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.9 (CO), 159.0 (d, $J_{C-F} = 249.8$ Hz, C_{Ar}), 141.3 (C_{Ar}), 134.4 (d, $J_{C-F} = 8.7$ Hz, C_{Ar} H), 134.3 (C_{Ar} H), 130.3 (C_{Ar} H), 129.2 (C_{Ar} H x 2), 128.1 (C_{Ar} H x 2), 125.1 (d, $J_{C-F} = 3.4$ Hz, C_{Ar} H), 124.4 (d, $J_{C-F} = 14.8$ Hz, C_{Ar}), 116.3 (d, $J_{C-F} = 21.8$ Hz, C_{Ar} H), 85.9 (CN₂); **HRMS** for $C_{14}H_9FN_2O_3S$: calcd. (MH⁺): 305.0391, found: 305.0373.

2-Diazo-2-(phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethanone (**5h**). Light yellow solid (280 mg, 79%), Mp 110-113 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1064, 1216, 1325, 1645, 2115, 3021; ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.93 (m, 2H), 7.57 – 7.64 (m, 5H), 7.47 – 7.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 181.8 (CO), 141.3 (C_{Ar}), 138.8 (C_{Ar}), 134.4 (C_{Ar}H), 134.3 (C_{Ar}), 129.3 (C_{Ar}H x 4), 128.1 (C_{Ar}H x 2), 127.9 (C_{Ar}H x 2), 125.9 (q merged into d, CF₃); **HRMS** for C₁₅H₉F₃N₂O₃S: calcd. (MH⁺): 355.0359, found: 355.0360.

2-Diazo-1-(furan-2-yl)-2-(phenylsulfonyl)ethanone (5j). Brown solid (218 mg, 79%), Mp 98-100 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1077, 1158, 1218, 1388, 1633, 2118, 3024; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 1H), 7.43 – 4.59 (m, 5H), 7.15 (d, J = 3.5 Hz, 1H), 6.48 (dd, J = 3.3 Hz, J = 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (CO), 151.0 (C_{Ar}), 145.3 (C_{Ar}H), 141.4 (C_{Ar}), 134.2 (C_{Ar}H), 129.1 (C_{Ar}H x 2), 128.3 (C_{Ar}H x 2), 118.0 (C_{Ar}H), 112.9 (C_{Ar}H), 81.7 (CN₂); **HRMS** for C₁₂H₈N₂O₄S: calcd. (MH⁺): 277.0278, found: 277.0278.

2-Diazo-1-(1H-indol-2-yl)-2-(phenylsulfonyl)ethanone (**5**k). Yellow solid (283 mg, 87%), Mp 152-154 °C. *R_f* 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1069, 1157, 1217, 1385, 1622, 2107; ¹H NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.06 (d, *J* = 7.7 Hz, 2H), 7.57 – 7.62 (m, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.34 (m, 2H), 7.09 (t, *J* = 7.3 Hz, 1H), 6.95 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6 (CO), 141.6 (C_{Ar}), 136.7 (C_{Ar}), 134.2 (C_{Ar}H),

131.9 (C_{Ar}), 129.2 (C_{Ar}H x 2), 128.2 (C_{Ar}H x 2), 127.3 (C_{Ar}), 126.9 (C_{Ar}H), 123.2 (C_{Ar}H), 121.6 (C_{Ar}H), 112.1 (C_{Ar}H), 108.3 (C_{Ar}H); **HRMS** for $C_{16}H_{11}N_3O_3S$: calcd. (MH⁺): 326.0594, found: 326.0590.

2-Diazo-2-(phenylsulfonyl)-1-(quinolin-2-yl)ethanone (5l). Yellow solid (293 mg, 87%), Mp 150-152 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1073, 1156, 1216, 1335, 1387, 1643, 2125, 3023; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.6 Hz, 1H), 8.13 (d, J = 7.4 Hz, 2H), 7.92 – 7.97 (m, 2H), 7.79 (d, J = 8.1 Hz, 1H), 7.69 – 7.73 (m, 1H), 7.56 – 7.61 (m, 2H), 7.49 – 7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8 (CO), 151.7 (C_{Ar}), 146.1 (C_{Ar}), 141.6 (C_{Ar}), 137.7 (C_{Ar}H), 134.0 (C_{Ar}H), 130.6 (C_{Ar}H), 129.7 (C_{Ar}), 129.5 (C_{Ar}H), 129.2 (C_{Ar}H), 129.0 (C_{Ar}H x 2), 128.4 (C_{Ar}H x 2), 127.9 (C_{Ar}H), 118.2 (C_{Ar}H), 83.1 (CN₂); **HRMS** for C₁₇H₁₁N₃O₃S: calcd. (MH⁺): 338.0594, found: 338.0594.

