Supporting Information

Radical fluorination powered expedient synthesis of 3fluorobicyclo[1.1.1]pentan-1-amine

Yi Ling Goh and Vikrant A. Adsool*

Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology, and Research (A*STAR) 8 Biomedical Grove, Neuros Building, # 07-01, Singapore 138665 (Singapore) *vikrant_adsool@ices.a-star.edu.sg

Table of contents

General Information	
Materials	S2
Instrumentation	S2
Experimental Procedures	
General procedure for the decarboxylative fluorination of bicyclo[1.1.1]pentane-1,3-	
dicarboxylic acid (3) to 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (4)	S3
Scale-up synthesis of 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3)	S4
Procedure of bicyclo[1.1.1]pentane derivatives	S5
¹ H NMR, ¹³ C NMR, ¹⁹ F NMR spectra, Single X-ray crystal structures	S9

General Information

Materials. All chemicals were purchased from Sigma-Aldrich, Alfa Aesar and Merck were used as received. Anhydrous *t*-BuOH was taken from Sure/Seal[™] bottle (Sigma-Aldrich). Deionised water was degassed with the sonicator followed by bubbling nitrogen. All reactions requiring anhydrous conditions were carried out under argon atmosphere using oven-dried glassware unless otherwise stated. Reaction progress was monitored using Merck 60 F254, 0.25 µm silica gel plates (TLC plates) and spots were visualized by UV and/or potassium permanganate, or ceric ammonium molybdate stain, and/or ninhydrin stain. Flash column chromatography was carried out using Merck 60 F254, 0.040-0.063 µm silica gel. Preparative TLC chromatography was carried out using Merck 60 F254, 0.25 µm silica gel plates. Names of structures were generated using ChemBioDraw ultra 14.0.0.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) and fluorine (¹⁹F NMR) spectra were recorded on Bruker 400 MHz with CryoProbe. Chemical shifts for protons were reported in parts per million (ppm) that are referenced to residual protium in the NMR solvent (CDCl₃: 7.26 ppm; CD₃OD: 3.31 ppm). Chemical shifts for carbon were reported in ppm referenced to the carbon resonances of the NMR solvent (CDCl₃: 77.16 ppm; CD₃OD: 49.0 ppm). NMR Spectra were processed using MestReNova 10.0.1. Data is presented as follows: chemical shift, multiplicity (s = singlet, d = doublet), integration and coupling constants (*J*) in Hertz (Hz). Electron impact mass spectra (EIMS) were measured using a Finnigan MAT95XP double-focusing mass spectrometer. High resolution electrospray ionization (HRMS ESI) mass spectra were recorded using Agilent 6210 Time-of-Flight LC/MS. Infrared (IR) spectra were measured on a PerkinElmer Spectrum100 FT-IR spectrophotometer. Differential scanning calorimetry and melting point (uncorrected) were measured by BÜCHI B-540.

Experimental Procedures

General procedure for the optimization studies of decarboxylative fluorination of bicyclo[1.1.1]pentane-1,3dicarboxylic acid (4) to 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3).

To a RBF containing bicyclo[1.1.1]pentane-1,3-dicarboxylic acid (4)* (100 mg, 0.425 mmol) was added AgNO₃ (5, 7.5, 10 or 20 mol%) and SELECTFLUOR® (1.3, 1.8 or 2.5 eq.), was thoroughly flushed with argon under a condenser. To this mixture was added deoxygenated water (3.2 mL, 0.2 M) and stirred at 50, 65 or 90 °C for 16 h. The reaction was allowed to cool to rt and extracted with diethyl ether. This ether extract was dried over sodium sulphate, filtered and evaporated to dryness. This solid was re-dissolved in pentane and filtered slowly. The filtrate was concentrated *in vacuo* to afford **3** as a white solid.

To recover starting material **4** (if any), the remaining residue above was washed with DCM, dissolved with diethyl ether and filtered. The ether filtrate was concentrated *in vacuo* to recover **4** as a pale yellow solid.

*The bicyclo[1.1.1]pentane-1,3-dicarboxylic acid (4) was obtained from TCG Lifesciences (~\$150/gram).

