Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

Cyclopent-2-enylaluminium as allylzinc precursor for the

diastereoselective allylmetallation of non-racemic imines:

Applications to the synthesis of enantiomerically enriched heterocycles

Michael Coffinet, Samantha Lamy, Florian Jaroschik, Jean-Luc Vasse*.

jean-luc.vasse@univ-reims.fr

ICMR -UMR 7312, CNRS -Université de Reims Champagne-Ardenne, BP1039, 51687 Reims Cedex 2, France

p 2-14 : Experimental procedures and characterization of new compounds.

p 15-45 : ¹H and ¹³C NMR of new componds.

Experimental procedures and characterization of compounds.

All reactions were conducted under an atmosphere of argon. Prior to use, THF was distilled under argon from sodium benzophenone ketyl, and CH₂Cl₂ was distilled under argon from CaH₂, reagents were used as received. ¹H and ¹³C NMR spectra were recorded in CDCl₃, unless specified, on a Brucker AC-250. Mass spectra were recorded on a Micromass Q-TOF micro MS spectrometer.

X-ray diffraction measurement was performed on a Bruker D8 Venture diffractometer equipped with a kappa goniometer and a PHOTON100 CMOS detector and using Cu K α radiation (from a microsource tube with multi-layer mirror focalizing opticals). Data were collected using Bruker Apex2 software, on the full sphere, with omega and phi scans, 1°/frame, 25 s/frame, with the detector placed at 35mm. The sample temperature was maintained at 100K using a Cryostream700 (Oxford Cryosystems).

General procedure for the allylmetallation of achiral imines. Procedure A

To a solution of Cp_2TiCl_2 (25 mg, 0.1 mmol) and freshly cracked cyclopendiene (0.4 mL) in THF (10 mL) was added dropwise a solution of DIBAL-H (1M in THF, 1.2 mmol, 1.2 mL) at rt. The resulting solution was stirred for 4h at 40°C. The mixture was cooled down to -78°C, and a solution of imine (1 mmol) in THF (2 mL) was slowly added. After 2 h of stirring at -78°C, the solution was slowly warmed to rt, then the reaction was quenched by carefully adding a saturated aqueous solution of NaHCO₃ (10 mL). The aqueous layer was extracted with Et₂O (2 x 10 mL), the organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether and AcOEt to give the corresponding homoallylic amine.

(RS)-N-Benzyl-1-[(RS)-cyclopent-2-en-1-yl]-1-phenylmethanamine 2a

Yield = 83%. ¹H NMR (250 MHz, CDCl₃) δ : 1.39 (ddd, J = 13.0, 8.7, 6.5 Hz, 1 H), 1.51-1.65 (m, 2 H), 1.97-2.20 (m, 2 H), 2.84 (m, 1 H), 3.03-3.56 (m, 2 H), 3.33 (d, J = 13.2 Hz, 1 H), 3.34 (d, J = 7.8 Hz, 1 H), 3.52 (d, J = 13.3 Hz, 1 H), 5.67 (ddd, J = 5.7, 3.8, 1.8 Hz, 1 H), 5.73 (dq, J = 5.7, 2.0 Hz, 1 H), 7.10-7.20 (m, 10 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.2, 31.9, 51.3, 52.9, 66.8, 126.7, 126.8, 127.7, 128.10, 128.15, 128.20, 131.8, 132.7, 140.8, 143.2; HRMS-ESI : m/z [M+H]⁺calcd for C₁₉H₂₂N: 264.1747; found: 264.1742.

2-([(RS)-[(RS)-Cyclopent-2-en-1-yl](phenyl)methyl]amino)ethanol 2b

Obtained according to the above procedure using 0.5 mmol (75 mg) of imine.

Yield = 74%. ¹H NMR (250 MHz, CDCl₃) δ : 1.42 (m, 1 H), 1.66 (dtd, J = 14.0, 8.4, 5.8 Hz, 1 H), 2.10-2.40 (m, 2 H), 2.45-2.51 (m, 2 H), 2.54 (m, 2 H), 2.92 (m, 1 H), 3.37 (d, J = 7.7 Hz, 1 H), 3.40-3.56 (m, 2 H), 5.74-5.82 (m, 2 H), 7.14-7.24 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.2, 31.8, 48.7, 52.6, 60.8, 67.3, 126.9, 127.4, 128.2, 131.5, 132.9, 142.8; HRMS-ESI : m/z [M+H]⁺calcd for C₁₄H₂₀NO: 218.1539; found: 218.1541.

General procedure for the allylmetallation of non-racemic imines. Procedure B

To a solution of Cp_2TiCl_2 (60 mg, 0.24 mmol) and freshly cracked cyclopendiene (0.5 mL) in THF (10 mL) was added dropwise a solution of DIBAL-H (1M in THF, 2.4 mL, 2.4 mmol) at rt, then the resulting solution was stirred for 4h at 40°C. The mixture was cooled down to 0°C then, a solution of Et₂Zn (1M in hexanes, 2,4 mL, 2.4 mmol) was added. The stirring was continued for 1h at rt, then cooled down to -78°C, and a solution of imine (1 mmol) in THF (2 mL) was slowly added. After 2 h of stirring at -78°C, the solution was slowly warmed to rt, then the reaction was quenched by carefully adding a saturated aqueous solution of NaHCO₃(10 mL). The aqueous layer was extracted with Et₂O (2 x 10 mL), the organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether and AcOEt to give the corresponding homoallylic amine.

