Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Total synthesis of a piperidine alkaloid, Microcosamine A

Chada Raji Reddy,*^[a] Bellamkonda Latha,^[a] Kamalkishor Warudikar^[a] and Kiran Kumar Singarapu^[b]

^aDivision of Natural Products Chemistry, ^bCentre for NMR & Structural Chemistry CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India E-mail: <u>rajireddy@iict.res.in</u>

Contents

Experimental procedures for preparation of 5 from 1-octyne (8), Scheme S1	:	S2-S3
Comparison of NMR data for natural and synthetic Microcosamine (2a), Table S1	•	S4
¹ H and ¹³ C NMR spectra of new compounds	:	S5-S36

Scheme S1: Preparation of conjugated alcohol 5 from 1-octyne (8)

To a solution of alkyne **8** (5.5 g, 50 mmol) in dry THF (100 mL) at -78 °C was added dropwise *n*-BuLi (24 mL, 2.5 M in hexanes, 60 mmol). The solution was stirred for 1 hour at same temperature before adding ethyl chloroformate (5.5 mL, 60 mmol) in THF (15 mL) at -78 °C. The reaction mixture was stirred at that temperature for 1 h and then warmed to 0 °C. After stirring for 1 h at 0 °C, the reaction was quenched with a saturated aqueous NH₄Cl solution (50 mL). The aqueous layer was separated and extracted with Et₂O (2 X 100 mL). The combined organic layers were washed with brine (50 mL) and dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Flash chromatography of the crude product over silica gel (hexanes/EtOAc 98:2) gave **20** (5.5 g, 65%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) : δ 4.22 (q, 2H, *J* = 7.0 Hz), 2.30-2.41 (m, 2H), 1.53-1.61 (m, 2H), 1.37-1.43 (m, 2H), 1.28-1.33 (m, 7H), 0.89 (t, 3H, *J* = 7.0 Hz); ¹³C NMR (75 MHz, CDCl₃) : δ 153.8, 89.4, 73.1, 61.7, 31.2, 28.5, 27.5, 22.4, 18.6; MS (EI): *m/z* 182 (M+H)⁺.

Ethyl (2*E*,4*E*)-nona-2,4-dienoate (21).

To a stirred solution of alkyne ester **20** (4.0 g, 21.9 mmol) in benzene (45 mL) at room temperature was added PPh₃ (5.75 g, 21.9 mmol) and phenol (2.05 g, 21.9 mmol). The resulting reaction mixture was stirred at room temperature for 12 h. The solution was then diluted with diethyl ether (50 mL) and 1 N NaOH (30 mL), and the organic layer was separated. The aqueous layer was extracted with ether (2 x 50 mL) and the combined organic layers were washed water (50 mL), brine (50 mL), dried over Na₂SO₄ and evaporated under reduced pressure. The residue was dissolved in ether (100 mL) and MeI (2.0 mL) was added to the solution. The reaction mixture was stirred at room temperature for 3 h. Then, the solution was filtered, concentrated and purified by flash chromatography (silica gel, hexanes/EtOAc 97:3) to give diene **21** (3.7 g, 93%) as a light yellow oil. ¹H NMR (300 MHz, CDCl₃) : δ 7.26 (dd, 1H, *J* = 15.2, 9.3 Hz), 6.06-6.22 (m, 2H), 5.78 (d, 1H, *J* = 15.4 Hz), 4.19 (q, 2H, *J* = 7.1 Hz), 2.14-2.18 (m, 2H), 1.26-1.43 (m, 7H), 0.90 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 167.2, 145.0, 144.6, 128.3, 119.1, 60.1, 32.6, 30.8, 22.2, 14.2, 13.8.

(2E,4E)-Nona-2,4-dien-1-ol (5):

Compound **21** (3.0 g, 1.64 mmol) was taken in dry CH₂Cl₂ (15 mL), cooled to - 78 °C and DIBAL-H (1.0 M in toluene, 4.1 mL, 4.12 mmol) was added dropwise and stirred at that temperature for 15 min. The reaction mixture was slowly warmed to 0 °C, stirred for 1 h. The reaction was then quenched by slow addition of saturated potassium-sodium tartrate solution (10 mL) and brought to room temperature. The reaction mixture was stirred until two layers got separated. Organic layer was taken out, and aqueous layer was further extracted with CH₂Cl₂ (2 x 10 mL), combined organic layers were washed with brine and dried over Na₂SO₄. Solvents were evaporated under reduced pressure. Flash chromatography of the residue over silica gel (hexanes/EtOAc 8:2) gave **5** (2.1 g, 92%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) : δ 6.17 (dd, *J* = 14.8, 10.4 Hz, 1H), 6.00 (dd, *J* = 14.8, 10.4 Hz, 1H), 5.67 (dt, *J* = 14.8, 6.7 Hz, 2H), 4.13 (d, *J* = 6.7 Hz, 2H), 2.05 (q, *J* = 6.7 Hz, 2H), 1.33 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 135.7, 132.2, 129.0, 128.6, 63.3, 32.0, 32.0, 21.9, 13.6.

