Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Synthesis of cinnolines *via* Rh(III)-catalysed dehydrogenative C-H/N-H functionalization: Aggregation induced emission and cell imaging

Sivakalai Mayakrishnan^a, Yuvaraj Arun^a, Chandrasekar Balachandran^b, Nobuhiko Emi^b, Doraiswamy Muralidharan^a and Paramasivan Thirumalai Perumal^{a*}

^a Organic & Bioorganic Chemistry, Council of Scientific and Industrial Research (CSIR)-CLRI, Chennai, 600020 (India).
^b Department of Hematology, Fujita Health University, Aichi 470-1192, Japan.

Electronic Supplementary Information

Contents

1.	General information	.3
2.	General procedure for synthesis of <i>N</i> -phenyl phthalazines (1a-e)	.3
3.	General procedure for the synthesis of <i>N-phenyl indazoles</i> (6)	.3
4.	General procedure for synthesis of alkynes (2)	.4
5.	General procedure for synthesis of phthalazino[2,3-a]cinnolines	.5
6.	General procedure for synthesis of indazolo[1,2-a]cinnolines	.5
7.	Competition experiment	.6
8.	Regioselectivity of the reaction	.7
9.	ORTEP of compound 3o	.9
10.	Spectral Data for synthesised compounds	10
11.	Copies of ¹ H, ¹³ C NMR and HRMS spectrum of synthesized compounds	23
12.	UV-vis absorption and PL spectra of 7a-i (in aggregation and thin film state)	82
13.	Cell viability assay	91
14.	Cell imaging	92

1. General information

Reagents and solvents were purchased from commercial sources (Aldrich and Merck). Dry DCM were purchased sigma Aldrich, reagents were used without further purification unless otherwise noted. Column chromatography was performed on silica gel (100–200 mesh, SRL. India). Analytical TLC was performed on precoated aluminium sheets of silica gel 60F254 of 0.2 mm thickness (Merck, Germany). Melting points were determined in capillary tubes and are uncorrected. ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra were recorded in CDCl₃ solution with TMS as internal standard on a Bruker Avance III HD spectrometer. High resolution mass spectra (HRMS-ESI) were recorded using Thermo Scientific Exactive Orbitrap mass spectrometer. UV-visible absorption spectra were measured using Shimadzu UV-1800 spectrophotometer. The steady state fluorescence measurements were measured using Varian Cary Eclipse fluorescence spectrophotometer. Cell imaging was done using ZEISS-LSM 710/LSM 710 NLO and CONFOCOR 3 instrument.

2. General procedure for synthesis of *N*-phenyl phthalazines (1a-e)

A mixture of phenyl hydrazine (1.equv) and phthalic anhydride (1.equv) in 10% HCl was heated at reflux for 9 h. Then the reaction was cooled, the resulting solid was collected for filtration, washed with water, and recrystallized from ethanol. The 2-phenyl-2,3-dihydrophthalazine-1,4-dione was obtained as colourless solid with the yield of 75%.

3. General procedure for the synthesis of *N*-phenyl indazoles (6)

(i) Synthesis of 2-Iodobenzoyl chloride: 2-Iodobenzoic acid (10 mmol) was dissolved in anhydrous dichloromethane (25 mL) and cooled to 0°C in ice bath. Oxalyl chlodide (30 mmol) was added drop-wise followed by the addition of a catalytic amount of DMF (0.01 mL) the reaction was allowed to warm to room temperature over the course of 1 h and after that time the solution was evaporated to rota evaporator for dryness. The dark brown viscous solid was formed. This was used as the without purification.

(ii) Synthesis of 2-iodo-*N*'-phenylbenzohydrazide: To a solution of phenylhydrazine (1.0 equv) dissolved in 10 mL of dichloromethane, 5 mL of 10% NaOH solution was added. Then the 2-iodobenzoyl chloride (1.2 equv) dissolved in 5ml of dichloromethane was added and stirred violently at room temperature for 1.5 h. Completion of the reaction was confirmed by TLC. The DCM layer was washed with water, saturated NaCl solution and dried with anhydrous Na₂SO₄. The Na₂SO₄ was filtered, after the solvent was evaporated under reduced pressure, the crude residue was purified by silica gel chromatography in ethyl acetate/petroleum ether 50%. 2-Iodo-*N*'-phenylbenzohydrazide was obtained as white solid.

The mixture of 2-iodo-*N*^{*}-phenylbenzohydrazide (1.0 mmol), copper iodide (0.10 mmol, 10 mol%), L-proline (0.20 mmol, 20 mol%) and K_2CO_3 (2.0 mmol) in DMSO (10 mL) was stirred at room temperature for 3-4 h under nitrogen atmosphere. After the completion of reaction, the reaction mixture was treated with water and extracted with EtOAc. The combined organic layer washed with saturated sodium chloride solution (Brine solution) and dried over anhydrous sodium sulphate. After the filtration the solvent was evaporated in rota evaporator and purified by column chromatography (EtOAc: pet ether 50%). *N*-phenyl indazole was obtained as the white solid with the yield of 90%.

4. General procedure for synthesis of alkynes (2)

Following the literature procedure,¹ Pd (PPh₃)₂Cl₂ (105 mg, 0.15 mmol), 1,4- bis (diphenyl phosphino) butane (128 mg, 0.30 mmol), aryl halides (6.00 mmol), and propiolic acid (212 mg, 3.0 mmol) were combined with DBU (913 mg, 6.0 mmol) in a round bottom flask. DMSO (15.0 mL) was added and the reaction was maintained in the oxygen atmosphere. The resulting mixture was placed in an oil bath at 80 °C for 3 h. The reaction was poured in saturated ammonium chloride solution and extracted with ethyl acetate 3×25 mL. The combined ethyl acetate layer was washed with brine solution, dried over anhydrous sodium sulphate, filtered, and the solvent were removed under

^{1).} K. Park, G. Bae, J. Moon, J. Choe, K. H. Song, S. Lee, J. Org. Chem. 2010, 75, 6244.

vacuum. The resulting crude product was purified using flash column chromatography in silica gel 100-200 mesh using 5% EtOAc in pet ether.

5. General procedure for synthesis of phthalazino[2,3-a]cinnolines

N-phenyl phthalazinone (1) (0.3 mmol) was treated with acetylene (2) (0.3 mmol) in the presence of $[RhCp*Cl_2]_2$ (2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (1 equiv) and $AgSbF_6$ (10 mol%) in tert-amyl alcohol using a 15-mL screw cap pressure tube. The reaction mixture was heated at 100 °C for 6 h. After cooling to ambient temperature, the reaction mixture was diluted with CH_2Cl_2 , filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent to afford pure desired product **3** in 60-98% yield.