 Table 1 Optimization studies for the decarboxylative fluorination of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid

 (4) to 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid

Entry	AgNO ₃ (mol%)	SELECTFLUOR [®] (eq.)	Temp (°C)	3 (%)	Recovered 4 (%)
1	10	1.8	65	50%	~2%
2	10	1.8	90	47%	0%
3	10	1.8	50	56%	4%
4	10	1.3	65	49%	18%
5	20	1.8	65	50%	4%
6	10	2.5	65	63%	4%
7	7.5	2.5	65	67%	8%
8	5 ^a	2.5	65	50% ^a	27%

^a Inconsistent yields were observed when AgNO₃ is 5 mol% or lower.

Scale-up of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid (4) to 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3).

To a RBF containing bicyclo[1.1.1]pentane-1,3-dicarboxylic acid (4) (3.0 g, 19.2 mmol) was added $AgNO_3$ (245 mg, 1.44 mmol, 7.5 mol%) and SELECTFLUOR® (17.02 g, 48.0 mmol, 2.5 eq.), was thoroughly flushed with argon under a condenser. To this mixture was added deoxygenated water (96 mL) and stirred at 65 °C for 16 h. The reaction was allowed to cool to rt and extracted with diethyl ether. This ether extract was dried over sodium sulphate, filtered and evaporated to dryness. This solid was re-dissolved in pentane and filtered slowly. The filtrate was concentrated *in vacuo* to afford **3** (1.62 g, 65%) as a white solid.

The remaining residue above was washed with DCM, dissolved with diethyl ether and filtered. The ether filtrate was concentrated *in vacuo* to recover **4** (271 mg, 9%) as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 2.40 (d, J (H,F) = 2.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5 (d, J (C,F) = 36.7 Hz), 74.8 (d, J (C,F) = 328.9 Hz), 55.7 (d, J (C,F) = 22.1 Hz), 28.1 (d, J (C,F) = 47.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -149.8. HRMS: (ESI TOF) *m/z*: [M-H]⁻ Calcd for C₆H₆FO₂ *m/z* 129.0357; Found 129.0352. IR: 2933.5, 1686.9, 1521.5, 1430.7, 1325.8, 1260.0, 1219.0, 1055.4, 945.1, 747.6, 614.2 cm⁻¹. Differential scanning calorimetry (DSC): thermal potential of – 699 J/g with an onset temperature of 203 °C. mp: 123 °C. Single X-ray crystal: slow evaporation of **4** in pentane in the refrigerator.

Entry	SM	AgNO3 (mol %)	SELECTFLUOR [®] (eq.)	4 (%)	Recovered 3 (%)
1	0.5 g	7.5	1.8	59%	8%
2	1 g	7.5	2.5	68%	2%
3	1 g	5	2.5	43%	28%
4	1 g	10	2.5	63%	0%
5	3 g	7.5	2.5	65%	9%
6	3 g	10	2.5	64%	0%

 Table 2 Scale-up studies for the decarboxylative fluorination of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid (4) to

 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3).

3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3) from 3-(methoxycarbonyl)bicyclo[1.1.1]pentane-1-carboxylic acid (8).

To a RBF containing 3-(methoxycarbonyl)bicyclo[1.1.1]pentane-1-carboxylic acid **(8)** (100 mg; 0.588 mmol) was added AgNO₃ (20.0 mg, 0.188 mmol, 20 mol%) and SELECTFLUOR® (416 mg, 1.18 mmol, 2 eq), was thoroughly flushed with argon under a condenser. To this mixture was added deoxygenated water (2.9 mL) and stirred at 65 °C for 16 h. The reaction was allowed to cool to rt and extracted with diethyl ether. To this ether extract was added NaOH (42.3 mg, 1.058 mmol, 1.8 eq.) dissolved in 3:1 THF:H₂O (2.9 mL), forming a biphasic reaction mixture. This mixture was stirred at 50 °C for 16 h. The reaction was allowed to cool to rt and extracted with diethyl ether, and the organic layer separated. The aqueous layer was acidified with 2 N HCl and extracted with diethyl ether, dried over sodium sulphate, filtered and evaporated to dryness. This solid was re-dissolved in pentane and filtered slowly. The filtrate was concentrated *in vacuo* to afford **3** (24.3 mg, 32%) as a white solid.

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13) and 1,3-bis(3-fluorobicyclo[1.1.1]pentan-1-yl)urea (14).

with decreasing scale of reaction.

