Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Reaction mechanisms in Ionic Liquids: Kinetics and mechanism of the reaction of *O*, *O*-diethyl *O*-(2,4-dinitrophenyl) phosphate triester with secondary alicyclic amines

Paulina Pavez*, Daniela Millán, Javiera Morales, Mabel Rojas, Daniel Céspedes, José G. Santos.

Facultad de Química. Pontificia Universidad Católica de Chile. Casilla 306, Santiago 6094411, Chile.

Author Information

*Corresponding authors. Tel.: +56-02-23541743; fax: +56-02-26864744; e-mail: ppavezg@uc.cl

Present address: Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 6094411, Chile.

Electronic supplementary information

Table of contents	
Table S1: Pseudo-first-order rate constants (k_{obsd}) for the reaction of 1 with the secondary	S2
alicyclic amines in [Bmim]BF ₄ at 25°C.	
Table S2: Pseudo-first-order rate constants (k_{obsd}) for the reaction of 1 with the secondary	S3
alicyclic amines in [Bmim]DCA at 25°C.	
Table S3: Pseudo-first-order rate constant (k_{obsd}), second-order rate constant (k_N^T),	S4
rate constant for nucleophilic attack at P (k_N^P) and rate constant for nucleophilic attack at	
aromatic C-1 (k_N^{Ar}) for the reaction of piperidine to 1 in [Bmim]BF4 at the 20-40°C range.	
Table S4: Pseudo-first-order rate constant (k_{obsd}) , second-order rate constant (k_N^T) , rate	S5
constant for nucleophilic attack at P (k_N^p) for the reaction of piperidine to 1 in [Bmim]DCA at	
the 20-40°C range.	
Table S5: Pseudo-first-order rate constant (k_{obsd}) , second-order rate constant (k_N^T) , rate	S 6
constant for nucleophilic attack at P (k_N^P) and rate constant for nucleophilic attack at aromatic	
C-1 $\binom{A^{Ar}}{N}$ for the reaction of piperidine to 1 in aqueous solution at the 20-40°C range.	
Figure S1: ³¹ P-NMR spectrum for the reaction of 1 with the secondary alicyclic amines in	S7
[Bmim]BF ₄ at the 25°C	
Figure S2: Plots k_{obsd}^P against SA amine concentration for the reaction of 1 with a) piperidine,	S8
b) morpholine and c) 1-(2-hydroxyethyl)piperazine in [Bmim]BF ₄ at the 25°C.	
Figure S3: Plots k_{obsd}^P against amine concentration for the reaction of 1 with a) piperidine, b) 1-	S 9
(2-hydroxyethyl)piperazine and c) Morpholine in [Bmim]DCA at the 25°C.	
Figure S4: Linear plot of k_{obsd} vs. [Formylpiperazine] ² in a)[Bmim]BF ₄ b) [Bmim]DCA.	S10
Figure S5: Double pK_a plot between pK_a values of SA amines in [Bmim]BF ₄ and Water	S10
Figure S6: Arrhenius and Eyring plots for the reaction of 1 with piperidine in [Bmim]DCA.	S11
Figure S7: Arrhenius and Eyring plots for the reaction of 1 with piperidine in [Bmim]BF ₄	S11
Figure S8: Arrhenius and Eyring plots for the reaction of 1 with piperidine in 44% w/w	S12
ethanol-water.	
Figure S9: ³¹ P-NMR spectrum for the reaction of 1 with piperidine in [Bmim]BF ₄ at the 20-	S12
40°C range.	
Kinetic Details.	S13

Table S1: Pseudo-first-order rate constants (k_{obsd}) for the reaction of **1** with the secondary alicyclic amines in [Bmim]BF₄ at 25°C±0.1.