6. General procedure for synthesis of indazolo[1,2-*a*]cinnolines

N-phenyl indazolone (6) (0.3 mmol) was treated with acetylene (2) (0.3 mmol) in the presence of $[RhCp*Cl_2]_2$ (2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (1 equiv) and $AgSbF_6$ (10 mol%) in tert-amyl alcohol using a 15-mL screw cap pressure tube. The mixture was heated at 100 °C for 6 h. After cooling to ambient temperature, the reaction mixture was diluted with CH_2Cl_2 , filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent. To give afford desired product 7 was obtained in 64-94% yield.

7. Competition experiment

N-phenyl phthalazinone **1a** (0.2 mmol), alkyne **2c** (0.2 mmol), alkyne **2d** (0.2 mmol), $[RhCp*Cl_2]_2$ (2.5 mol%), AgSbF₆ (10 mol%) and Cu(OAc)₂·H₂O (1 equiv) in tert-amyl alcohol 3mL using a 15-mL screw cap pressure tube. The reaction mixture was heated at 100 °C for 6 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent to give pure desired product **3f** and **3g**. ¹H NMR analysis of the product mixture obtained revealed that **3f** and **3g** were obtained in 2.4:1.0 ratio, suggesting that more electron-rich alkyne is kinetically favoured.

8. Regioselectivity of the reaction

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 Chemical shift (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 Chemical shift (ppm)

9. ORTEP of compound **30**

CCDC No: 1405249²

² Crystallographic data for the synthesised compound **3o** in this communication have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1405249. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC),12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (0)1223 336 033; email: deposit@ccdc.cam.ac.uk].

10. Spectral Data for synthesised compounds

2-phenyl-2,3-dihydrophthalazine-1,4-dione (1a)

Yield: 72%, white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.86 (s, 1H), 8.31 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.03 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.99 – 7.90 (m, 2H), 7.68 – 7.62 (m, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.41 – 7.34 (m, 1H) ppm; ¹³C NMR (100 MHz, DMSO- *d*₆) δ 157.79, 150.85, 142.21, 134.03, 132.95, 129.70, 128.88, 127.54, 127.33, 126.42, 124.66 ppm; HRMS m/z (ESI): calcd. for C₁₄H₁₀N₂NaO₂ [M+Na]⁺ 261.0640, found 261.0641.

2-(4-fluorophenyl)-2,3-dihydrophthalazine-1,4-dione (1b)

Yield: 72%, white solid. ¹H NMR (400 MHz, CDCl₃-DMSO-*d*₆) δ 10.98 (s, 1H), 8.16 (t, *J* = 5.5 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.59 (dq, *J* = 13.4, 7.6 Hz, 2H), 7.45 – 7.35 (m, 2H), 6.89 (t, *J* = 8.6 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃-DMSO-*d*₆) δ 158.16, 151.16, 137.80, 132.96, 131.93, 129.42, 127.56, 127.48, 127.02, 124.99, 124.32, 115.11, 114.89 ppm.

2-(4-bromophenyl)-2,3-dihydrophthalazine-1,4-dione (1c)

Yield: 73%, white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.94 (s, 1H), 8.32 (dd, *J* = 7.0, 1.2 Hz, 1H), 8.05 – 7.93 (m, 3H), 7.72 – 7.64 (m, 4H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.85, 151.08, 141.41, 134.20, 133.07, 131.77, 129.57, 128.25, 127.37, 124.72, 120.01 ppm.

2-(p-tolyl)-2,3-dihydrophthalazine-1,4-dione (1d)

Yield: 74%, white solid. ¹H NMR (400 MHz, DMSO- *d₆*) δ 11.86 (s, 1H), 8.30 (dd, *J* = 7.0, 1.3 Hz, 1H), 8.05 – 7.88 (m, 3H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d₆*) δ 157.77, 150.78, 139.74, 136.85, 133.95, 132.92, 129.70, 129.31, 127.30, 126.18, 125.06, 124.63, 21.15 ppm.

1-phenyl-1,2-dihydropyridazine-3,6-dione (1e)

Yield: 74%, white solid. ¹H NMR (400 MHz, CDCl₃-DMSO-*d*₆) δ 10.87 (s, 1H), 7.59 (d, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.07 – 6.95 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃-DMSO-*d*₆) δ 158.47, 153.16, 141.44, 133.83, 128.37, 127.49, 127.22, 125.39 ppm.

1-phenyl-1,2-dihydro-3H-indazol-3-one (6)

Yield: 80 %, white solid. ¹H NMR (400 MHz, CDCl₃-DMSO-*d₆*) $\delta_{\rm H}$ 11.29 (s, 1H), 7.77 (d, *J* = 9.1 Hz, 2H), 7.72 – 7.67 (m, 2H), 7.52 (t, *J* = 7.9 Hz, 2H), 7.49 – 7.42 (m, 1H), 7.29 – 7.24 (m, 1H), 7.20 – 7.13 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃-DMSO-*d₆*) $\delta_{\rm C}$ 156.79, 140.70, 139.70, 129.94, 128.81, 125.22, 121.07, 120.97, 120.76, 115.26, 110.77.

5,6-diphenylphthalazino[2,3-a]cinnoline-8,13-dione (3a)

Yield: 92 %, Yellow Solid; mp: 228-230 °C; FT-IR (cm⁻¹) Neat; 3059, 2922, 1668, 1601, 1569, 1450, 1368, 1315, 1129, 693; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.50 (dd, *J* = 7.9, 0.9 Hz, 1H), 8.15 (dd, *J* = 7.7, 0.9 Hz, 1H), 8.04 (d, *J* = 8.1 Hz, 1H), 7.90 (td, *J* = 7.6, 1.3 Hz, 1H), 7.81 (td, *J* = 7.6, 1.3 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.25 – 7.20 (m, 2H), 7.14 – 7.02 (m, 7H) ppm; ¹³C(100 MHz, CDCl₃) $\delta_{\rm C}$ 157.90, 156.60, 136.02, 135.77, 134.47, 134.07, 133.88, 133.60, 130.83, 129.60, 129.49, 129.02, 128.51, 128.44, 128.27, 128.11, 127.93, 127.87, 127.64, 127.59, 126.79, 126.24, 126.07, 118.41, 0.02 ppm; HRMS m/z (ESI): calcd. for C₂₈H₁₉N₂O₂ [M+H]⁺ 415.1447, found 415.1439; C₂₈H₁₈N₂NaO₂ [M+Na]⁺ 437.1266; found 437.1258.

3-methyl-5,6-diphenylphthalazino[2,3-a]cinnoline-8,13-dione (3b)

Yield: 94 %, Yellow Solid; mp: 222-224 °C; **FT-IR (cm⁻¹) Neat;** 3055, 2922, 2856, 1667, 1606, 1488, 1316, 1266, 1142, 1019, 727, 691; ¹H **NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 8.49 (dd, *J* = 7.9, 1.2 Hz, 1H), 8.14 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.89 (td, *J* = 7.6, 1.4 Hz, 1H),

7.80 (td, J = 7.6, 1.3 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.21 (dt, J = 5.9, 1.7 Hz, 2H), 7.13 – 7.00 (m, 6H), 6.87 (d, J = 2.0 Hz, 1H), 2.24 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.70, 156.61, 135.92, 134.57, 133.92, 133.83, 133.71, 133.34, 130.85, 129.56, 129.08, 129.04, 128.42, 128.22, 128.10, 127.88, 127.78, 127.59, 127.52, 126.55, 126.48, 118.32, 21.13 ppm; HRMS m/z (ESI): calcd. for C₂₉H₂₁N₂O₂ [M+H]⁺ 429.1603, found 429.1296; C₂₉H₂₀N₂NaO₂ [M+Na]⁺ 451.1422, found 451.1415.