1-Cyclohexyl-2-diazo-2-(phenylsulfonyl)ethanone (5m). Yellow solid (257 mg, 88%), Mp 80-82 °C. R_f 0.50 (25% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1099, 1156, 1216, 1383, 1662, 2110, 2858; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.93 (m, 2H), 7.57 – 7.61 (m, 1H), 7.48 – 7.52 (m, 2H), 2.59 – 2.66 (m, 1H), 1.48 – 1.68 (m, 5H), 1.06 – 1.31 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8 (CO), 142.2 (C_{Ar}), 134.1 (C_{Ar}H), 129.4 (C_{Ar}H x 2), 127.4 (C_{Ar}H x 2), 84.2 (CN₂), 47.0 (CH), 28.5 (CH₂ x 2), 25.4 (CH₂ x 3); **HRMS** for C₁₄H₁₆N₂O₃S: calcd. (MH⁺): 293.0954, found: 293.0938.

Ethyl 2-diazo-3-oxo-3-phenylpropanoate (7a).⁵ Yellow oil (135 mg, 62%), R_f 0.50 (30% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.57 (m, 2H), 7.43 – 7.48 (m, 1H), 7.33 – 7.37 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H); HRMS for $C_{11}H_{10}N_2O_3$: calcd. (MH⁺): 219.0764, found: 219.0752.

Ethyl 2-diazo-3-(4-methoxyphenyl)-3-oxopropanoate (7b).⁶ Yellow oil (188 mg, 76%), $R_f 0.50 (30\% \text{ EtOAc/hexane}); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 7.57 - 7.61 (m, 2H), 6.83 - 6.86 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H);$ **HRMS**for C₁₂H₁₂N₂O₄: calcd. (MH⁺): 249.0870, found: 249.0871.

Ethyl 3-(4-bromophenyl)-2-diazo-3-oxopropanoate (7e).⁷ Yellow oil (196 mg, 66%), R_f 0.50 (30% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.51 (m, 2H), 7.42 – 7.45 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H); HRMS for C₁₁H₉BrN₂O₃: calcd. (MH⁺): 296.9869, found: 296.9868.

Ethyl 3-(4-chlorophenyl)-2-diazo-3-oxopropanoate (7f).⁸ Yellow oil (173 mg, 69%), R_f 0.50 (30% EtOAc/hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.51 (m, 2H), 7.42 – 7.45 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H); **HRMS** for C₁₁H₉ClN₂O₃: calcd. (MH⁺): 253.0374, found: 253.0374.

Ethyl 2-diazo-3-(furan-2-yl)-3-oxopropanoate (7j).⁵ Yellow oil (124 mg, 60%), R_f 0.50 (30% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 0.6 Hz, J = 1.6 Hz, 1H), 7.43 (dd, J = 0.6 Hz, J = 3.6 Hz, 1H), 6.49 (dd, J = 1.7 Hz, J = 3.6 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H); HRMS for C₉H₈N₂O₄: calcd. (MH⁺): 209.0557, found: 209.0558.

Dimethyl 5-chloro-2-(2-diazoacetyl)phenylphosphoramidate (9a). Colorless solid (176 mg, 58%), Mp 100-102 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1024, 1225, 1294, 1499, 1581, 2112, 3067; ¹H NMR (400 MHz, CDCl₃) δ 10.00 (d, ² $J_{\text{H-P}}$ = 10.2 Hz, 1H), 7.42 (d, J = 1.9 Hz, 1H), 7.23 (dd, J = 1.6 Hz, J = 8.6 Hz, 1H), 6.84 (dd, J = 2.0 Hz, J = 8.6 Hz, 1H), 5.81 (s, 1H), 3.74 (d, ³ $J_{\text{H-P}}$ = 11.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2 (CO), 143.6 (C_{Ar}), 140.4 (C_{Ar}), 129.3 (C_{Ar}H), 120.8 (C_{Ar}H), 118.7 (d, ² $J_{\text{C-P}}$ = 7.2 Hz, C_{Ar}), 118.6 (C_{Ar}H), 55.9 (CN₂), 53.7 (d, ² $J_{\text{C-P}}$ = 4.4 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 3.04; **HRMS** for C₁₀H₁₁ClNO₄P (cyclised product after N₂ elimination): calcd. (MH⁺): 276.0187, found: 276.0199.