(R)-2-[(R)-[(R)-cyclopent-2-enyl](phenyl)methylamino]-2-phenylethanol 3a

Yield = 74%. White solid; mp 93°C; $[\alpha]_D = +19.6$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.64 (m, 1 H), 1.85 (m, 1 H), 2.24-2.42 (m, 2 H), 2.55 (br s, 2 H), 3.11 (m, 1 H), 3.60 (dd, J = 10.3, 4.9 Hz, 1 H), 3.66 (d, J = 7.5 Hz, 1 H), 3.77 (t, J = 4.7 Hz, 1H), 3.84 (dd, J = 10.2, 4.5 Hz, 1 H), 5.91 (m, 1 H), 5.97 (m, 1 H), 7.19-7.36 (m, 10 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.3, 32.0, 52.6, 61.0, 64.4, 65.1, 126.9, 127.1, 127.3, 128.2, 128.4, 133.0, 141.9, 142.9 ; HRMS-ESI : m/z [M+H]⁺calcd for C₂₀H₂₄NO : 294.1858; found: 294.1853.

(S)-N-[(R)-[(R)-cyclopent-2-en-1-yl](phenyl)methyl]-2-methylpropane-2-sulfinamide 3'a

Yield = 76%. Colorless oil; $[\alpha]_D$ = +211 (*c* 1, CH₂Cl₂); NMR ¹H (250 MHz, CDCl₃) δ : 1.12 (s, 9 H), 1.68 (m, 1 H), 1.85 (m, 1 H), 2.12-2.36 (m, 2 H), 3.05 (m, 1 H), 3.48 (d, *J* = 3.2 Hz, 1 H), 4.26 (dd, *J* = 5.7, 3.8 Hz, 1 H), 5.61 (dq, *J* = 5.7, 1.9 Hz, 1 H), 5.84 (dq, *J* = 5.7, 2.1 Hz, 1 H), 7.13-7.27 (m, 5 H); NMR ¹³C (62.5 MHz, CDCl₃) δ : 22.6, 26.7, 32.1, 53.1, 55.6, 62.4, 127.1, 127.4, 128.1, 129.4, 134.8, 142.1; HRMS-ESI : *m*/*z* [M+Na]⁺calcd for C₁₆H₂₃NNaOS: 300.1398; found: 300.1401.

(R)-2-[(R)-[(R)-Cyclopent-2-enyl](4-methoxyphenyl)methylamino]-2-phenylethanol 3b

Yield = 63%. White solid; mp 68°C; $[\alpha]_D = +17.3$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.54 (m, 1 H), 1.76 (m, 1 H), 1.96-2.64 (br m, 4 H), 3.01 (m, 1 H), 3.47-3.54 (m, 2 H); 3.68 (t, *J* = 4.6 Hz, 1 H), 3.72-3.77 (m, 4 H), 5.82 (dq, *J* = 5.7, 2.0 Hz, 1 H), 5.89 (dq, *J* = 5.7, 1.9 Hz, 1 H), 6.79 (d, *J* = 8.6 Hz, 2 H), 7.05 (d, *J* = 8.6 Hz, 2 H), 7.14-7.25 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.2, 31.9, 52.6, 55.1, 60.8, 64.3, 64.4, 113.5, 113.6, 127.1, 127.2, 127.3, 128.25, 128.35; 131.8, 132.8, 135.1, 142.0, 158.4; HRMS-ESI : m/z [M+Na]⁺calcd for C₂₁H₂₅NO₂Na 294.1858; found: 294.1853.

(R)-2-[(R)-[(R)-Cyclopent-2-enyl](4-bromophenyl)methylamino]-2-phenylethanol 3c

Yield = 62%. Yellow oil; $[\alpha]_D = +14.9$ (*c* 0.8, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.54 (m, 1 H), 1.78 (m, 1 H), 2.12-2.32 (m, 4 H), 2.99 (m, 1 H), 3.51-3.57 (m, 2 H), 3.64-3.76 (m, 2 H), 5.84 (s, 2 H), 7.00 (d, *J* = 8.2 Hz, 2 H), 7.34 (d, *J* = 8.2 Hz, 2 H), 7.12-7.24 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.1, 32.1, 52.6, 61.6, 64.8, 65.0, 120.6, 127.2, 127.4, 128.5, 129.2, 131.2, 131.3, 133.3, 141.69, 142.3; HRMS-ESI : *m/z* [M+H]⁺calcd for C₂₀H₂₃BrNO: 372.0963; found: 372.0964. Methyl 4-[(R)-[(R)-cyclopent-2-enyl][(R)-2-hydroxy-1-phenylethylamino]methyl]benzoate 3d

Yield = 58%. White solid; mp 59°C; $[\alpha]_D = +37$ (*c* 0.4, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.57 (m, 1 H), 1.77 (m, 1 H), 2.68 (br s, 1 H), 3.03 (m, 1 H), 3.55 (dd, J = 10.0, 5.3 Hz, 1 H), 3.64-3.69 (m, 2 H), 3.75 (dd, J = 10.1, 4.4 Hz, 1 H), 3.89 (s, 3 H), 5.84 (m, 2 H), 7.11-7.22 (m, 7 H), 7.90 (d, J = 8.3 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.0, 32.0, 52.0, 52.5, 61.8, 65.0, 65.2, 127.1, 127.4, 128.4, 128.7, 129.4, 131.1, 133.3, 141.5, 148.4, 166.9; HRMS-ESI : m/z [M+H]⁺calcd for C₂₂H₂₆NO₃: 352.1913; found: 352.1911.