3-fluoro-5,6-diphenylphthalazino[2,3-a]cinnoline-8,13-dione (3c)

Yield: 85 %, Yellow Solid; mp: 224-226 °C; **FT-IR** (cm⁻¹) **Neat**; 3059, 2926, 2856, 1669, 1599, 1487, 1313, 1261, 1081, 691; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.49 (dd, *J* = 7.9, 1.3 Hz, 1H), 8.15 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.03 (dd, *J* = 9.1, 5.0 Hz, 1H), 7.91 (td, *J* = 7.6, 1.3 Hz, 1H), 7.82 (td, *J* = 7.6, 1.4 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.20 (dd, *J* = 6.3, 1.9 Hz, 2H), 7.11 – 7.05 (m, 3H), 7.03 – 6.96 (m, 3H), 6.79 (dd, *J* = 9.4, 2.9 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.76, 156.67, 137.28, 134.77, 134.13, 134.04, 133.93, 133.24, 131.57, 131.54, 130.69, 129.52, 129.36, 128.97, 128.52, 128.47, 128.10, 127.97, 127.85, 127.71, 127.03, 120.54, 120.45, 115.11, 114.88, 112.84, 112.59 ppm; HRMS m/z (ESI): calcd. for C₂₈H₁₈FN₂O₂ [M+H]⁺ 433.1352, found 433.1346; C₂₈H₁₇FN₂NaO₂ [M+Na]⁺455.1172, found 455.1165.

3-bromo-5,6-diphenylphthalazino[2,3-a]cinnoline-8,13-dione (3d)

Yield: 92 %, Yellow Solid; mp: 222-224 °C; FT-IR (cm⁻¹) Neat; 3059, 2924, 2852, 1669, 1603, 1476, 1311, 1263, 1016, 683; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.49 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.18 – 8.12 (m, 1H), 7.95 – 7.88 (m, 2H), 7.82 (td, *J* = 7.5, 1.4 Hz, 1H), 7.40 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.35 – 7.27 (m, 3H), 7.19 (dd, *J* = 8.2, 2.1 Hz, 3H), 7.11 – 7.03 (m, 3H), 7.03 – 6.98 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.84, 156.55, 137.31, 134.70, 134.24, 134.05, 133.73, 133.25, 131.14, 130.73, 129.53, 129.28, 128.96, 128.91, 128.71, 128.55, 128.51, 128.10, 128.01, 127.89, 127.70, 126.85, 120.18, 119.35 ppm; HRMS m/z (ESI): calcd. for C₂₈H₁₈BrN₂O₂ [M+H]⁺ 493.0552, found 493.0546.

5,6-di-p-tolylphthalazino[2,3-a]cinnoline-8,13-dione (3e)

Yield: 89 %, Yellow Solid; mp: 222-224 °C; **FT-IR (cm**⁻¹**) Neat**; 3023, 2922, 2859, 1669, 1450, 1313, 1128, 816; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.50 (dd, *J* = 7.7, 1.3 Hz, 1H), 8.16 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.02 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.89 (td, *J* = 7.6, 1.4 Hz, 1H), 7.81 (td, *J* = 7.6, 1.4 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.14 – 7.07 (m, 6H), 6.94 – 6.83 (m, 4H), 2.33 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.94, 156.66, 137.50, 137.16, 135.97, 135.83, 134.02, 133.79, 131.57, 130.69, 130.65, 129.67, 129.50, 128.99, 128.85, 128.48, 128.46, 128.22, 127.89, 127.84, 127.17, 126.30, 125.98, 118.20, 21.34, 21.28 ppm; HRMS m/z (ESI): calcd. for C₃₀H₂₃N₂O₂ [M+H]⁺ 443.1760, found 443.1754; C₃₀H₂₂N₂NaO₂ [M+Na]⁺ 465.1579, found 465.1572.

5,6-bis(4-methoxyphenyl)phthalazino[2,3-a]cinnoline-8,13-dione (3f)

Yield: 85 %, Yellow Solid; mp: 200-202 °C; **FT-IR (cm**⁻¹**) Neat**; 3066, 2926, 2836, 1667, 1606, 1509, 1314, 1248, 1176, 1030, 828; ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.49 (dd, *J* = 7.9, 1.2 Hz, 1H), 8.16 (dd, *J* = 7.9, 1.1 Hz, 1H), 8.01 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.89 (td, *J* = 7.6, 1.4 Hz, 1H), 7.81 (td, *J* = 7.5, 1.3 Hz, 1H), 7.32 – 7.24 (m, 1H), 7.16 – 7.08 (m, 4H), 6.98 – 6.93 (m, 2H), 6.88 – 6.82 (m, 2H), 6.63 – 6.58 (m, 2H), 3.80 (s, 3H), 3.68 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_{C} 158.81, 158.75, 157.97, 156.68, 136.00, 135.84, 134.03, 133.79, 131.95, 130.35, 129.65, 129.48, 128.46, 128.15, 127.87, 127.34, 126.82, 126.21, 126.00, 125.95, 125.68, 118.23, 113.77, 113.17, 55.18, 54.96 ppm; HRMS m/z (ESI): calcd. for C₃₀H₂₃N₂O₄ [M+H]⁺ 475.1658, found 475.1651; C₃₀H₂₂N₂NaO₄ [M+Na]⁺ 497.1477, found 497.1470.

5,6-bis(4-fluorophenyl)phthalazino[2,3-a]cinnoline-8,13-dione (3g)

Yield: 70 %, Yellow Solid; mp: 236-238 °C; **FT-IR (cm⁻¹) Neat**; 3061, 2926, 2862, 1668, 1601, 1497, 1314, 1224, 1159, 834; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 8.50 (dd, *J* = 7.8, 1.2 Hz, 1H), 8.15 (dd, *J* = 7.8, 1.2 Hz, 1H), 8.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.91 (td, *J* = 7.6, 1.4 Hz, 1H), 7.83

(td, *J* = 7.6, 1.3 Hz, 1H), 7.31 (ddd, *J* = 8.6, 7.3, 1.6 Hz, 1H), 7.17 (ddd, *J* = 10.3, 5.1, 1.6 Hz, 2H), 7.12 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.06 – 6.98 (m, 5H), 6.82 – 6.75 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl3) δ_c 163.39, 163.15, 160.93, 160.68, 157.86, 156.57, 135.79, 135.51, 134.20, 134.06, 132.49, 132.41, 130.95, 130.87, 130.21, 130.17, 129.49, 129.46, 129.44, 129.41, 128.72, 128.58, 127.88, 127.45, 126.54, 126.17, 126.06, 118.55, 115.66, 115.45, 115.11, 114.89 ppm; HRMS m/z (ESI): calcd. for C₂₈H₁₇F₂N₂O₂ [M+H]⁺ 451.1258, found 451.1251; C₂₈H₁₆F₂N₂NaO₂ [M+Na]⁺ 473.1078, found 473.1071.