Selected X-Ray Crystallographic data for **9a**, $C_{10}H_{11}ClN_3O_4P : M = 303.64$, Triclinic, *P*1, *a* = 5.927(5) Å, *b* = 8.999(5)Å, *c* = 13.598(5)Å, *V* = 685.6(7)Å³, *a* = 106.549(5)°, *β* = 97.092(5)°, $\gamma = 94.090(5)°, Z = 2, D_c = 1.471$ g cm⁻³, μ (Mo-K α) = 0.408 mm⁻¹, *F*(000) = 312, Reflections Collected/unique = 8330/2555 observed = 1509 [*R*(int) = 0.050]. Final R indices [*I*>2 σ (*I*)], *R*1 = 0.0565, wR₂ = 0.1463 S = 1.04.

Dimethyl 2-(2-diazoacetyl)phenylphosphoramidate (9b). Brown solid (124 mg, 46%), Mp 90-92 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1042, 1299, 1359, 1586, 2111, 3020; ¹**H NMR** (400 MHz, CDCl₃) δ 9.88 (d, ² $J_{\text{H-P}}$ = 10.6 Hz, 1H), 7.30 – 7.41 (m, 3H), 6.85 – 6.89 (m, 1H), 5.85 (s, 1H), 3.73 (d, ³ $J_{\text{H-P}}$ = 11.5 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 189.2 (CO), 142.2 (C_{Ar}), 134.3 (C_{Ar}H), 128.3 (C_{Ar}H), 120.5 (C_{Ar}H), 120.4 (C_{Ar}), 118.7 (C_{Ar}H), 55.8 (CN₂), 53.6 (d, ² $J_{\text{C-P}}$ = 5.0 Hz, {PO}OCH₃ x 2); ³¹**P NMR** (161.9 MHz, CDCl₃) δ 3.84; **HRMS** for C₁₀H₁₂NO₄P (cyclised product after N₂ elimination): calcd. (MH⁺): 242.0577, found: 242.2575.

Dimethyl 2-(2-diazoacetyl)-6-methylphenylphosphoramidate (**9c**). Brown solid (156 mg, 55%), Mp 112-115 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1046, 1216, 1353, 1406, 1599, 2109, 3019; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (br s, 1H), 7.25 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 6.94 (t, J = 7.7 Hz, 1H), 5.74 (s, 1H), 3.70 (d, ${}^{3}J_{\text{H-P}} = 11.4$ Hz, 6H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1 (CO), 138.4 (C_{Ar}), 135.9 (C_{Ar}H), 134.2 (C_{Ar}), 128.4 (C_{Ar}), 125.7 (C_{Ar}H), 123.4 (C_{Ar}H), 56.6 (CN₂), 53.7 (d, ${}^{2}J_{\text{C-P}} = 6.0$ Hz,

{PO}OCH₃ x 2), 19.4 (CH₃); ³¹**P** NMR (161.9 MHz, CDCl₃) δ 3.04; **HRMS** for C₁₁H₁₄NO₄P (cyclised product after N₂ elimination): calcd. (MH⁺): 256.0733, found: 256.0725.