(R)-2-[(R)-[(R)-Cyclopent-2-enyl](pyridin-3-yl)methylamino]-2-phenylethanol 3e

Yield = 49%. Yellow oil; $[\alpha]_D$ = +54.8 (*c* 0.25, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.56 (m, 1 H), 1.79 (m, 1 H), 2.23 (td, *J* = 7.0, 1.8 Hz, 2 H), 2.34 (br s, 2 H), 3.06 (m, 1 H), 3.57-3.63 (m, 2 H), 3.70-3.77 (m, 2 H), 5.85 (m, 2 H), 7.07-7.20 (m, 7 H), 7.43 (dt, *J* = 7.8, 1.7 Hz, 1 H), 8.36 (m, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 26.9, 32.0, 52.4, 62.7, 63.4, 65.6, 123.0, 127.3, 127.4, 128.4, 131.0, 133.6, 134.8, 138.7, 141.3, 148.1, 149.4; HRMS-ESI : *m/z* [M+H]⁺calcd for C₁₉H₂₃N₂O: 295.1810; found: 295.1804.

(S)-N-[(R)-[(R)-cyclopent-2-en-1-yl](pyridin-3-yl)methyl]-2-methylpropane-2-sulfinamide 3'e

Isolated as 5.8:1 mixture of isomers. Yield = 57%. Colorless oil; NMR ¹H (250 MHz, CDCl₃) δ : 1.21 (s, 9 H), 1.78 (m, 1 H), 1.95 (m, 1 H), 2.29 (m, 2 H), 3.14 (m, 1 H), 3.61 (m, 1 H), 4.41 (dd, J = 4.7, 3.8 Hz, 1 H), 5.66 (m, 1 H), 5.95 (m, 1 H), 7.27 (dd, J = 7.3, 4.9 Hz, 1 H), 7.62 (d, J = 7.4 Hz, 1 H), 8.52-8.58 (m, 2 H); NMR ¹³C (62.5 MHz, CDCl₃) δ : 22.5, 26.3, 32.0, 52.8, 55.7, 60.1, 123.0, 128.6, 134.9, 135.4, 137.2, 148.5, 149.1; HRMS-ESI : m/z [M+Na]⁺calcd for C₁₅H₂₂N₂NaOS: 301.1351; found: 301.1343.

(R)-2-[(R)-[(R)-cyclopent-2-enyl](furan-3-yl)methylamino]-2-phenylethanol 3f

Isolated as 11 : 1 mixture of isomers. Yield = 78%. Yellow oil; $[\alpha]_D = +41.4$ (*c* 0.45, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.58 (m, 1 H), 1.86 (m, 1 H), 2.26 (m, 2 H), 2.36 (br s, 2 H), 3.03 (m, 1 H), 3.51 (dd, *J* = 10.7, 6.2 Hz, 1 H), 3.56 (d, *J* = 7.2 Hz, 1 H), 3.71 (dd, *J* = 10.7, 4.6 Hz, 1 H), 3.80 (dd, *J* = 6.1, 4.6 Hz, 1 H), 5.81 (m, 2 H), 6.17 (s, 1 H), 7.18-7.30 (m, 7 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 26.5, 31.9, 51.2, 56.0, 61.3, 65.1, 109.0, 127.1, 127.3, 128.3, 128.4, 131.6, 132.7, 139.5, 141.6, 142.8; HRMS-ESI : *m/z* [M+H]⁺calcd for C₁₈H₂₂NO₂: 284.1651; found: 284.1642.

(R)-2-[(S,E)-1-[(R)-Cyclopent-2-enyl]-3-phenylallylamino]-2-phenylethanol 3g

Isolated as a 5: 1 mixture of isomers. Yield = 56%. Yellow oil. Major Isomer : ¹H NMR (250 MHz, CDCl₃) δ : 1.74 (m, 1 H), 1.95 (m, 1 H), 2.24-2.37 (m, 2 H), 2.54 (br s, 2 H), 2.94 (m, 1 H), 3.23 (dd, J = 7.8, 6.6 Hz, 1 H), 3.52 (dd, J = 10.5, 6.7 Hz, 1 H), 3.72 (dd, J = 10.6, 4.6 Hz, 1 H), 3.87 (dd, J = 6.7, 4.7 Hz, 1 H), 5.76-5.91 (m, 3 H), 6.36 (d, J = 15.9 Hz, 1 H), 7.17-7.32 (m, 10 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 26.0, 32.2, 50.6, 61.3, 63.0, 65.4, 126.2, 127.2 (2C), 127.3, 128.4, 128.5, 130.8, 131.3, 131.7, 132.9, 137.0, 142.1; HRMS-ESI : m/z [M+H]⁺calcd for C₂₂H₂₆NO: 320.2014; found: 320.2014.