5,6-bis(4-chlorophenyl)phthalazino[2,3-a]cinnoline-8,13-dione (3h)

Yield: 80 %, Yellow Solid; mp: 250-252 °C; **FT-IR (cm⁻¹) Neat**; 3074, 2926, 2848, 1668, 1486, 1314, 1091, 1015, 821; ¹H NMR (400 MHz, **CDCl₃)** $\delta_{\rm H}$ 8.50 (dd, J = 7.9, 1.3 Hz, 1H), 8.15 (dd, J = 7.7, 1.3 Hz, 1H), 8.03 (dd, J = 8.3, 1.1 Hz, 1H), 7.92 (td, J = 7.6, 1.4 Hz, 1H), 7.84 (td, J = 7.6, 1.3 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.17 – 7.11 (m, 3H), 7.09 – 7.05 (m, 2H), 7.02 (dd, J = 7.9, 1.5 Hz, 1H), 6.98 – 6.94 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.83, 156.57, 135.81, 135.19, 134.25, 134.13, 133.97, 133.95, 132.65, 132.05, 131.86, 130.30, 129.43, 129.33, 128.90, 128.81, 128.62, 128.22, 127.91, 127.52, 126.19, 126.18, 126.07, 118.54 ppm; HRMS m/z (ESI): calcd. for $C_{28}H_{17}Cl_2N_2O_2$ [M+H]⁺ 483.0667, found 483.0664; $C_{28}H_{16}Cl_2N_2NaO_2$ [M+Na]⁺ 505.0487, found 505.0484.

5,6-bis(4-bromophenyl)phthalazino[2,3-a]cinnoline-8,13-dione (3i)

Yield: 85 %, Yellow Solid; mp: 218-220 °C; **FT-IR (cm**⁻¹**) Neat**; 3070, 2924, 2856, 1669, 1486, 1313, 1070, 1011, 817; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.49 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.14 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.92 (td, *J* = 7.6, 1.4 Hz, 1H), 7.83 (td, *J* = 7.5, 1.3 Hz, 1H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.32 (ddd, *J* = 8.5, 7.4, 1.6 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.16 – 7.05 (m, 3H), 7.01 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.93 – 6.87 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.82, 156.57, 135.81, 135.14, 134.26, 134.17, 134.14, 133.12, 132.34, 131.77, 131.16, 130.55, 129.43, 129.31, 128.93, 128.63, 127.91,

127.53, 126.19, 126.10, 126.08, 122.30, 122.18, 118.53 ppm; **HRMS** m/z (ESI): calcd. for C₂₈H₁₇Br₂N₂O₂ [M+H]⁺ 570.9657, found 570.9657.

5,6-bis(4-nitrophenyl)phthalazino[2,3-a]cinnoline-8,13-dione (3j)

Yield: 60 %, Yellow Solid; mp: 240-242 °C; **FT-IR (cm⁻¹) Neat**; 3078, 2925, 2854, 1670, 1592, 1519, 1346, 1312, 1107, 696; ¹H NMR (400 MHz, **CDCl₃)** δ 8.53 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.13 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.08 (dd, *J* = 8.3, 1.1 Hz, 1H), 8.00 – 7.96 (m, 2H), 7.89 – 7.85 (m, 1H), 7.65 – 7.59 (m, 1H), 7.53 – 7.35 (m, 5H), 7.23 – 7.15 (m, 2H), 6.97 (dd, *J* = 7.9, 1.5 Hz, 1H); ¹³C NMR (100 MHz, **CDCl₃)** $\delta_{\rm C}$ 157.71, 147.65, 140.65, 139.69, 135.79, 134.60, 134.56, 131.75, 129.88, 129.84, 129.39, 128.97, 128.88, 128.86, 128.02, 127.97, 127.89, 126.45, 125.87, 125.81, 124.95, 123.93, 123.41, 118.96.ppm; **HRMS** m/z (ESI): calcd. for C₂₈H₁₇N₄O₆ [M+H]⁺ 505.1148, found 505.1140.

5-methyl-6-phenylphthalazino[2,3-a]cinnoline-8,13-dione (3k)

Yield: 85 %, Yellow Solid; mp: 206-208 °C; **FT-IR (cm⁻¹) Neat**; 3063, 2928, 2859, 1668, 1668, 1699, 1450, 1316, 1267, 1130, 755; ¹H NMR **(400 MHz, CDCl₃)** $\delta_{\rm H}$ 8.46 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.12 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.03 – 7.97 (m, 1H), 7.87 (td, *J* = 7.6, 1.4 Hz, 1H), 7.79 (td, *J* = 7.6, 1.4 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.38 – 7.27 (m, 5H), 7.23 (dd, *J* = 7.8, 1.8 Hz, 2H), 2.13 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.83, 156.22, 136.27, 135.00, 133.97, 133.95, 133.67, 129.72, 129.45, 128.90, 128.41, 128.26, 128.19, 127.85, 127.65, 126.23, 124.35, 121.04, 118.12, 14.56 ppm; HRMS m/z (ESI): calcd. for C₂₃H₁₇N₂O₂ [M+H]⁺ 353.1290, found 353.1285; C₂₃H₁₆N₂NaO₂ [M+Na]⁺ 375.1109, found 375.1105.

5-butyl-6-phenylphthalazino[2,3-a]cinnoline-8,13-dione (3I)

Yield: 78 %, Yellow Solid; mp:204-206 °C; **FT-IR (cm⁻¹) Neat**; 3070, 2927, 2863, 1686, 1601, 1452, 1328, 1291, 1180, 707; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.45 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.10 (dd, *J* = 7.8, 1.4 Hz, 1H), 8.01 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.86 (td, *J* = 7.6, 1.4 Hz, 1H), 7.77 (td, *J* = 7.6, 1.4 Hz, 1H), 7.46 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.35 – 7.28 (m, 4H), 7.25 (ddd, *J* = 9.3, 6.3, 1.5 Hz, 3H), 2.61 – 2.53 (m, 2H), 1.38 (td, *J* = 7.4, 6.8, 2.0 Hz, 2H), 1.14 (h, *J* = 7.4 Hz, 2H), 0.70 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.71, 156.08, 136.84, 135.51, 133.97, 133.93, 133.64, 129.75, 129.44, 129.19, 128.37, 128.25, 128.22, 128.18, 127.80, 126.19, 126.09, 125.70, 124.39, 118.57, 31.00, 26.57, 22.24, 13.62; HRMS m/z (ESI): calcd. for C₂₆H₂₃N₂O₂ [M+H]⁺ 395.1760, found 395.1755.