To a dried 2-necked RBF (heatgun dried under vacuum) was added 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3) (2.33 g, 17.9 mmol), was thoroughly flushed with argon under a condenser. Anhydrous *t*-BuOH (24 mL) followed by Et₃N (2.62 mL, 18.8 mmol, 1.05 eq.) were added. DPPA (3.93 mL, 18.3 mmol, 1.02 eq.) was added dropwise into the reaction mixture within 15 min and stirred at rt for 2 h, followed by refluxing for another 3 h. The reaction mixture was evaporated under reduced pressure and diluted with diethyl ether. This ether extract was washed with saturated bicarbonate, dried over sodium sulphate, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography (gradient elution from 0:100 to 100:0 with product **13** eluting from 10:90 to 15:85 and urea side product **14** eluting from 70:30 to 90:10 diethyl ether-pentane) to afford **13** (3.0 g, 83%) as a white solid. The isolated urea side product was further purified by trituration with diethyl ether:DCM mixture (10:0.5) to afford **14** (52 mg, 2.6%) a white solid.

Note: **13** can also be carried to the next step without purification by eluting the reaction mixture through a short pad of silica with 20% diethyl ether in pentane.

13: ¹H NMR (400 MHz, CDCl₃) δ 2.32 (br d, J (H,F) = 1.8 Hz, 6H)*, 1.45 (s, 9H). ¹H NMR (400 MHz, CD₃OD) δ 2.25 (d, J (H,F) = 2.1 Hz, 6H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 80.3, 76.9 (d, J (C,F) = 315.6 Hz), 55.4 (d, J (C,F) = 20.4 Hz), 40.0 (d, J (C,F) = 71.5 Hz), 28.5. ¹³C NMR (101 MHz, CD₃OD) δ 157.4, 80.5, 77.8 (d, J (C,F) = 314.3 Hz), 55.8 (d, J (C,F) = 20.3 Hz), 40.4 (d, J (C,F) = 70.6 Hz), 28.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -169.1. IR: 3347.3, 2996.1, 1688.7, 1508.0, 1252.2, 1164.5, 1017.8, 613.5 cm⁻¹. DSC: thermal potential of -431 J/g with an onset temperature of 233 °C. mp : 137 °C. Single X-ray crystal: slow evaporation of **13** in pentane at rt.

*Doublet is a broad peak. Depending on the concentration, coupling constant could range from 1.7 to 2.1 ppm. **14:** ¹H NMR (400 MHz, CD₃OD) δ 2.27 (d, J (H, F) = 2.1 Hz, 6H). ¹³C NMR (101 MHz, CD₃OD) δ 159.5, 77.7 (d, J (C, F) = 314.4 Hz), 56.0 (d, J (C, F) = 20.3 Hz), 40.6 (d, J (C, F) = 70.9 Hz). ¹⁹F NMR (376 MHz, CD₃OD) δ -169.9. HRMS: (ESI TOF) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₅F₂N₂O *m/z* 229.1147; Found 229.1145. (ESI TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₅F₂N₂O *m/z* 229.1147; Found 229.1145. (ESI TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₄F₂N₂NaO m/z 251.0966 ; Found 251.0963. IR: 3550.1, 3016.1, 1641.2, 1562.3, 1244.8, 1086.9, 588.2 cm⁻¹. DSC: thermal potential of - 1777 J/g with an onset temperature of 247 °C. mp: 235 - 238 °C (decomposition). Single X-ray crystal: Layering technique with **14** dissolved in DCM layered with diethyl ether on top.

3-fluorobicyclo[1.1.1]pentan-1-aminium chloride (2.HCl).

To tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate **(13)** (3.0 g, 14.9 mmol) was added 4 N HCl in dioxane (37 mL, 149 mmol, 10 eq.) and stirred overnight at rt. Reaction mixture was then evaporated to dryness to furnish the crude product as a pale yellow solid. This residue was then washed with diethyl ether followed by DCM, to afford **2.HCl** (1.97 g, 96%) as a white solid.