Dimethyl 2-(2-diazoacetyl)-4,5-dimethoxyphenylphosphoramidate (9d). Colorless solid (224 mg, 68%), Mp 130-132 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1039, 1156, 1215, 1272, 1378, 1524, 1627, 2109, 3020; ¹H NMR (400 MHz, CDCl₃) δ 10.14 (d, ² $J_{\text{H-P}}$ = 10.0 Hz, 1H), 7.09 (s, 1H), 6.70 (d, J = 1.0 Hz, 1H), 5.75 (s, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 3.72 (d, ³ $J_{\text{H-P}}$ = 11.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 187.7 (CO), 154.8 (C_{Ar}), 142.9 (C_{Ar}), 139.0 (C_{Ar}), 112.3 (d, ² $J_{\text{C-P}}$ = 8.9 Hz, C_{Ar}), 110.8 (C_{Ar}H), 101.7 (C_{Ar}H), 56.7 (OCH₃), 56.1 (OCH₃), 55.0 (CN₂), 53.7 (d, ² $J_{\text{C-P}}$ = 5.5 Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 4.04; **HRMS** for C₁₂H₁₆NO₆P (cyclised product after N₂ elimination): calcd. (MH⁺): 302.0788, found: 302.0791.

Dimethyl 2,4-dibromo-6-(2-diazoacetyl)phenylphosphoramidate (9e). Colorless solid (278 mg, 65%), Mp 146-148 °C. R_f 0.50 (70% EtOAc/hexane); **IR** (KBr, cm⁻¹): 1054, 1152, 1217, 1291, 1385, 1638, 1717, 3019; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 2.3 Hz, J = 0.5 Hz, 1H), 7.43 (dd, J = 2.2 Hz, J = 0.8 Hz, 1H), 6.91 (br s, 1H), 5.71 (s, 1H), 3.72 (d, ³ $J_{\text{H-P}} = 11.6$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (CO), 138.8 (C_{Ar}), 130.2 (C_{Ar}H x 2), 126.3 (C_{Ar}), 121.7 (C_{Ar}), 117.3 (C_{Ar}), 57.4 (CN₂), 54.0 (d, ² $J_{\text{C-P}} = 5.9$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 4.05; HRMS for C₁₀H₁₀Br₂NO₄P (cyclised product after N₂ elimination): calcd. (MH⁺): 397.8787, found: 397.8784.

Dimethyl 2-(2-diazoacetyl)-3-fluorophenylphosphoramidate (9f). Brown viscous liquid (135 mg, 47%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1047, 1218, 1399, 1638, 2112; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (d, J = 9.5 Hz, 1H), 7.17 – 7.29 (m, 2H), 6.58 – 6.63 (m, 1H), 6.03 (s, 1H), 3.73 (d, ³ $J_{\text{H-P}} = 11.5$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 185.8 (CO), 162.4 (d, ¹ $J_{\text{C-P}} = 250.7$ Hz, C_{Ar}F), 144.0 (C_{Ar}), 134.1 (d, ³ $J_{\text{C-P}} = 12.2$ Hz, C_{Ar}H), 114.4 (C_{Ar}H merged with C_{Ar}), 108.0 (d, ² $J_{\text{C-F}} = 24.9$ Hz, C_{Ar}H), 60.6 (d, $J_{\text{C-F}} = 23.9$ Hz, CN₂), 53.7 (d, ² $J_{\text{C-P}} = 5.3$ Hz, {PO}OCH₃ x 2); ³¹P NMR (161.9 MHz, CDCl₃) δ 3.42; HRMS for C₁₀H₁₁FNO₄P (cyclised product after N₂ elimination): calcd. (MH⁺): 260.0482, found: 260.0480.

Dimethyl 1-diazo-2-(2-(methylamino)phenyl)-2-oxoethylphosphonate (9g). Yellow viscous liquid (232 mg, 82%). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1067, 1218, 1403, 1639, 3671, 3849; ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (dd, J = 7.9 Hz, J = 1.5 Hz, 1H), 7.28-7.32 (m, 1H), 7.08 (br s, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.52-6.57 (m, 1H), 3.79 (d, ³ $J_{\text{H-P}}$ = 11.9 Hz, 6H), 2.79 (d, J = 3.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 188.0 (d, ² $J_{\text{C-P}}$ = 8.3 Hz, CO), 150.3 (C_{Ar}), 134.8 (C_{Ar}H), 129.6 (C_{Ar}H), 117.2 (d, ³ $J_{\text{C-P}}$ = 3.8 Hz, C_{Ar}), 114.3

(C_{Ar}H), 111.7 (C_{Ar}H), 61.2 (d, ${}^{1}J_{C-P} = 218.3 \text{ Hz}$, CN₂), 54.0 (d, ${}^{2}J_{C-P} = 5.8 \text{ Hz}$, {PO}OCH₃ x 2), 29.6 (CH₃); ${}^{31}P$ NMR (161.9 MHz, CDCl₃) δ 15.40; HRMS for C₁₁H₁₄N₃O₄P: calcd. (MH⁺): 284.0795, found: 284.0786.