5-hexyl-6-phenylphthalazino[2,3-a]cinnoline-8,13-dione (3m)

Yield: 65 %, Yellow Solid; mp: 202-204 °C; **FT-IR (cm**⁻¹**) Neat**; 3063, 2928, 2871, 1667, 1601, 1451, 1317, 789; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.45 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.10 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.01 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.86 (td, *J* = 7.6, 1.4 Hz, 1H), 7.77 (td, *J* = 7.6, 1.4 Hz, 1H), 7.46 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.38 – 7.30 (m, 4H), 7.29 (dd, *J* = 4.3, 1.7 Hz, 1H), 7.27 (d, *J* = 1.6 Hz, 1H), 7.25 (dd, *J* = 2.6, 1.4 Hz, 1H), 2.59 – 2.51 (m, 2H), 1.44 – 1.33 (m, 2H), 1.19 – 1.00 (m, 6H), 0.77 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.70, 156.08, 136.84, 135.47, 134.00, 133.92, 133.64, 129.75, 129.44, 129.17, 128.38, 128.21, 128.19, 127.80, 126.19, 126.10, 125.78, 124.38, 118.56, 31.23, 28.82, 28.80, 26.81, 22.45, 13.96 ppm; HRMS m/z (ESI): calcd. for C₂₈H₂₇N₂O₂ [M+H]⁺ 423.2073, found 423.2068; C₂₈H₂₆N₂NaO₂ [M+Na]⁺ 445.1892, found 445.1887.

5,6-dimethylphthalazino[2,3-a]cinnoline-8,13-dione (3n)

Yield: 98 %, Yellow Solid; mp: 216-218 °C; FT-IR (cm⁻¹) Neat; 3076, 2926, 2852, 1662, 1599, 1490, 1333, 1319, 1097, 722; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.44 – 8.38 (m, 1H), 8.35 – 8.28 (m, 1H), 7.96 – 7.90

(m, 1H), 7.89 – 7.82 (m, 2H), 7.35 – 7.30 (m, 1H), 7.23 (ddd, J = 6.6, 4.4, 1.9 Hz, 2H), 2.27 (d, J = 1.0 Hz, 3H), 2.14 (d, J = 1.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_c 157.73, 156.45, 135.69, 133.88, 133.63, 131.91, 129.64, 129.57, 128.23, 127.56, 127.49, 127.11, 126.09, 123.33, 119.77, 118.22, 15.73, 13.46 ppm; HRMS m/z (ESI): calcd. for C₁₈H₁₅N₂O₂ [M+H]⁺ 291.1134, found 291.1128; C₁₈H₁₄N₂NaO₂ [M+Na]⁺ 313.0953, found 313.0947.

5,6-dipropylphthalazino[2,3-a]cinnoline-8,13-dione (30)

Yield: 96 %, Yellow Solid; mp: 148-150 °C; **FT-IR (cm**⁻¹**) Neat**; 3678, 2928, 2871, 1667, 1601, 1451, 1317, 789; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.44 – 8.39 (m, 1H), 8.34 – 8.29 (m, 1H), 7.94 – 7.90 (m, 1H), 7.89 – 7.82 (m, 2H), 7.36 (dd, *J* = 7.4, 2.1 Hz, 1H), 7.26 – 7.20 (m, 2H), 2.83 (s, 2H), 2.63 – 2.53 (m, 2H), 1.57 (dq, *J* = 14.8, 7.4 Hz, 2H), 1.29 (h, *J* = 7.4 Hz, 2H), 1.07 – 0.97 (m, 3H), 0.84 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 157.73, 156.63, 136.91, 136.40, 133.95, 133.61, 129.54, 129.50, 128.30, 127.60, 127.54, 126.26, 126.02, 124.98, 123.61, 118.19, 29.58, 28.39, 22.61, 21.50, 14.33, 13.67 ppm; HRMS m/z (ESI): calcd. for C₂₂H₂₃N₂O₂ [M+H]⁺ 347.1760, found 347.1757; C₂₂H₂₂N₂NaO₂ [M+Na]⁺ 369.1579, found 369.1577.

6,7-diphenylpyridazino[1,2-a]cinnoline-1,4-dione (3p)

Yield: 98 %, Yellow Solid; mp: 160-162 °C; **FT-IR** (cm⁻¹) Neat; 3057, 2926, 1662, 1601, 1450, 1307, 1127, 830, 750; ¹H NMR (400 MHz, **CDCl₃**) δ 8.18 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.35 – 7.25 (m, 4H), 7.20 – 7.09 (m, 7H), 7.09 – 7.03 (m, 3H), 6.86 (d, *J* = 10.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, **CDCl₃**) δ 156.71, 155.37, 135.61, 135.22, 135.18, 135.15, 134.11, 133.09, 130.72, 129.05, 128.51, 128.27, 128.12, 128.02, 127.69, 126.48, 126.32, 126.16, 117.77 ppm; HRMS m/z (ESI): calcd. for C₂₄H₁₇N₂O₂ [M+H]⁺ 365.1290, found 365.1286.

6-(4-methoxyphenyl)-5-((4-methoxyphenyl)ethynyl)phthalazino[2,3-a]cinnoline-8,13dione(5a)

Yellow Solid; mp: 200-202 °C; **FT-IR (cm⁻¹) Neat**; 3070, 2930, 2836, 1667, 1609, 1485, 1509, 1314, 1247, 1176, 1030, 828, 689; ¹H **NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 8.49 (dd, *J* = 8.0, 1.0 Hz, 1H), 8.16 (dd, *J* = 7.5, 1.0 Hz, 1H), 8.01 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.89 (td, *J* = 7.6, 1.3 Hz, 1H), 7.84 - 7.79 (m, 1H), 7.30 - 7.26 (m, 1H), 7.18 - 7.06 (m, 4H), 6.98 - 6.93 (m, 2H), 6.85 (d, *J* = 8.9 Hz, 2H), 6.64 - 6.57 (m, 2H), 3.80 (s, 3H), 3.68 (s, 3H) ppm; ¹³C **NMR (100 MHz, CDCl₃)** $\delta_{\rm C}$ 158.81, 158.75, 157.97, 156.68, 136.00, 135.84, 134.03, 133.80, 131.95, 130.35, 129.64, 129.48, 128.91, 128.46, 128.15, 127.87, 127.34, 126.82, 126.21, 126.00, 125.95, 125.70, 124.76, 118.23, 113.77, 113.17, 55.18, 54.96 ppm; **HRMS** m/z (ESI): calcd. for C₃₂H₂₁N₂O₄ [M-H]⁻ 497.1496, found 497.1496.