(S)-N-[(E)-1-(Cyclopent-2-enyl)-3-phenylallyl]-2-methylpropane-2-sulfinamide 3'g

Combined yield of anti isomers: 51%.

Less polar diastereomer : Yellow oil; $[\alpha]_D = +95.7$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.23 (s, 9 H), 1.73 (m, 1 H), 2.01 (m, 1 H), 2.34 (m, 2 H), 3.12 (m, 1 H), 3.28 (d, *J* = 8.3 Hz, 1 H), 3.90 (m, 1 H), 5.71 (dq, *J* = 5.6, 2.1 Hz, 1 H), 5.89 (dq, *J* = 5.6, 2.1 Hz, 1 H), 6.23 (dd, *J* = 15.9, 7.1 Hz, 1 H), 6.63 (d, *J* = 15.9 Hz, 1 H), 7.21-7.40 (m, 10 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 22.6, 25.9, 32.3, 51.1, 56.1, 62.2, 126.5, 127.5, 128.4, 130.0, 130.4, 131.5, 133.9, 136.7.

More polar diastereomer : Yellow oil; ¹H NMR (250 MHz, CDCl₃) δ : 1.23 (s, 9 H), 1.80 (m, 1 H), 2.01 (m, 1 H), 2.27-2.42 (m, 2 H), 3.04 (m, 1 H), 3.33 (d, J = 3.8 Hz, 1 H), 3.96 (m, 1 H), 5.71 (dq, J = 5.7, 2.0 Hz, 1 H), 5.91 (dq, J = 5.7, 2.1 Hz, 1 H), 6.07 (dd, J = 15.8, 7.3 Hz, 1 H), 6.57 (d, J = 15.8 Hz, 1 H), 7.20-

7.39 (m, 10 H); ¹³C NMR (62.5 MHz, CDCl₃) δ: 22.6, 25.8, 32.2, 55.6, 60.9, 126.4, 127.5, 128.5, 129.5, 129.7, 131.9, 134.4, 136.7.

(R)-2-[(R,E)-1-[(R)-Cyclopent-2-enyl]-2-methyl-3-phenylallylamino]-2-phenylethanol 3h

Yield = 76%. White solid; mp 52°C; $[\alpha]_D = -42.7$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.55 (d, *J* = 1.1 Hz, 3 H), 1.60 (m, 1 H), 1.87 (m, 1 H), 2.26 (m, 1 H), 2.41 (m, 1 H), 2.80 (m, 1 H), 3.01 (d, *J* = 9.2 Hz, 1 H), 3.55 (dd, *J* = 11.8, 7.4 Hz, 1 H), 3.72 (t, *J* = 4.6 Hz, 1 H), 3.76 (d, *J* = 4.6 Hz, 1 H), 5.87 (dq, *J* = 5.7, 2.0 Hz, 1 H), 6.03 (dq, *J* = 5.7, 2.0 Hz, 1 H), 6.30 (s, 1 H), 7.10 (d, *J* = 7.2 Hz, 2 H), 7.19-7.33 (m, 8 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 12.9, 27.2, 31.9, 49.3, 61.7, 64.9, 71.4, 126.2, 127.30, 127.35, 128.0, 128.3, 128.4, 128.9, 132.40, 132.45, 137.6, 138.5, 142.5; HRMS-ESI : *m/z* [M+H]⁺calcd for C₂₃H₂₈NO: 334.2171; found: 334.2173.

(R)-2-[(S)-1-[(R)-Cyclopent-2-enyl]pentylamino]-2-phenylethanol 3i

Isolated as a 5: 1 mixture of isomers. Yield = 29%. Colorless oil; ¹H NMR (250 MHz, CDCl₃) δ : 0.78 (d, J = 6.7 Hz, 3 H), 1.01-1.31 (m, 7 H), 1.67 (m, 1H), 1.93 (m, 1 H), 2.22-2.53 (m, 4 H), 3.00 (m, 1 H), 3.47 (dd, J = 10.2, 8.9 Hz, 1 H), 3.66 (dd, J = 10.5, 4.6 Hz, 1 H), 3.87 (dd, J = 8.5, 4.5 Hz, 1 H), 5.60 (m, 1 H), 5.79 (m, 1 H), 7.25-7.36 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 13.9, 22.7, 24.9, 28.2, 31.4, 32.3, 48.8, 57.8, 62.0, 66.5, 127.2, 127.4, 128.5, 131.8, 132.2, 141.7; HRMS-ESI: m/z [M+H]⁺calcd for C₁₈H₂₈NO: 274.2171; found: 274.2162.