¹H NMR (400 MHz, CD₃OD) δ 2.43 (d, J (H,F) = 2.0 Hz, 6H). ¹³C NMR (101 MHz, CD₃OD) δ 76.1 (d, J (C,F) = 321.7 Hz), 55.5 (d, J (C,F) = 21.2 Hz), 39.4 (d, J (C,F) = 71.3 Hz). ¹⁹F NMR (376 MHz, CD₃OD) δ -171.3. HRMS: (ESI TOF) *m/z*: [M+H-HCI]⁺ Calcd for C₅H₉FN *m/z* 102.0714; Found 102.0718. IR: 3021.4.2, 2774.1, 1477.3, 1335.9, 1249.9, 1085.3, 589.4 cm⁻¹. DSC: thermal potential of -1260 J/g with an onset temperature of 224 °C. mp: 160 °C

methyl 3-((tert-butylperoxy)carbonyl)bicyclo[1.1.1]pentane-1-carboxylate (12).

To a solution of 3-(methoxycarbonyl)bicyclo[1.1.1]pentane-1-carboxylic acid **(8)** (100 mg, 0.588 mmol) in DCM (2 mL), was added DMAP (5.74 mg, 0.047 mmol, 8 mol%), followed by a 70% w/w solution of *tert*-butylhydroperoxide in water (83.3 μ L, 0.646 mmol, 1.1 eq.), and stirred at 0 °C for 5 min. To this reaction mixture was added a solution of DCC (139 mg, 0.676 mmol, 1.15 eq.) in DCM (1 mL), and the resulting mixture was stirred at 0 °C for 30 min. The reaction mixture was then allowed to warm to rt and stir for 16 h. The reaction mixture was evaporated and filtered through a short pad of silica gel with 20% diethyl ether in petroleum ether, followed by purification with silica gel flash chromatography (gradient elution from 0:100 to 20:80 with product **12** eluting from 10:90 to 15:85 diethyl ether-petroleum ether) to afford **12** (102 mg, 72%) as a colourless solid.*

*We have observed that the compound turns yellow on standing overnight in the refrigerator; however, no significant decomposition of the product was observed after prolonged storage (>30 days) under cold conditions (- 20 °C). We have employed both freshly prepared and stored **12** as starting material in our experiments and have observed similar outcomes.

¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 3H), 2.38 (s, 6H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 166.4, 84.0, 53.4, 52.0, 38.6, 35.9, 26.2. HRMS: (ESI TOF) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₉O₅ *m/z* 243.1227; Found 243.1227. (ESI TOF) *m/z*: [M+Na]⁺ Calcd for C₁₂H₁₈NaO₅ *m/z* 265.1046; Found 265.1058. IR: 2991.2, 1766.9, 1724.6, 1367.9, 1343.2, 1263.7, 1207.2, 1104.8, 1004.2 cm⁻¹.

ethyl 3-((tert-butylperoxy)carbonyl)bicyclo[1.1.1]pentane-1-carboxylate (12a).

To a solution of 3-(ethoxycarbonyl)bicyclo[1.1.1]pentane-1-carboxylic acid **(8a)** (500 mg, 2.72 mmol) in DCM (7 mL), was added DMAP (26.5 mg, 0.217 mmol, 8 mol%), followed by a 70% w/w solution of *tert*-butylhydroperoxide in water (384 μ L, 2.98 mmol, 1.1 eq.), and stirred at 0 °C for 5 min. To this reaction mixture was added a solution of DCC (644 mg, 3.12 mmol, 1.15 eq.) in DCM (6.5 mL), and the resulting mixture was stirred at 0 °C for 30 min. The reaction mixture was then allowed to warm to rt and then stir for 16 h. The reaction mixture was evaporated and filtered through a short pad of silica gel with 20% diethyl ether in petroleum ether, followed by purification with

silica gel flash chromatography (gradient elution from 0:100 to 20:80 with product **12a** eluting from 10:90 to 20:80 diethyl ether-petroleum ether) to afford **12a** (490 mg, 70%) as a pale yellow oil.*

*No significant decomposition of the product was observed after prolonged storage (>20 days) under cold conditions (-20 °C). We have employed both freshly prepared and stored **12a** as starting material in our experiments and have observed similar outcomes.

¹H NMR (400 MHz, CDCl₃) δ 4.14 (q, J = 7.1 Hz, 2H), 2.37 (s, 6H), 1.31 (s, 9H), 1.26 (t, J = 7.1 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 166.2, 83.8, 60.8, 53.2, 38.6, 35.6, 26.1, 14.1. IR: 2981.8, 1773.1, 1733.7, 1369.2, 1269.1, 1204.8, 1022.5 cm⁻¹.

ethyl 3-phenylbicyclo[1.1.1]pentane-1-carboxylate (15).