6,6'-bis(4-methoxyphenyl)-[5,5'-biphthalazino[2,3-a]cinnoline]-8,8',13,13'-tetraone (5b)

Yellow Solid; mp: °C; FT-IR (cm⁻¹) Neat; 3098, 2899, 2876, 1657, 1609, 1588, 1485, 1509, 1314, 1247, 1176, 1030, 828, 726, 689; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 7.8, 1.1 Hz, 1H), 8.37 (ddd, J = 15.7, 7.7, 0.7 Hz, 2H), 8.00 - 7.94 (m, 2H), 7.91 (dt, J = 7.5, 3.8 Hz, 1H), 7.83 (ddd, J = 14.4, 8.2, 6.7 Hz, 4H), 7.70 (dd, J = 7.4, 6.5 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.25 – 7.23 (m, 1H), 7.05 (dd, J = 11.3, 3.8 Hz, 1H), 6.85 (dd, J = 7.8, 1.2 Hz, 1H), 6.72 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 8.7 Hz, 2H), 6.44 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.65, 159.32, 157.38, 156.71, 156.27, 155.91, 136.88, 135.91, 135.68, 135.28, 134.13, 133.78, 133.66, 131.96, 131.81, 130.73, 129.61, 129.46, 129.34, 129.19, 129.18, 128.51, 128.48, 128.46, 128.24, 128.20, 128.04, 127.92, 127.83, 127.46, 126.29, 125.83, 125.65, 125.48, 121.85, 120.13, 119.77, 118.44, 113.45, 113.42, 55.35, 55.09 ppm; **HRMS** m/z (ESI): calcd. for $C_{46}H_{31}N_4O_6$ [M+H]⁺ 735.2244, found 735.2238.

5,6-diphenyl-8H-indazolo[1,2-a]cinnolin-8-one (7a)

Yield: 89 %, Greenish yellow Solid; mp: 198-200 °C; **FT-IR (cm⁻¹) Neat**; 3056, 2829, 1687, 1588, 1463, 1453, 1356, 1356, 1352, 1142, 749,

701, 669; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.96 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.76 (ddd, *J* = 8.5, 7.2, 1.3 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.32 – 7.26 (m, 4H), 7.25 – 7.16 (m, 7H), 7.02 (d, *J* = 4.3 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 156.13, 139.58, 137.94, 134.67, 134.41, 132.19, 131.23, 130.14, 128.88, 128.86, 128.52, 128.19, 128.13, 127.41, 127.36, 126.96, 125.22, 124.56, 123.97, 122.98, 118.84, 113.94, 111.05 ppm; HRMS m/z (ESI): calcd. for C₂₇H₁₉N₂O [M+H]⁺ 387.1497, found 387.1490.

5,6-di-p-tolyl-8H-indazolo[1,2-a]cinnolin-8-one (7b)

Yield: 94 %, Greenish yellow Solid; mp: 224-226 °C; **FT-IR (cm⁻¹) Neat**; 2926, 2881, 1691, 1610, 1463, 1351, 1294, 818, 741; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 7.96 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.75 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.29 – 7.26 (m, 1H), 7.09 (d, *J* = 6.3 Hz, 6H), 7.04 – 6.95 (m, 4H), 2.32 (s, 3H), 2.26 (s, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)** $\delta_{\rm C}$ 156.15, 139.68, 138.04, 137.77, 136.94, 134.68, 132.05, 131.48, 131.04, 129.98, 128.93, 128.65, 128.55, 128.18, 126.99, 125.58, 124.52, 123.90, 123.20, 122.96, 119.07, 114.04, 110.93, 21.42, 21.28 ppm; **HRMS** m/z (ESI): calcd. for C₂₉H₂₂N₂NaO [M+Na]⁺ 437.1630, found 437.1587.

5,6-bis(4-methoxyphenyl)-8H-indazolo[1,2-a]cinnolin-8-one (7c)

Yield: 85 %, Greenish yellow Solid; mp: 216-218 °C; **FT-IR (cm**⁻¹**) Neat**; 2925, 2856, 1682, 1643, 1463, 1293, 1177, 1033, 830, 746; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.96 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.28 (s, 1H), 7.13 (d, *J* = 8.3 Hz, 4H), 7.02 (d, *J* = 6.8 Hz, 2H), 6.83 (d, *J* = 7.3 Hz, 2H), 6.73 (d, *J* = 7.4 Hz, 2H), 3.79 (s, 3H), 3.75 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 159.12, 158.68, 156.17, 139.68, 138.03, 134.72, 132.32, 132.03, 131.47, 128.59, 126.88, 126.77, 125.73, 124.50, 123.91, 123.88, 122.95, 122.78, 119.08, 114.03, 113.71, 112.91, 110.95, 55.16, 55.04 ppm; **HRMS** m/z (ESI): calcd. for $C_{29}H_{23}N_2O_3$ [M+H]⁺ 447.1709, found 447.2716.

5,6-bis(4-fluorophenyl)-8H-indazolo[1,2-a]cinnolin-8-one (7d)

Yield: 75 %, Greenish yellow Solid; mp: 218-220 °C; **FT-IR (cm⁻¹) Neat**; 2930, 2858, 1638, 1506, 1353, 1297, 1223, 834, 745; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 7.96 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.77 (ddd, *J* = 8.5, 7.1, 1.3 Hz, 1H), 7.71 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.34 – 7.28 (m, 1H), 7.20 – 7.14 (m, 4H), 7.07 – 6.95 (m, 4H), 6.93 – 6.87 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 179.99, 156.17, 139.58, 132.87, 132.78, 132.38, 132.01, 131.93, 129.14, 126.76, 125.01, 124.55, 124.07, 123.10, 122.62, 122.62, 118.66, 115.57, 115.35, 114.79, 114.58, 113.88, 111.17 ppm; **HRMS** m/z (ESI): calcd. for C₂₇H₁₇F₂N₂O [M+H]⁺ 423.1309, found 423.1271.

5,6-bis(4-chlorophenyl)-8H-indazolo[1,2-a]cinnolin-8-one (7e)

Yield: 78 %, Greenish yellow Solid; mp: 202-204 °C; **FT-IR (cm⁻¹) Neat**; 2925, 2856, 1688, 1614, 1487, 1352, 1294, 1251, 1089, 1016, 821, 750; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 7.89 (d, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.70 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.29 (ddd, *J* = 7.9, 7.1, 0.8 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.14 – 7.09 (m, 2H), 7.06 (dq, *J* = 8.5, 2.2 Hz, 4H), 6.96 (td, *J* = 7.6, 1.1 Hz, 1H), 6.88 (dd, *J* = 7.8, 1.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 156.20, 139.65, 137.94, 134.36, 133.82, 133.74, 132.61, 132.47, 132.46, 131.39, 129.68, 129.32, 128.74, 127.93, 126.78, 124.70, 124.56, 124.11, 123.21, 122.66, 118.60, 113.94, 111.20 ppm; HRMS m/z (ESI): calcd. for C₂₇H₁₇Cl₂N₂O [M+H]⁺ 455.0718, found 455.0708.