(R)-2-[(S)-1-[(R)-Cyclopent-2-enyl]-2-methylpropylamino]-2-phenylethanol 3j

Yield = 60%. Colorless oil; $[\alpha]_D$ = +18.8 (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 0.68 (d, *J* = 6.9 Hz, 3 H), 0.82 (d, *J* = 6.9 Hz, 3 H), 1.55 (m, 1 H), 1.71 (m, 1 H), 2.00 (m, 1 H), 2.21-2.47 (m, 3 H), 2.91 (m, 1 H), 3.53 (dd, *J* = 10.5, 8.2 Hz, 1 H), 3.66 (dd, *J* = 10.5, 4.7 Hz, 1 H), 3.83 (dd, *J* = 8.1, 4.7 Hz, 1 H), 5.82 (dq, *J* = 5.7, 2.1 Hz, 1 H), 5.88 (dq, *J* = 5.7, 1.9 Hz, 1 H), 7.22-7.34 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 17.7, 19.7, 28.5, 31.0, 31.9, 48.7, 63.6, 64.4, 66.4, 127.4, 127.5, 128.3, 131.8, 133.0, 141.9; HRMS-ESI : *m*/*z* [M+H]⁺calcd for C₁₇H₂₆NO: 260.2014; found: 260.2006.

(R)-[(R)-Cyclopent-2-enyl](phenyl)methanamine

To a solution of **3a** (273 mg, 1 mmol) in a 1 : 1 mixture of MeOH /CH₂Cl₂ (10 mL), was added Pb(OAc)₄ (555 mg, 1.25 mmol) in one portion at 0°C. The resulting mixture was stirred for 30 min then NH₂OH HCl (690 mg, 10 mmol) was added. The stirring was continued for 1h at rt. The solvents were removed under reduced pressure. The white solid was washed with CH_2Cl_2 (30 mL) and filtered off. The filtrate was washed with an aqueous solution of NaOH (1M, 3 x 5 mL). The organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure to give the title compound which was used in the next step without purification.

To a solution of **3'a** (150 mg, 0.54 mmol) in dry MeOH (2 mL), was added a solution of HCl (2M in Et₂O, 0.4 mL) at 0°C, then the mixture was stirred for 1h at rt. The solvent was removed under reduced pressure. The residue was diluted in CH_2Cl_2 , then, washed with a saturated aqueous solution of Na_2CO_3 . The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to give the title compound which was used in the next step without purification.

 $[\alpha]_{D}$ = +119 (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.55 (m, 1 H), 1.80 (m, 1 H), 2.17-2.38 (m, 2 H), 2.30 (m, 1 H), 3.75 (d, *J* = 7.4 Hz, 1 H), 5.80 (m, 1 H), 5.88 (m, 1 H), 7.23-7.33 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.1, 32.1, 53.7, 60.5, 126.70, 126.75, 128.2, 131.2, 133.2, 145.7.

Tert-Butyl (R)-((R)-cyclopent-2-enyl)(phenyl)methylcarbamate 4

To a solution of the above primary amine (173 mg, 1 mmol) and Et₃N (0.14 mL, 1 mmol) in CH₂Cl₂ (10 mL), was added Boc₂O (218 mg, 1 mmol). The resulting mixture was stirred for 4h at rt. The crude mixture was concentrated to dryness and purified by flash column chromatography on silica gel (eluting with a mixture of petroleum ether and AcOEt to give **4**. Yield = 69% from **3a**. White solid; mp 99 °C; $[\alpha]_D = +145$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.27 (br s, 1.5 H), 1.42 (s, 7.5 H), 1.01-1.31 (m, 7 H), 1.69 (m, 1 H), 1.98 (m, 1 H), 2.21-2.45 (m, 2 H), 3.14 (m, 1 H), 4.40-5.00 (m, 2 H), 5.53 (m, 1 H), 5.90 (m, 1 H), 5.79 (m, 1 H), 7.19-7.34 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.0, 28.3, 32.3, 51.9, 57.7, 79.3, 126.1, 126.7, 128.2, 129.4, 134.5, 142.6, 155.5; HRMS-ESI : *m/z* [M+Na]+calcd for C₁₇H₂₃NO₂Na: 296.1626; found: 296.1620.

N-[(R)-[(R)-Cyclopent-2-en-1-yl](phenyl)methyl]-4-methylbenzenesulfonamide 6

HN_Ts

To a solution of the above primary amine (173 mg, 1 mmol) and Et_3N (0.14 mL, 1 mmol) in CH_2Cl_2 (10 mL), was added TsCl (190 mg, 1 mmol). The resulting mixture was stirred at rt overnight. Water (5 mL) was added, and the organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with a mixture of petroleum ether and AcOEt to give the title compound.

Yield = 87%. White solid; $[\alpha]_D = +114$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.52 (m, 1 H), 1.82 (m, 1 H), 2.15-2.40 (m, 2 H), 2.30 (s, 3 H), 3.05 (m, 1 H), 4.30 (dd, *J* = 7.8, 6.7 Hz, 1 H), 5.40 (d, *J* = 8.7 Hz, 1 H), 5.59 (m, 1 H), 5.86 (m, 1 H), 6.96-7.13 (m, 7 H), 7.52 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 21.8, 26.7, 32.2, 52.5, 61.5, 126.4, 126.7, 128.0, 129.0, 129.2, 134.8, 137.7, 140.4, 142.6; HRMS-ESI : *m/z* [M+Na]⁺calcd for C₁₉H₂₁NO₂SNa: 350.1191; found: 350.1199.