To ethyl 3-((tert-butylperoxy)carbonyl)bicyclo[1.1.1]pentane-1-carboxylate **(12a)** (50 mg, 0.195 mmol) was added to a sealed tube, was thoroughly flushed with argon. Benzene (1 mL) was added and the reaction mixture stirred at 110 °C for 16 h. The reaction mixture was evaporated under reduced pressure and diluted with diethyl ether. The organics was washed with saturated bicarbonate, dried over sodium sulphate, filtered and concentrated *in vacuo*. The residue was purified by preparative TLC chromatography (8% diethyl ether in petroleum ether) to afford **15** (7 mg, 17%) as a colourless oil. The remaining aqueous layer was acidified with 6 N HCl and extracted with diethyl ether, dried over sodium sulphate, filtered and concentrated *in vacuo* to afford **8a** (10 mg, 28%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.26 – 7.20 (m, 3H), 4.17 (q, J = 7.1 Hz, 2H), 2.32 (s, 6H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 139.9, 128.4, 127.0, 126.2, 60.7, 53.5, 41.8, 37.3, 14.4. IR: 2978.6, 1729.2, 1371.2, 1296.4, 1200.2, 1112.9, 1016.7, 749.5, 697.9 cm⁻¹. ¹H NMR, ¹³C NMR, ¹⁹F NMR Spectra and X-ray crystal structures

3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3), ¹³C NMR (101 MHz, CDCl₃)

3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3), ¹⁹F NMR (376 MHz, CDCl₃)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm) Single X-ray crystal structure of 3-fluorobicyclo[1.1.1]pentane-1-carboxylic acid (3).

Bond lengths (Å).

C1-O2	1.2611(19)	C1-01	1.2674(19)
C1-C2	1.482(2)	C2-C5	1.550(2)
C2-C4	1.555(2)	C2-C3	1.567(2)
C2-C6	1.815(2)	C3-C6	1.531(2)
C4-C6	1.536(2)	C5-C6	1.537(2)
C6-F1	1.3678(18)		

Bond angles (°)

02-C1-01	124.32(14)	O2-C1-C2	118.51(14)
01-C1-C2	117.11(14)	C1-C2-C5	128.26(15)
C1-C2-C4	128.34(13)	C5-C2-C4	88.81(12)
C1-C2-C3	122.76(13)	C5-C2-C3	88.11(12)
C4-C2-C3	87.69(12)	C1-C2-C6	175.97(13)
C5-C2-C6	53.64(10)	C4-C2-C6	53.57(9)
C3-C2-C6	53.21(9)	C6-C3-C2	71.71(11)
C6-C4-C2	71.90(11)	C6-C5-C2	72.03(11)
F1-C6-C3	124.84(14)	F1-C6-C4	125.68(14)
C3-C6-C4	89.69(12)	F1-C6-C5	125.53(14)
C3-C6-C5	89.93(13)	C4-C6-C5	89.99(13)
F1-C6-C2	179.79(16)	C3-C6-C2	55.08(9)
C4-C6-C2	54.53(9)	C5-C6-C2	54.33(9)

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13), ¹H NMR (400 MHz, CDCl₃)

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13), ¹³C NMR (101 MHz, CDCl₃)

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13), ¹⁹F NMR (376 MHz, CDCl₃)

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13), ¹H NMR (400 MHz, CD₃OD)

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13), ¹³C NMR (101 MHz, CD₃OD)

tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13), ¹⁹F NMR (376 MHz, CD₃OD)

Single X-ray crystal structure of tert-butyl (3-fluorobicyclo[1.1.1]pentan-1-yl)carbamate (13).