5,6-bis(4-bromophenyl)-8H-indazolo[1,2-a]cinnolin-8-one (7f)

Yield: 85 %, Greenish yellow Solid; mp: 254-256 °C; **FT-IR (cm**⁻¹**) Neat**; 2922, 2712, 2079, 1649, 1633, 1486, 1463, 1012, 749; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 7.99 – 7.93 (m, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.77 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 1H), 7.70 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.40 – 7.28 (m, 4H), 7.07 (dt, *J* = 8.9, 2.7 Hz, 4H), 7.02 (dd, *J* = 7.5, 1.1 Hz, 1H), 6.95 (dd, *J* = 7.8, 1.5 Hz, 1H) ppm; ¹³**C NMR (101 MHz, CDCl₃)** $\delta_{\rm C}$ 156.20, 139.67, 137.95, 133.75, 133.07, 132.75, 132.49, 131.71, 131.62, 130.88, 130.12, 129.36, 126.80, 124.61, 124.57, 124.13, 123.24, 122.76, 122.66, 121.96, 118.59, 113.96, 111.20 ppm; **HRMS** m/z (ESI): calcd. for C₂₇H₁₇Br₂N₂O [M+H]⁺ 542.9708, found 542.9702.

5-methyl-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (7g)

Yield: 87 %, Greenish yellow Solid; mp: 180-182 °C; **FT-IR (cm⁻¹) Neat**; 2926, 2856, 2063, 1681, 1633, 1488, 1452, 1284, 1144, 749; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 7.93 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 8.3 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.66 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.46 – 7.40 (m, 4H), 7.38 – 7.35 (m, 2H), 7.31 (dd, *J* = 7.7, 6.6 Hz, 2H), 7.18 (td, *J* = 7.6, 1.1 Hz, 1H), 2.09 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 155.77, 139.78, 138.47, 133.58, 131.90, 131.87, 129.84, 128.71, 128.55, 127.97, 125.69, 124.91, 124.43, 124.13, 123.02, 119.25, 116.23, 114.14, 110.87, 13.75 ppm; **HRMS** m/z (ESI): calcd. for C₂₂H₁₆N₂O [M+H]⁺ 325.1341, found 325.1335.

5,6-dipropyl-8H-indazolo[1,2-a]cinnolin-8-one (7h)

Yield: 80 %, Greenish yellow Solid; mp: 192-194 °C; **FT-IR (cm**⁻¹) **Neat**; 2922, 2132, 2079, 1638, 1630, 1482, 1456, 1010, 748; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 8.04 – 7.98 (m, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.68 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 1H), 7.60 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.21 (td, *J* = 7.8, 1.5 Hz, 1H), 7.12 (td, *J* = 7.6, 1.2 Hz, 1H), 3.20 – 3.11 (m, 2H), 2.62 – 2.52 (m, 2H), 1.64 (dq, *J* = 15.9, 7.6 Hz, 4H), 1.04 (dt, *J* = 11.8, 7.3 Hz, 6H) ppm; ¹³**C NMR (100 MHz, CDCl₃)** $\delta_{\rm C}$ 156.81, 139.06, 137.95, 136.67, 131.76, 127.75, 124.48, 124.16, 124.06, 123.95, 122.70, 118.98, 118.21, 113.84, 111.21, 28.36, 28.05, 22.79, 22.71, 14.32, 13.80 ppm; **HRMS** m/z (ESI): calcd. for C₂₁H₂₃N₂O [M+H]⁺ 319.1810, found 319.1801.

5,6-di(thiophen-2-yl)-8H-indazolo[1,2-a]cinnolin-8-one (7i)

Yield: 94 %, Greenish yellow Solid; mp: 238-240 °C; **FT-IR (cm⁻¹) Neat**; 2922, 2856, 1691, 1691, 1628, 1483, 1462, 1359, 1275, 1231, 1117, 748; ¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ 7.99 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.81 – 7.74 (m, 1H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.42 – 7.32 (m, 3H), 7.30 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.20 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.13 – 7.03 (m, 4H), 6.94 (dd, *J* = 5.0, 3.5 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 156.62, 140.60, 138.70, 134.74, 132.37, 131.66, 130.97, 130.61, 129.37, 127.97, 127.41, 127.16, 126.83, 126.17, 125.36, 124.62, 124.62, 12 4.26, 123.58, 119.37, 118.60, 114.64, 110.90 ppm; HRMS m/z (ESI): calcd. for C₂₃H₁₅N₂OS₂ [M+H]⁺ 399.0626, found 399.0621.

11. Copies of ¹H, ¹³C NMR and HRMS spectrum of synthesized compounds

¹³C NMR Spectrum of *Compound* 1a in DMSO-*d*₆

¹H NMR Spectrum of Compound 1b in CDCl₃-DMSO-d₆

¹H NMR Spectrum of Compound 1c in DMSO-d₆

¹H NMR Spectrum of Compound 1d in DMSO-d₆

¹H NMR Spectrum of Compound 1e in CDCl₃-DMSO-d₆

¹H NMR Spectrum of Compound 6 in DMSO-d₆

DEPT-135 NMR Spectrum of Compound 6 in DMSO-d₆

¹H NMR Spectrum of Compound 3a in CDCl₃

¹³ C NMR Spectrum of Compound 3a in CDCl₃

HRMS Spectrum of Compound 3a

¹H NMR Spectrum of Compound 3p in CDCl₃

¹³C NMR Spectrum of Compound 3p in CDCl₃

f1 (ppm)

HRMS Spectrum of Compound 3b

 $^{\rm 13}{\rm C}$ NMR Spectrum of Compound 3c in CDCl_3

HRMS Spectrum of Compound 3c

¹H NMR Spectrum of Compound 3d in CDCl₃

¹³C NMR Spectrum of Compound 3d in CDCl₃

DEPT-135 NMR Spectrum of Compound 3d in CDCl₃

f1 (ppm) C

HRMS Spectrum of Compound 3d

¹³ C NMR Spectrum of Compound 3e in CDCl₃

HRMS Spectrum of Compound 3e

¹³ C NMR Spectrum of Compound 3f in CDCl₃

DEPT-135 NMR Spectrum of Compound 3f in CDCl₃

¹H NMR Spectrum of Compound 3g in CDCl₃

DEPT-135 NMR Spectrum of Compound 3g in CDCl₃

 ^1H NMR Spectrum of Compound 3h in CDCl_3

DEPT-135 NMR Spectrum of Compound 3h in CDCl₃

¹H NMR Spectrum of Compound 3i in CDCl₃

HRMS Spectrum of Compound 3i

¹H NMR Spectrum of Compound 3j in CDCl₃

¹³C NMR Spectrum of Compound 3j in CDCl₃

¹H NMR Spectrum of Compound 3k in CDCl₃

DEPT-135 NMR Spectrum of Compound 3k in CDCl₃

¹H NMR Spectrum of Compound 3I in CDCl₃

DEPT-135 NMR Spectrum of Compound 3I in CDCl₃

¹H NMR Spectrum of Compound 3m in CDCl₃

DEPT-135 NMR Spectrum of Compound 3m in CDCl₃

SMK-D #186 RT: 0.83 AV: 1 NL: 5.71E8 T: FTMS + p ESI Full ms [100.00-1500.00]