Piper	idine	Morph	oline	
10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	
4.32	1.87	8.69	1.41	
5.62	7.79	9.78	1.87	
6.92	10.3	10.9	2.26	
9.51	20.9	12.2	2.59	
12.1	33.9	13.9	2.95	
14.7	48.2	15.2	3.59	
17.3	59.5	17.4	4.58	
-	-	19.6	4.88	
-	-	21.7	6.05	
1-(2-Hydroxyet	1-(2-Hydroxyethyl)-piperazine		1-Formylpiperazine	
10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	
9.51	2.21	1.31	0.357	
12.1	4.49	2.40	0.830	
13.4	6.74	3.48	1.09	
14.7	7.71	4.57	3.26	
16.0	8.42	5.65	4.22	
17.3	10.5	7.83	10.2	
-	-	10.0	13.4	
-	-	11.1	18.2	
-	-	12.2	23.5	
-	-	13.3 25.4		
-	-	14.4	30.6	

Pseudo first-order rate constants were reproducible within a \pm 5%

Table S2: Pseudo-first-order rate constants (k_{obsd}) for the reaction of **1** with the secondary alicyclic amines in [Bmim]DCA at 25°C±0.1.

		1-(2-Hydroxyethyl)-		
Piper	ridine	piperazine		
10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	
1.73	0.960	2.17	3.08	
4.32	2.60	3.50	5.56	
6.29	5.26	4.35	7.67	
9.51	7.66	8.70	13.9	
12.1	9.85	15.2	23.0	
14.7	11.3	-	-	
21.7	15.8	-	-	
Morpholine		1-Formylpiperazine		
10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	10 ³ [Amine]/M	$10^3 k_{\rm obsd}/{\rm s}^{-1}$	
0.870	0.413	0.870	0.129	
2.20	1.13	2.17	0.335	
3.50	1.87	3.48	0.524	
8.70	4.46	4.35	0.657	
15.2	8.32	8.70 1.78		
22.0	11.9	13.0	3.29	
		15.2	4.53	
		21.7	7.73	

Pseudo first-order rate constants were reproducible within a \pm 5%

Table S3: Pseudo-first-order rate constant (k_{obsd}), second-order rate constant (k_N^T), rate constant for nucleophilic attack at P (k_N^P) and rate constant for nucleophilic attack at aromatic C-1 (k_N^{Ar}) for the reaction of piperidine to 1 in [Bmim]BF₄ at the 20-40°C range.

Temperature 20°C±0.1		Temperature 25°C±0.1		Temperatur	re 30°C±0.1
10 ³ [Amine]/M	$10^2 k_{\rm obsd} / {\rm s}^{-1}$	10 ³ [Amine]/M	$10^2 k_{ m obsd}/{ m s}^{-1}$	10 ³ [Amine], M	$10^2 k_{\rm obsd}/{\rm s}^{-1}$
6.92	1.13	4.32	0.192	6.92	1.44
9.51	1.95	6.92	1.03	9.51	2.64
14.7	4.30	9.51	2.09	12.1	3.90
17.3	5.15	12.1	3.39	14.7	5.86
21.7	6.54	14.7	4.82	17.3	6.50
-	-	17.3	5.95	21.7	7.85

Temperature 35°C±0.1		Temperature 40 °C±0.1	
10^3 [Amine]/M $10^2 k_{\rm obsd}/{\rm s}^{-1}$		10 ³ [Amine]/M	$10^2 k_{\rm obsd}/{\rm s}^{-1}$
6.92	1.61	6.92	1.74
9.51	3.11	9.51	3.65
12.1	4.80	12.1	5.45
14.7	6.52	14.7	6.60
17.3	7.71	17.3	9.20
21.7	9.02	21.7	10.8