N-[(R)-[(R)-Cyclopent-2-enyl](phenyl)methyl]benzamide 8

To a solution of the above primary amine (173 mg, 1 mmol) and Et₃N (0.14 mL, 1 mmol) in CH₂Cl₂ (10 mL), was added benzoylchloride (0.12 mL, 1 mmol). The resulting mixture was stirred for 2h at rt then water (5 mL) was added. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with a mixture of petroleum ether and AcOEt to give the title compound. Yield = 90%. White solid, mp 137°C; $[\alpha]_D = +116$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.90 (m, 1 H), 2.26 (m, 2 H), 2.44-2.67 (m, 2 H), 3.52 (m, 1 H), 5.40 (dd, *J* = 8.7, 5.2 Hz, 1 H), 5.80 (dq, *J* = 5.7, 2.1 Hz, 1 H), 6.18 (dq, *J* = 5.7, 2.1 Hz, 1 H), 6.80 (d, *J* = 8.7 Hz, 1 H), 7.38-7.70 (m, 8 H), 7.94 (dd, *J* = 8.3, 1.6 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 27.1, 32.5, 51.5, 56.5, 126.3, 126.8, 126.9, 128.4, 128.5, 129.4, 131.4, 134.5, 135.0, 141.8, 166.8; HRMS-ESI : *m/z* [M+Na]⁺calcd for C₁₉H₁₉NONa: 300.1364; found: 300.1367.

General procedure for ozonolysis. Procedure C

 O_3 was bubbled through a solution of **4** or **6** or **8** (1.3 mmol) in a 1 : 1 mixture of MeOH / CH₂Cl₂ (10 mL) until a blue color persists. The solution was stirred for 30 min, then, degassed with a flow of N₂. A solution of NaBH₄ (195 mg, 5.2 mmol) in MeOH (10 mL) was added and the resulting mixture was stirred for 30 min. Water (10 mL) and CH₂Cl₂ (10 mL) were added. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL), the organic phases were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to give the corresponding diol which was used in the next step without purification.

Tert-Butyl (1R,2S)-5-hydroxy-2-(hydroxymethyl)-1-phenylpentylcarbamate

Yield = 77%. Yellow oil; ¹H NMR (250 MHz, CDCl₃) δ : 1.42 (s, 9 H), 1.54-1.69 (m, 4 H), 3.18 (br s, 2 H), 3.50-3.69 (br m, 4 H), 4.66 (t, *J* = 7.8 Hz, 1 H), 5.66 (d, *J* = 8.0 Hz, 1 H), 7.24-7.36 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 24.8, 28.8, 30.5, 45.9, 57.4, 60.8, 63.0, 80.2, 127.1, 127.7, 129.1, 142.1, 157.0. HRMS-ESI : *m*/*z* [M+Na]⁺calcd for C₁₇H₂₇NO₄Na: 332.1838; found: 332.1845.

N-[(1R,2S)-5-Hydroxy-2-(hydroxymethyl)-1-phenylpentyl]-4-methylbenzenesulfonamide

Yield = 88%. NMR ¹H (250 MHz, CDCl₃) δ : 1.25-1.72 (m, 5 H), 2.29 (s, 3 H), 3.05 (br s, 1 H), 3.46-3.61 (m, 3 H), 3.76 (d, J = 10.8 Hz, 1 H), 4.43 (t, J = 6.1 Hz, 1 H), 6.66 (d, J = 7.7 Hz, 1 H), 6.98-7.08 (m, 7 H), 7.46 (d, J = 8.0 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 21.3, 24.5, 29.7, 45.4, 60.4, 60.9, 62.4, 126.80, 126.85, 128.0, 129.0, 137.5, 139.8, 142.6; HRMS-ESI : m/z [M+Na]⁺calcd for C₁₉H₂₅NO₄SNa: 386.1402; found: 386.1408.

N-[(1R,2S)-5-Hydroxy-2-(hydroxymethyl]-1-phenylpentyl)benzamide

Yield = 74%. ¹H NMR (250 MHz, CDCl₃) δ : 1.37-1.74 (m, 5 H), 2.89 (br s, 1H), 4.18 (br s, 1H), 3.34-3.62 (m, 4 H), 5.17 (dd, J = 7.5, 5.8 Hz, 1 H), 7.14-7.42 (m, 8 H), 7.72 (d, J = 7.3 Hz, 2 H), 7.95 (d, J = 7.5 Hz, 1 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 25.0, 29.9, 44.6, 56.9, 60.7, 62.4, 126.4, 126.9, 127.1, 128.5, 131.5, 134.0, 141.4, 167.4.