¹H NMR Spectrum of Compound 3n in CDCl₃

DEPT-135 NMR Spectrum of Compound 3n in CDCl₃

¹H NMR Spectrum of Compound 30 in CDCl₃

DEPT-135 NMR Spectrum of Compound 30 in CDCl₃

HRMS Spectrum of Compound 3o

¹H NMR Spectrum of Compound 3p in CDCl₃

DEPT-135 NMR Spectrum of Compound 3p in CDCl₃

HRMS Spectrum of Compound 3p

¹H NMR Spectrum of Compound 5a in CDCl₃

DEPT-135 NMR Spectrum of Compound 5a in CDCl₃

HRMS Spectrum of Compound 5a

¹H NMR Spectrum of Compound 5b in CDCl₃

DEPT-135 NMR Spectrum of Compound 5b in CDCl₃

HRMS Spectrum of Compound 5b

¹H NMR Spectrum of Compound 7a in CDCl₃

 $^{\rm 13}{\rm C}\,{\rm NMR}$ Spectrum of Compound 7a in CDCl_3

DEPT-135 NMR Spectrum of Compound 7a in CDCl₃

¹³C NMR Spectrum of Compound 7b in CDCl₃

DEPT-135 NMR Spectrum of Compound 7b in CDCl₃

¹H NMR Spectrum of Compound 7c in CDCl₃

DEPT-135 NMR Spectrum of Compound 7c in CDCl₃

 ^1H NMR Spectrum of Compound 7d in CDCl_3

HRMS Spectrum of Compound 7d

¹³C NMR Spectrum of Compound 7e in CDCl₃

HRMS Spectrum of Compound 7e

¹H NMR Spectrum of Compound 7f in CDCl₃

¹³C NMR Spectrum of Compound 7f in CDCl₃

HRMS Spectrum of Compound 7f

¹³C NMR Spectrum of Compound 7g in CDCl₃

HRMS Spectrum of Compound 7g

¹³C NMR Spectrum of Compound 7h in CDCl₃

HRMS Spectrum of Compound 7h

¹H NMR Spectrum of Compound 7i in CDCl₃

 $^{\rm 13}{\rm C}$ NMR Spectrum of Compound 7i in CDCl_3

HRMS Spectrum of Compound 7i

12. UV-vis absorption and PL spectra of 7a-i (in aggregation and thin film state)

Normalized absorption (blue) and PL (red) spectra of compound **7a** in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7a in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of **7a** in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μM, excitation wavelength: 380 nm.

Normalized absorption (blue) and PL (red) spectra of compound **7b** in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7b in THF/H2O mixtures with different water fraction (fw), Concentration: 50 $\mu M.$

PL spectra of **7b** in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 400 nm.

Normalized absorption (blue) and PL (red) spectra of compound 7c in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7c in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of 7c in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 400 nm.

Normalized absorption (blue) and PL (red) spectra of compound **7d** in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7d in THF/H2O mixtures with different water fraction (fw), Concentration: 50 $\mu M.$

PL spectra of 7d in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 400 nm.

Normalized absorption (blue) and PL (red) spectra of compound 7e in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7e in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of 7e in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 380 nm.

Normalized absorption (blue) and PL (red) spectra of compound **7f** in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7f in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of **7f** in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μM, excitation wavelength: 400 nm.

Normalized absorption (blue) and PL (red) spectra of compound **7g** in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7g in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of 7g in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 380 nm.

Normalized absorption (blue) and PL (red) spectra of compound **7h** in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of **7h** in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of **7h** in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 380 nm.

Normalized absorption (blue) and PL (red) spectra of compound 7i in thin film. (Excitation wavelength: 400 nm)

Absorption spectra of 7i in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M.

PL spectra of 7i in THF/H₂O mixtures with different water fraction (fw), Concentration: 50 μ M, excitation wavelength: 400 nm.

13. Cell viability assay

Cytotoxic properties of synthesized compounds were studied against A549, HepG2, HL60 and U937 cells. A549 and HepG2 cells were maintained in complete tissue culture medium DMEM and, HL60 and U937 cells were maintained in RPMI with 10% Fetal Bovine Serum and 2mM L-Glutamine, along with antibiotics (about 100 International Unit/mL of penicillin, 100 μ g/mL of streptomycin) with the pH adjusted to 7.2. 50 μ L medium containing 5000 cells/well and different concentrations of synthesized compound **7i** were seeded in 96 well plates. The cells were cultivated at 37°C with 5% CO₂ and 95% air in 100% relative humidity. 20 μ L AQueous one solution reagent was added per well of CellTiter 96® according to manufacture guidelines and incubated at 37°C for 1–4 h in a humidified, 5% CO₂ atmosphere. The cytotoxicity against cells was determined by measuring the absorbance of the converted dye at 490 nm in an ELISA reader. Cytotoxicity of each sample was expressed as IC₅₀ value.

Cell viability assay in A549, HepG2, HL60 and U937 cells using MTS reagent. Cells have been incubated with Compound 7i (0-50 μ M) for 48 h.

14. Cell imaging

Compound 7i was examined for intracellular imaging in A549, HepG2, HL60 and U937 cells. A549 and HepG2 cells were grown in DMEM and, HL60 and U937 cells were grown in RMPI media with 10% fetal bovine serum, 1% penicillin/streptomycin at 37 °C with 5% CO₂ atmosphere for 24 h. Then, all the cells were incubated at 37°C first with 5 μ M of compound for 30 min. After thorough washing with PBS, the cells were stained with 2 μ M of staining dyes DAPI and PI at 37°C for another 20 min. The cells were again washed thrice with PBS. Finally, the green fluorescence images of A549, HepG2, HL60 and U937 cells treated with 7i and DAPI stained blue fluorescence images were captured using under confocal laser scanning microscope (ZEISS, LSM710).

In vitro imaging in U937, HepG2, A549 and HL60 cells. (A) Row 1 (a1–a4): untreated U937 cells; Row 2 (b1–b4): U937 cells treated with 5 μ M 7i for 30 min; (B) Row 1 (a1–a4): untreated HepG2cells; Row 2 (b1–b4): A549 cells treated with 5 μ M 7i for 30 min; (C) Row 1 (a1–a4): untreated A549 cells; Row 2 (b1–b4): HL60 cells treated with 5 μ M 7i for 30 min; (D) Row 1 (a1– a4): untreated HL60 cells; Row 2 (b1–b4): HepG2 cells treated with 5 μ M 7i for 30 min. For A, B, C and D, Column 1 (a1–b1): DAPI stained blue fluorescence images; Column 2 (a2–b2): green fluorescence images; Column 3 (a3–b3): PI stained red fluorescence images; Column 4 (a4–b4): merging of all fluorescence images; 488 nm and 561 nm for green fluorescence images; 561 nm and 633 nm for red fluorescence images.