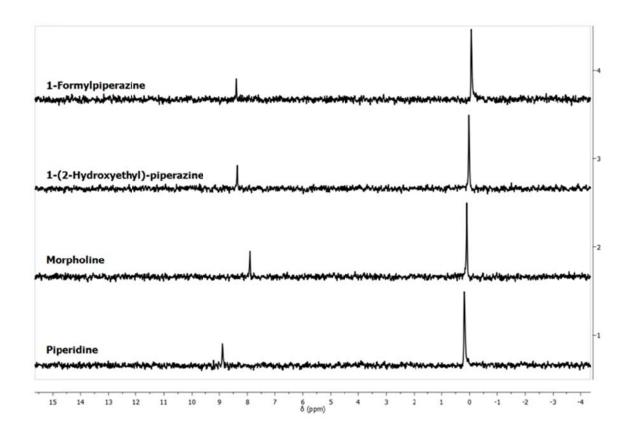
T °±0.1	$k_N^T/M^{-1}s^{-1}$	$k_N^P/M^{-1}s^{-1}$	k_N^{Ar}/M^{-1}
20	3.77	0.75	3.02
25	4.56	0.91	3.65
30	4.50	0.90	3.60
35	5.18	1.04	4.14
40	6.26	1.25	5.01

Table S4: Pseudo-first-order rate constant (k_{obsd}) , second-order rate constant (k_N^T) , rate constant for nucleophilic attack at P (k_N^P) and rate constant for nucleophilic attack at aromatic C-1 (k_N^{Ar}) for the reaction of piperidine to **1** in [Bmim]DCA at the 20-40°C range.

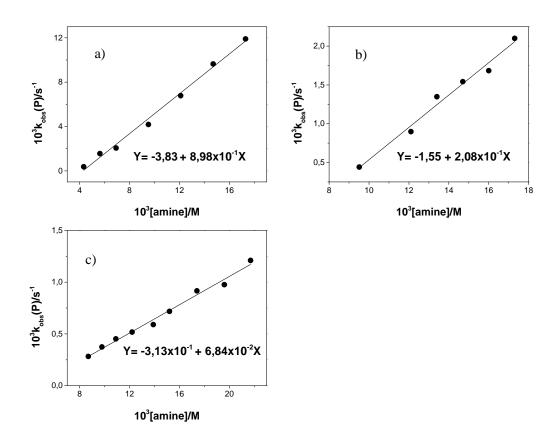
Temperature	Temperature 20°C±0.1		Temperature 25°C±0.1		e 30°C±0.1
10 ³ [Amine]/M	$10^2 k_{\rm obsd}/{\rm s^{-1}}$	10 ³ [Amine]/M	$10^2 k_{\rm obsd}/{\rm s}^{-1}$	10 ³ [Amine], M	$10^2 k_{\rm obsd}/{\rm s}^{-1}$
2.17	1.25	1.73	9.64	2.17	1.37
4.35	3.17	4.32	26.0	3.48	2.31
8.70	6.88	6.92	52.6	8.70	7.71
15.0	10.8	9.51	76.6	15.0	12.2
21.7	14.8	12.1	98.5	21.7	18.0
-	-	14.7	113	-	-
-	-	21.7	158	-	-

Temperature 35°C±0.1		Temperature	e 40 °C ±0.1
10 ³ [Amine]/M	$10^2 k_{\rm obsd}/{\rm s}^{-1}$	10 ³ [Amine]/M	$10^2 k_{\rm obsd}/{\rm s}^{-1}$
2.17	19.4	0.870	0.254
3.48	3.41	1.52	0.866
8.70	9.42	2.17	1.14
15.0	15.3	3.48	2.49
21.7	18.8	4.35	3.33
-	-	8.70	8.31

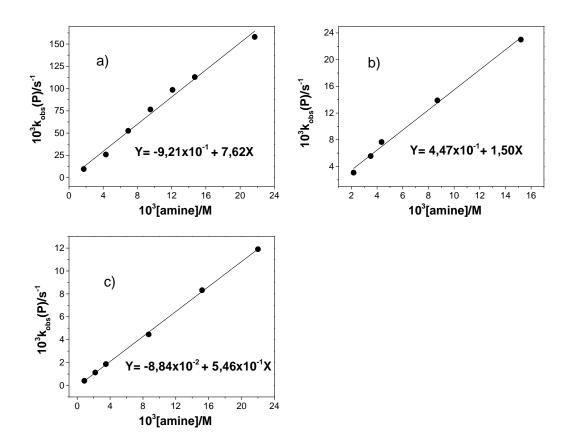
T °±0.1	$k_{N}^{P}/M^{-1}s^{-1}$
20	6.89
25	7.62
30	8.50
35	8.87
40	10.4


Table S5: Pseudo-first-order rate constant (k_{obsd}) , second-order rate constant (k_N^T) , rate constant for nucleophilic attack at P (k_N^T) and rate constant for nucleophilic attack at aromatic C-1 (k_N^{Ar}) for the reaction of piperidine to **1** in aqueous media at the 20-40°C range.

