Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Host-guest complexation of di-cyclohexanocucurbit[6]uril and hexacyclohexanocucurbit[6]uril with alkyldiammonium ions: A comparative study

Guo-Sheng Fang^a, Wen-Qi Sun^a, Wen-Xuan Zhao^b, Rui-Lian Lin^a, Zhu Tao^b and Jing-Xin Liu*,^a

W.-X. Zhao, Z. Tao

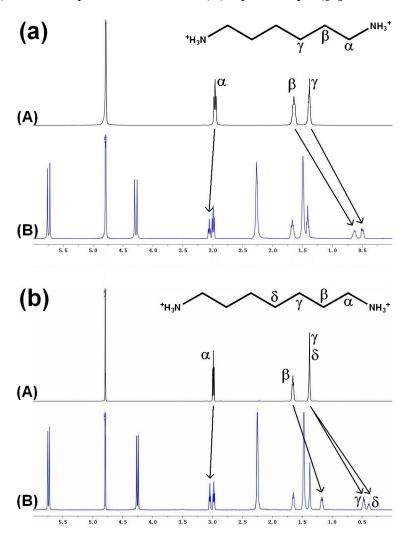
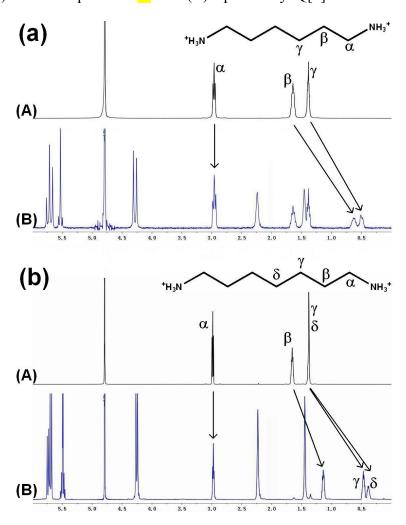

Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China gzutao@263.net

Table of Contents


Figure S1 ¹ H NMR spectra of host Cy6Q[6] with guests 5 and 6	2
Figure S2 ¹ H NMR spectra of host Cy2Q[6] with guests 5 and 6	3
Figure S3 ¹ H NMR spectra of hosts Cy2Q[6] and Cy6Q[6] with guest 7 Figure S4 ITC profile of Cy2Q[6] and Cy6Q[6] with all guests Figure S5 ESP caculated for Cy2Q[6] and Cy6Q[6]	

G.-S. Fang, W.-Q. Sun, R.-L. Lin, J.-X. Liu
 College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China jxliu411@ahut.edu.cn

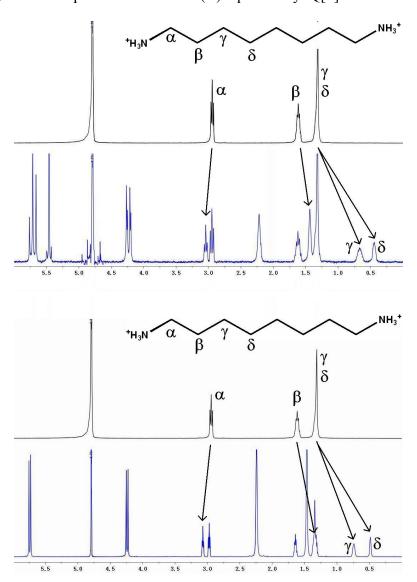

Figure S1 (a) 1 H NMR spectra (400 MHz, D_{2} O) of guest **5** in the absence (A) and in the presence of 0.36 (B) equiv of Cy6Q[6]; (b) 1 H NMR spectra (400 MHz, D_{2} O) of guest **6** in the absence (A) and in the presence of 0.47 (B) equiv of Cy6Q[6].

Figure S2 (a) ¹H NMR spectra (400 MHz, D_2O) of guest **5** in the absence (A) and in the presence of 0.41 (B) equiv of Cy2Q[6]; (b) ¹H NMR spectra (400 MHz, D_2O) of guest **6** in the absence (A) and in the presence of 0.98 (B) equiv of Cy2Q[6].

Figure S3 (a) 1 H NMR spectra (400 MHz, D_{2} O) of guest 7 in the absence (A) and in the presence of 0.42 (B) equiv of Cy2Q[6]; (b) 1 H NMR spectra (400 MHz, D_{2} O) of guest 7 in the absence (A) and in the presence of 0.46 (B) equiv of Cy6Q[6].

Figure S4. Isothermal titration calorimetry (ITC) binding curves for (a) Cy2Q[6]-alkyldiammonium and (b) Cy6Q[6]-alkyldiammonium complexes.

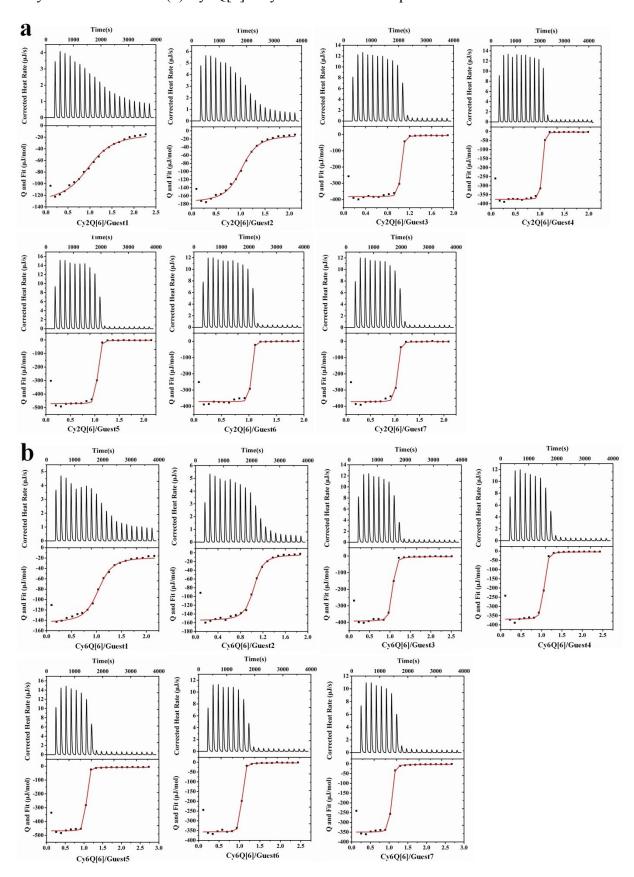
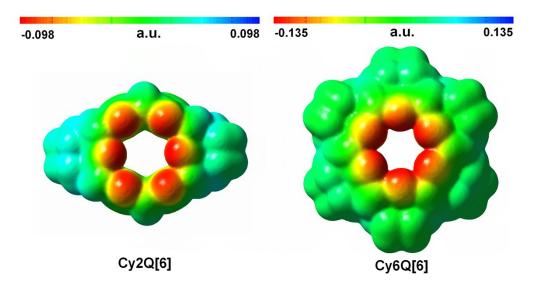



Figure S5 Electrostatic surface potentials calculated for Cy2Q[6] (left) and Cy6Q[6] (right).