Tert-Butyl (R)-[(R)-1-allylpiperidin-3-yl](phenyl)methylcarbamate 5

To a solution of the crude diol obtained from 4 (116 mg, 0.37 mmol) and Et_3N (0.14 mL, 1 mmol) in CH_2Cl_2 (5 mL) was slowly added MsCl (0.06 mL, 0.86 mmol) at 0°C. The resulting mixture was stirred for 2h at rt, then water (5 mL) was added. The organic layer was dried over Na_2SO_4 , filtered and

concentrated under reduced pressure. Allylamine (1 mL, 13 mmol) was added then the mixture was heated to reflux overnight. The excess of amine was removed under reduced pressure. The residue was diluted in CH₂Cl₂ (10 mL) washed with a saturated aqueous solution of Na₂CO₃, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with a mixture of petroleum ether and AcOEt to give **6**. Yield = 62%. Yellow oil; $[\alpha]_D = +23.4$ (*c* 0.6, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.22-1.60 (m, 13 H), 1.75-1.89 (m, 3 H), 2.72 (d, *J* = 11.1 Hz, 1 H), 2.85-2.99 (m, 3 H), 4.44 (br t, *J* = 7.4 Hz, 1 H), 4.99-5.13 (m, 3 H), 5.81 (ddt, *J* = 16.8, 10.1, 6.6 Hz, 1 H), 7.11-7.27 (m, 5 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 24.8, 28.3, 41.9, 53.8, 56.8, 58.4, 62.2, 79.3, 117.8, 126.8, 128.5, 135.1, 141.6, 155.3; HRMS-ESI : *m*/*z* [M+H]⁺calcd for C₂₀H₃₁N₂O₂: 331.2386; found: 331.2382.

N-[(1*R*,2*S*)-5-[(*Tert*-Butyldiphenylsilyl)oxy]-2-(hydroxymethyl)-1-phenylpentyl]-4methylbenzenesulfonamide 7

To a solution of the crude diol obtained from **6** (256 mg, 0.7 mmol) and DBU (140 µL, 0.9 mmol) in DMF (3.2 mL) was added TBDPSCI (183 µL, 0.7 mmol) at -30°C. The reaction mixture was stirred at -30°C for 30 min, then 1h at rt. Water (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 5 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with a mixture of petroleum ether and AcOEt to give the title compound. Yield = 72%. Colorless oil; $[\alpha]_D$ = +22.3 (*c* 1, CH₂Cl₂); NMR ¹H (250 MHz, CDCl₃) δ : 1.15 (s, 9 H), 1.20-1.51 (m, 5 H), 1.63 (m, 1 H), 2.34 (s, 3 H), 3.34-3.43 (m, 3 H), 3.56 (d, *J* = 10.5 Hz, 1 H), 4.64 (t, *J* = 5.6 Hz, 1 H), 6.72 (d, *J* = 6.7 Hz, 1 H), 7.08-7.12 (m, 7 H), 7.33-7.44 (m 6 H), 7.54 (d, *J* = 8.1 Hz, 2 H), 7.61 (t, *J* = 7.6 Hz, 4 H); NMR ¹³C (62.5 MHz, CDCl₃) δ : 19.1, 21.3, 24.6, 26.9, 30.0, 45.5, 60.5, 62.5, 63.6, 126.7, 126.9, 127.7, 127.8, 128.0, 129.1, 129.9, 130.0, 132.2, 132.4, 135.6, 135.7, 138.3, 140.2, 142.6.

3-[(4R,5S)-2,4-Diphenyl-5,6-dihydro-4H-1,3-oxazin-5-yl]propyl methanesulfonate 9

To a solution of the crude diol obtained from **8** (200 mg, 0.64 mmol) and Et₃N (0.23 mL, 1.65 mmol) in CH_2Cl_2 (5 mL) was added MsCl (0.12 mL, 1.53 mmol) at rt, The resulting solution was stirred overnight at rt, then, water (5 mL) was added. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with a mixture of petroleum ether and AcOEt to give **9** (67%) and benzoylazetidine (11%).

Yield = 67%. Yellow oil; $[\alpha]_D$ = +11.8 (*c* 1, CH₂Cl₂); NMR ¹H (250 MHz, CDCl₃) δ : 1.40-1.92 (m, 5 H), 2.92 (s, 3 H), 4.04 (dd, *J* = 10.6, 7.5 Hz, 1 H), 4.10-4.22 (m, 2 H), 4.32 (dd, *J* = 10.9 3.6 Hz, 1 H), 4.44 (d, *J* = 6.4 Hz, 1 H), 7.23-7.45 (m, 5 H), 8.00 (dd, *J* = 8.1, 1.5 Hz, 2 H); NMR ¹³C (62.5 MHz, CDCl₃) δ : 25.8, 26.5, 37.2, 38.2, 61.2, 66.2, 69.4, 127.1, 127.2, 127.4, 128.0, 128.4, 130.6, 133.3, 143.3, 155.3.

3-[(2R,3R)-1-Benzoyl-2-phenylazetidin-3-yl]propyl methanesulfonate

Yield = 11%. ¹H NMR (250 MHz, CDCl₃) δ :1.66-1.93 (m, 4 H), 2.37 (m, 1 H), 2.94 (s, 3 H), 3.59-3.69 (m, 2 H), 4.21 (t, J = 6.1 Hz, 1 H), 5.48 (dd, J = 9.1, 6.4 Hz, 1 H), 7.28-7.53 (m, 8 H), 7.81 (dd, J = 8.3, 1.5 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 25.1, 26.3, 37.4, 43.8, 45.8, 55.2, 69.4, 126.4, 126.9, 127.7, 128.7, 128.9, 131.7, 134.0, 140.0, 166.8.

Conversion of 3-[(2R,3R)-1-Benzoyl-2-phenylazetidin-3-yl]propyl methanesulfonate into 9.