Bond lengths (Å)

C1-N1	1.4223(18)	C1-C4A	1.532(7)
C1-C2	1.536(3)	C1-C3	1.540(3)
C1-C4	1.552(3)	C1-C2A	1.570(8)
C1-C3A	1.604(7)	C1-C5	1.812(2)
C2-C5	1.527(3)	C3-C5	1.542(3)
C4-C5	1.546(3)	C2A-C5	1.506(8)
C3A-C5	1.531(7)	C4A-C5	1.460(8)
C5-F1	1.3714(17)	C6-01	1.2121(17)
C6-O2	1.3431(17)	C6-N1	1.3485(18)
C7-O2	1.4785(17)	C7-C9	1.508(2)
C7-C8	1.514(2)	C7-C10	1.520(2)
C11-N2	1.4166(18)	C11-C14	1.541(2)
C11-C15	1.553(2)	C11-C13	1.556(2)
C11-C12	1.812(2)	C12-F2	1.3724(17)
C12-C14	1.518(2)	C12-C15	1.530(2)
C12-C13	1.530(2)	C16-O3	1.2143(17)
C16-O4	1.3456(17)	C16-N2	1.3469(19)
C17-O4	1.4767(17)	C17-C18	1.507(2)
C17-C19	1.507(2)	C17-C20	1.520(2)

Bond angles (°)

N1-C1-C4A	127.1(3)	N1-C1-C2	127.25(16)
N1-C1-C3	128.18(15)	C2-C1-C3	89.29(19)
N1-C1-C4	122.84(15)	C2-C1-C4	88.80(18)
C3-C1-C4	88.17(17)	N1-C1-C2A	126.6(3)
C4A-C1-C2A	87.5(4)	N1-C1-C3A	130.4(3)
C4A-C1-C3A	85.6(4)	C2A-C1-C3A	85.2(4)
N1-C1-C5	176.77(13)	C4A-C1-C5	50.9(3)
C2-C1-C5	53.51(13)	C3-C1-C5	54.03(12)

C4-C1-C5	54.04(13)	C2A-C1-C5	52.3(3)
C3A-C1-C5	52.8(3)	C5-C2-C1	72.52(15)
C1-C3-C5	72.01(14)	C5-C4-C1	71.60(14)
C5-C2A-C1	72.1(4)	C5-C3A-C1	70.5(3)
C5-C4A-C1	74.5(3)	F1-C5-C4A	125.3(3)
F1-C5-C2A	124.5(3)	C4A-C5-C2A	92.6(4)
F1-C5-C2	126.11(17)	F1-C5-C3A	123.5(3)
C4A-C5-C3A	90.8(4)	C2A-C5-C3A	90.0(4)
F1-C5-C3	126.06(16)	C2-C5-C3	89.57(19)
F1-C5-C4	125.55(16)	C2-C5-C4	89.36(18)
C3-C5-C4	88.33(18)	F1-C5-C1	179.90(17)
C4A-C5-C1	54.6(3)	C2A-C5-C1	55.6(3)
C2-C5-C1	53.97(13)	C3A-C5-C1	56.6(3)
C3-C5-C1	53.95(12)	C4-C5-C1	54.36(12)
O1-C6-O2	125.93(13)	O1-C6-N1	123.90(13)
O2-C6-N1	110.15(12)	O2-C7-C9	108.76(12)
02-C7-C8	111.85(12)	C9-C7-C8	113.87(15)
O2-C7-C10	102.64(12)	C9-C7-C10	110.36(14)
C8-C7-C10	108.78(13)	N2-C11-C14	122.94(13)
N2-C11-C15	127.65(13)	C14-C11-C15	88.18(12)
N2-C11-C13	129.43(13)	C14-C11-C13	87.80(12)
C15-C11-C13	87.79(12)	N2-C11-C12	175.88(13)
C14-C11-C12	53.07(9)	C15-C11-C12	53.39(9)
C13-C11-C12	53.38(9)	F2-C12-C14	125.47(14)
F2-C12-C15	125.16(13)	C14-C12-C15	89.90(13)
F2-C12-C13	125.80(14)	C14-C12-C13	89.61(13)
C15-C12-C13	89.58(12)	F2-C12-C11	179.49(15)
C14-C12-C11	54.27(9)	C15-C12-C11	54.59(9)
C13-C12-C11	54.70(9)	C12-C13-C11	71.91(11)
C12-C14-C11	72.66(11)	C12-C15-C11	72.02(10)
O3-C16-O4	126.01(13)	O3-C16-N2	124.63(13)
O4-C16-N2	109.35(12)	O4-C17-C18	112.23(12)
O4-C17-C19	108.51(13)	C18-C17-C19	112.92(16)
O4-C17-C20	101.82(12)	C18-C17-C20	110.04(14)
C19-C17-C20	110.77(15)	C6-N1-C1	121.96(12)
C16-N2-C11	122.58(12)	C6-O2-C7	120.81(11)
C16-O4-C17	121.99(11)		

1,3-bis(3-fluorobicyclo[1.1.1]pentan-1-yl)urea (14), ¹³C NMR (101 MHz, CD₃OD)

1,3-bis(3-fluorobicyclo[1.1.1]pentan-1-yl)urea (14), ¹⁹F NMR (376 MHz, CD₃OD)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

1,3-bis(3-fluorobicyclo[1.1.1]pentan-1-yl)urea (14).