References

- For diazosulfone preparation, see: (a) S. Zhu, J. V. Ruppel, H. Lu, L. Wojtas and X. P. Zhang, J. Am. Chem. Soc., 2008, 130, 5042; For DAMP preparation, see: (b) T. Du, F. Du, Y. Ning and Y. Peng, Org. Lett., 2015, 17, 1308; For EDA preparation, see: (c) J. Jeong, D. Lee and S. Chang, Chem. Commun., 2015, 51, 7035.
- 2 (a) A. R. Katritzki, C. Cai and S. K. Singh, *J. Org. Chem.*, 2006, **71**, 3375; (b) N. Kanişkan, Ş. Kökten and İ. Çelic, *ARKIVOC*, 2012, **8**, 198; (c) Ş. Kökten and Çelic, İ. *Synthesis*, 2013, **45**, 2551.
- 3 D. F. Taber, S. Bai and P.-F. Guo, *Tetrahedron Lett.*, 2008, **49**, 6904.
- 4 J. L. Kiara and J. R. Suarez, Adv. Syn. Catal., 2011, 353, 575.
- 5 R. Pasceri, H. E. Bartrum, C. J. Hayes and C. J. Moody, *Chem. Commun.*, 2012, 48, 12077.
- 6 M. O. Erhunmwunse and P. G. Steel, J. Org. Chem., 2008, 73, 8675.
- 7 C. Peng, J. Cheng and J. Wang, J. Am. Chem. Soc., 2007, 129, 8708.
- 8 L. H. Bourdon, D. J. Fairfax, G. S. Martin, C. J. Mathison and P. Zhichkin, *Tetrahedron: Asymmetry*, 2004, **15**, 3485.

Figure 2: ¹³C NMR spectrum of 1i

Figure 6: ¹³C NMR spectrum of 3a

Figure 8: ¹H NMR spectrum of 3b

Figure 10: ³¹P NMR spectrum of 3b

Figure 12: ¹³C NMR spectrum of 3c

Figure 14: ¹H NMR spectrum of 3d

Figure 16: ³¹P NMR spectrum of 3d

Figure 18: ¹³C NMR spectrum of 3e

Figure 20: ¹H NMR spectrum of 3f

Figure 22: ³¹P NMR spectrum of 3f

Figure 26: ¹H NMR spectrum of 3h

Figure 28: ³¹P NMR spectrum of 3h

Figure 30: ¹³C NMR spectrum of 3i

Figure 32: ¹H NMR spectrum of 3j

Figure 36: ¹³C NMR spectrum of 3k

Figure 40: ³¹P NMR spectrum of 31

Figure 42: ¹³C NMR spectrum of 3m

Figure 44: ¹H NMR spectrum of 3n

Figure 46: ³¹P NMR spectrum of 3n

Figure 48: ¹³C NMR spectrum of 30

Figure 50: ¹H NMR spectrum of 5a

Figure 52: ¹H NMR spectrum of 5b

Figure 54: ¹H NMR spectrum of 5c

Figure 56: ¹H NMR spectrum of 5e

Figure 58: ¹H NMR spectrum of 5f

Figure 60: ¹H NMR spectrum of 5g

Figure 62: ¹H NMR spectrum of 5h

Figure 64: ¹H NMR spectrum of 5j

Figure 66: ¹H NMR spectrum of 5k

Figure 68: ¹H NMR spectrum of 51

Figure 70: ¹H NMR spectrum of 5m

Figure 72: ¹H NMR spectrum of 7a

Figure 74: ¹H NMR spectrum of 7e

Figure 76: ¹H NMR spectrum of 7j

Figure 80: ¹H NMR spectrum of 9b

Figure 82: ³¹P NMR spectrum of 9b

Figure 86: ¹H NMR spectrum of 9d

Figure 92: ¹H NMR spectrum of 9f

Figure 94: ³¹P NMR spectrum of 9f

Figure 96: ¹³C NMR spectrum of 9g