no.	Natural		Synthetic		
	δ _C	$\delta_{\rm H} (J \text{ in Hz})$	δ _C	$\delta_{\rm H} (J \text{ in Hz})$	
2	58.4	2.50 (dq, J = 10.0, 6.4 Hz)	58.3	2.50-2.57 (m)	
3	73.6	3.13 (m)	73.6	3.14-3.23 (m)	
4	33.9	1.24-1.37 (m, Hax); 2.04 (m, Heq)	33.9	1.28-1.40 (m); 2.04-2.11 (m)	
5	32.0	1.24-1.37 (m, Hax); 1.71 (m, Heq)	31.9	1.28-1.40 (m); 1.71-1.77 (m)	
6	58.6	3.16 (m)	58.6	3.14-3.23 (m)	
1′	135.2	5.57 (dd, J = 15.2, 7.2 Hz)	135.0	5.66-5.73 (m)	
2'	130.1	6.13 (m)	130.1	5.98-6.11 (m)	
3'	130.4	6.14 (m)	130.4	6.11-6.22 (m)	
4′	132.9	6.15 (m)	132.9	6.11-6.22 (m))	
5'	129.9	6.04 (m)	129.8	5.98-6.11 (m)	
6'	135.6	5.67 (dt, J = 15.2, 7.2 Hz)	135.6	5.60 (dd, <i>J</i> = 15.2, 7.1 Hz)	
7′	32.5	2.07 (q, J = 7.2 Hz)	32.4	2.04-2.11 (m)	
8'	31.4	1.36 (m)	31.4	1.28-1.40 (m)	
9′	22.2	1.34 (m)	22.2	1.28-1.40 (m))	
10′	13.9	0.86 (t, J = 6.8 Hz)	13.9	0.89 (t, J = 7.1 Hz)	
CH ₃ -2	19.0	1.17 (d, J = 6.4 Hz)	18.9	1.20 (d, J = 6.1 Hz)	

 Table S1: Comparison of ¹H and ¹³C NMR (CDCl₃) data for natural and synthetic Microcosamine (2a)

ppm WA AN OMOM 1 0.0 1 Current Data Parameters TBSO NAME CRR-MIC-BOC-LATH 'ı, EXPNO 3 PROCNO 0.5 1 Boc F2 - Acquisition Paramete Date_ 20150803 17 0 Time 13.24 1.0 INSTRUM 0 * spect PROBHD 5 mm CPTCI 1H-PULPROG noesyph TD 2048 . 1.5 SOLVENT DMSO . NS 16 DS 16 1 11 ٥ . SWH 4201.681 F FIDRES 2.051602 F 2.0 AQ 0.2437620 ε RG 64 119.000 t DW DE 6.50 L TE D0 303.2 F 0.00011013 ε 2.5 1 D1 D8 2.00000000 s 0.50000000 s IN0 0.00023800 ε 3.0 CHANNEL f1 1H 6.97 ι 1 1 NUC1 0 6 P1 -3.5 PL1 2.60 c 0 . 0 PL1W 6.62584448 ¥ SF01 600.3317250 N F1 - Acquisition paramete TD 334 SF01 600.3317 N

. ..

1.5

2.0

.

1.0

0.5

4.0

0.0 ppm WDW

.

FIDRES

SW 4.5 FnMODE

SI SF

12.579825 F

States-TPPI

1024 600.3300000 N QSINE

F2 - Processing parameter

6.999 F

2D NOESY (Nuclear Overhauser effect spectroscopy) spectrum of compound 17 in DMSO-d6 recorded on 600 MHz spectrometer.

0

. .

3.5

4.5

4.0

1

3.0

2.5

Expansions of 2D NOESY spectrum of compound **17** in DMSO-d6 recorded on 600 MHz.

2D NOESY (Nuclear Overhauser effect spectroscopy) spectrum of compound 17a in DMSO-d6 recorded on 600 MHz spectrometer.

Expansions of 2D NOESY spectrum of compound **17** in DMSO-d6 recorded on 600 MHz.