Bond lengths (Å)

C1-01	1.235(2)	C1-N1	1.3568(16)
C1-N1	1.3569(16)	C2-N1	1.4186(19)
C2-C5A	1.525(10)	C2-C4	1.533(10)
C2-C3	1.536(6)	C2-C4A	1.549(11)
C2-C3A	1.561(7)	C2-C5	1.566(8)
C2-C6	1.810(2)	C3-C6	1.526(7)
C4-C6	1.543(11)	C5-C6	1.490(9)
C3A-C6	1.526(7)	C4A-C6	1.480(12)
C5A-C6	1.544(10)	C6-F1	1.3654(18)

Bond angles (°)

01-C1-N1	122.70(9)	01-C1-N1	122.69(9)
N1-C1-N1	114.61(17)	N1-C2-C5A	126.3(4)
N1-C2-C4	124.1(4)	N1-C2-C3	126.8(3)
C4-C2-C3	87.8(4)	N1-C2-C4A	126.7(5)
C5A-C2-C4A	86.9(5)	N1-C2-C3A	127.9(3)
C5A-C2-C3A	88.0(4)	C4A-C2-C3A	87.8(4)
N1-C2-C5	129.6(3)	C4-C2-C5	87.1(5)

C3-C2-C5	88.2(4)	N1-C2-C6	178.20(12)
C5A-C2-C6	54.3(4)	C4-C2-C6	54.2(4)
C3-C2-C6	53.5(3)	C4A-C2-C6	51.6(4)
C3A-C2-C6	53.2(3)	C5-C2-C6	51.8(3)
C6-C3-C2	72.5(3)	C2-C4-C6	72.1(5)
C6-C5-C2	72.6(4)	C6-C3A-C2	71.8(3)
C6-C4A-C2	73.4(5)	C2-C5A-C6	72.3(4)
F1-C6-C4A	123.9(4)	F1-C6-C5	125.1(3)
F1-C6-C3A	125.5(3)	C4A-C6-C3A	91.7(5)
F1-C6-C3	126.1(3)	C5-C6-C3	91.5(4)
F1-C6-C4	125.4(4)	C5-C6-C4	89.6(4)
C3-C6-C4	87.8(4)	F1-C6-C5A	127.1(4)
C4A-C6-C5A	88.7(4)	C3A-C6-C5A	88.6(4)
F1-C6-C2	179.02(14)	C4A-C6-C2	55.1(4)
C5-C6-C2	55.6(3)	C3A-C6-C2	55.0(3)
C3-C6-C2	54.0(2)	C4-C6-C2	53.7(4)
C5A-C6-C2	53.4(4)	C1-N1-C2	121.83(12)

3-fluorobicyclo[1.1.1]pentan-1-aminium chloride (2.HCl), ¹H NMR (400 MHz, CD₃OD)

3-fluorobicyclo[1.1.1]pentan-1-aminium chloride (2.HCl), ¹³C NMR (101 MHz, CD₃OD)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

methyl 3-((tert-butylperoxy)carbonyl)bicyclo[1.1.1]pentane-1-carboxylate (12), ¹H NMR (400 MHz, CDCl₃)

ethyl 3-((tert-butylperoxy)carbonyl)bicyclo[1.1.1]pentane-1-carboxylate (12a), ¹H NMR (400 MHz, CDCl₃)

ethyl 3-((tert-butylperoxy)carbonyl)bicyclo[1.1.1]pentane-1-carboxylate (12a), ¹³C NMR (101 MHz, CDCl₃)

ethyl 3-phenylbicyclo[1.1.1]pentane-1-carboxylate (15), ¹H NMR (400 MHz, CDCl₃)