Temperature 20°C±0.1		Temperature 25°C±0.1		Temperatur	e 30°C ±0.1
10 ⁴ [Amine]/M	$10^4 k_{\rm obsd}/{\rm s}^{-1}$	10 ⁴ [Amine]/M	$10^4 k_{\rm obsd}/{\rm s}^{-1}$	10 ⁴ [Amine],M	$10^4 k_{\rm obsd} / {\rm s}^{-1}$
2.50	1.67	2.50	2.26	2.50	2.76
6.00	3.40	6.00	3.95	6.00	5.16
10.0	5.60	10.0	7.07	10.0	8.77
14.0	6.12	14.0	9.12	14.0	14.3
17.5	8.68	17.5	12.3	17.5	15.8
20.0	11.7	20.0	17.2	20.0	24.7


Temperature 35°C±0.1		7.1 Temperature 40 °C ±0.1	
10 ⁴ [Amine]/M	$10^4 k_{\rm obsd}/{\rm s}^{-1}$	10 ⁴ [Amine]/M	$10^4 k_{\rm obsd}/{\rm s}^{-1}$
2.50	5.13	2.50	9.14
6.00	9.70	6.00	16.3
10.0	16.6	10.0	20.9
14.0	25.4	14.0	29.3
17.5	35.0	17.5	31.8
20.0	35.4	20.0	49.3

T °±0.1	$k_N^T/M^{-1}s^{-1}$	$k_N^{Ar} / \mathbf{M}^{-1} \mathbf{s}^{-1}$	$k_{N}^{P}/\mathbf{M}^{-1}\mathbf{s}^{-1}$
20	0.59	0.12	0.47
25	0.60	0.12	0.48
30	0.93	0.18	0.74
35	1.77	0.35	1.42
40	2.21	0.44	1.77


Figure S1: 31 P-NMR spectrum for the reaction of **1** with the secondary alicyclic amines in [Bmim]BF₄ at the 25°C±0.1

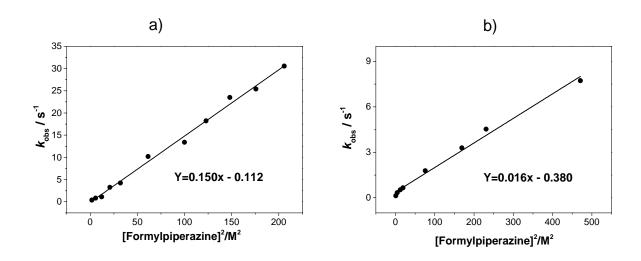

Figure S2: Plots k_{obsd}^P against amine concentration for the reaction of **1** with a) piperidine. b) morpholine and c) 1-(2-hydroxyethyl)piperazine in [Bmim]BF₄ at the 25°C±0.1.

Figure S3: Plots k_{obsd}^P against amine concentration for the reaction of **1** with a) piperidine, b) 1-(2-hydroxyethyl)piperazine and c) Morpholine in [Bmim]DCA at the 25°C±0.1

Figure S4. Linear plot of k_{obsd} vs. [Formylpiperazine]² in a) [Bmim]BF₄ and b) [Bmim]DCA.

Figure S5: Double pK_a plot between pK_a values of SA amines in [Bmim]BF₄ and Water

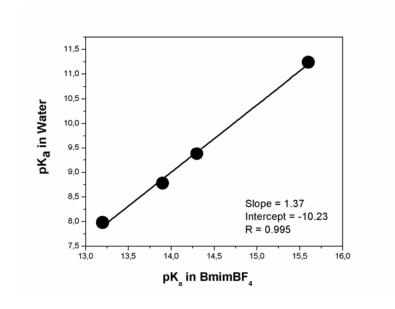
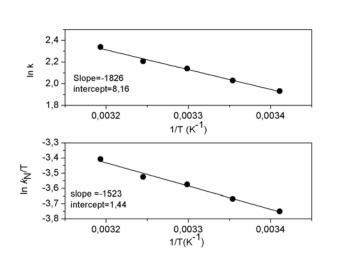
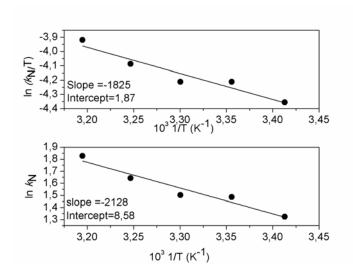
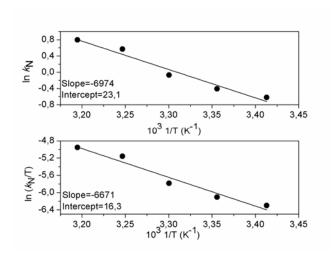


Figure S6: Arrhenius and Eyring plots for the reaction of 1 with piperidine in [Bmim]DCA.

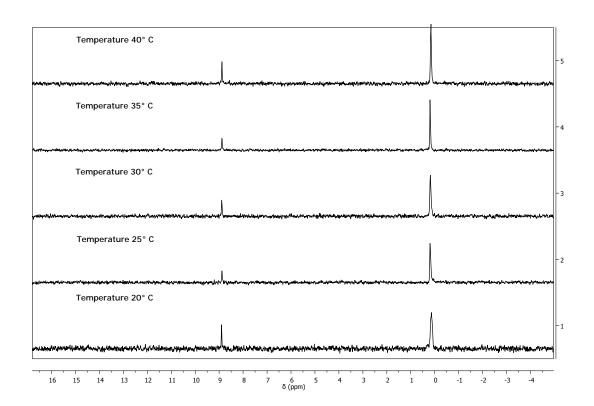

Figure S7: Arrhenius and Eyring plots for the reaction of 1 with piperidine in [Bmim]BF₄

Figure S8: Arrhenius and Eyring plots for the reaction of **1** with piperidine in 44% w/w ethanolwater.

Figure S9. ³¹P-NMR spectrum for the reaction of **1** with piperidine in [Bmim]BF₄ at the 20-40°C ± 0.1 range.

Kinetic Details. These were performed spectrophotometrically (diode array) in the range 300-500 nm, by following the appearance of products after at least four half-lives, by means of a Hewlett-Packard 8453 instrument. In a typical spectrophotometric measurement a quartz cuvette (light-path 0.2 cm) containing 500 μ L of ionic liquid was thermostated at 25°C during 10 minutes. The concentration of substrate 1 on the cell was 1.8 x 10⁻⁴ M, whilst the range concentrations of SA amines were 9 x 10⁻⁴ to 2.2 x 10⁻² M. The spectra were recorded at different reaction times and pseudo-first-order rate coefficients ($k_{\rm obsd}$) were found for all reactions. Each sample was made in triplicate. The ($k_{\rm obsd}$) values were obtained by means of the kinetic software of the spectrophotometer, at the wavelength where the greatest absorbance change was observed. The nucleophilic rate constants k_N^T were obtained as the slope of linear plots of $k_{\rm obsd}$ νs . free nucleophilic rate constant at the phosphoryl center) and k_N^{Ar} (the nucleophilic rate constant at the C-1 aromatic carbon) was performed considering the quantitative product analysis (see below) an the fact that for parallel reactions $k_N^T = k_N^{Ar} + k_N^P$.

The activation parameters were determined at the same experimental conditions as above, at the 20-40°C-temperature range, by using Arrhenius and Eyring equations. In these experimental conditions the product analysis shows that in [Bmim]BF₄ the relative attack to the phosphoryl center remains constant within the temperature range (20%, see Figure S5 in Supporting Information).