3-[(4R,5S)-2,4-Diphenyl-5,6-dihydro-4H-1,3-oxazin-5-yl]propyl benzoate

A mixture of 3-[(2R,3R)-1-Benzoyl-2-phenylazetidin-3-yl]propyl methanesulfonate (83 mg, 0.22 mmol) and sodium benzoate (144 mg, 1 mmol) in DMF (2 mL) was stirred for 12 h at 80°C. The reaction mixture was diluted with AcOEt (10 mL) then washed with water (5 x 1 mL). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether and AcOEt to give the title compound.

Yield = 66%. Colorless oil; $[\alpha]_D$ = -6.2 (*c* 0.5, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.37-1.88 (m, 5 H), 4.00 (dd, *J* = 10.6, 7.8 Hz, 1 H), 4.19 (t, *J* = 5.8 Hz, 2 H), 4.29 (dd, *J* = 10.9, 3.6 Hz, 1 H), 4.39 (d, *J* = 6.6 Hz, 1 H), 7.17-7.36 (m, 10 H), 7.47 (t, *J* = 7.3 Hz, 1 H), 7.89 (d, *J* = 8.3 Hz, 2 H), 7.93 (d, *J* = 8.3 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 26.0, 26.3, 38.4, 61.3, 64.4, 66.5, 127.0, 127.3, 127.4, 128.0, 128.3, 129.5, 132.9, 133.5, 143.4, 155.4, 166.5; HRMS-ESI : *m*/*z* [M+H]⁺calcd for C₂₆H₂₆NO₃: 400.1913; found: 400.1925.

3-[(4R,5S)-2,4-Diphenyl-5,6-dihydro-4H-1,3-oxazin-5-yl]propyl methanesulfonate 9

To a solution of the above oxazine ester (60 mg, 0.15 mmol) in a mixture of MeOH (3 mL) and THF (0.5 mL), was added an aqueous solution of NaOH (10%, 1 mL) and the resulting mixture was stirred for 2h at rt then, the solvents were removed under reduced pressure. The residue was diluted in CH_2Cl_2 (5 mL) and washed with water (2 x 2 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Dry CH_2Cl_2 was added followed by Et_3N (80 µL, 0.57 mmol) and MsCl (25 µL, 0.32 mmol). The mixture was stirred for 3h at rt, then, water (2 mL) was added. The organic layer was washed with water (2 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give **9** in 95% yield.

(2R,3R)-3-(3-[(Tert-Butyldiphenylsilyl)oxy)propyl]-2-phenyl-1-tosylazetidine 10

To a solution of 7 (223 mg, 0.37 mmol) and Et₃N (95 µL, 0.6 mmol) in CH₂Cl₂ (7 mL) was added MsCl (35 µL, 0.48 mmol) at 0°C. The resulting mixture was stirred for 3h at rt, then water (2 mL) was added. The organic layer was washed with water (2 x 2 mL) dried over Na₂SO₄, filtered and concentrated under reduced pressure. Dry THF (3 mL) and NaH (20 mg, 0.83 mmol) were added and the resulting mixture was stirred for 1h at rt under Ar. Water (2 mL) was carefully added. The aqueous layer was extracted with Et₂O (3 x 2 mL). The organic phases were combined, washed with brine (5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with a mixture of petroleum ether and AcOEt to **10**. Yield = 88%. Pale yellow oil; $[\alpha]_D = +1.2$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.02 (s, 9 H), 1.37-1.46 (m, 2 H), 1.66 (m, 1 H), 1.83 (d, *J* = 12.7 Hz, 1 H), 2.21 (m, 1 H), 2.32 (s, 3 H), 3.11-3.26 (m, 3 H), 3.86 (dd, *J* = 13.2, 2.1 Hz, 1 H), 5.43 (d, *J* = 5.6 Hz, 1 H), 7.02 (d, *J* = 8.0 Hz, 2 H), 7.13-7.41 (m, 15 H), 7.57 (d, *J* = 7.2 Hz, 2 H); NMR ¹³C (62.5 MHz, CDCl₃) δ : 19.1, 21.1, 21.4, 24.5, 26.8, 41.8, 42.6, 57.9, 65.2, 127.1, 127.3, 127.5, 127.6, 128.0, 129.0, 129.6, 129.7, 133.3, 133.4, 135.4, 135.5, 137.1, 137.7, 142.3. HRMS-ESI : *m/z* [M+Na]⁺calcd for C₃₅H₄₁NO₃SSiNa: 606.2474; found: 606.2479.

[(2R,3S)-2-Phenylpiperidin-3-yl]methyl benzoate 11

To a solution of **9** (71 mg, 0.19 mmol) in dioxane (5 mL) was added an aqueous solution of HCl (1M, 5 mL) and the resulting solution was stirred overnight at rt. The solution was concentrated to dryness, then diluted in CH_2Cl_2 (5 mL). An aqueous solution of NaOH (1M, 3 mL) was added and the biphasic media

was stirred vigorously for 2h. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with a mixture of petroleum ether and AcOEt to give **11**. Yield = 61%. Yellow oil; $[\alpha]_D = +15.7$ (*c* 0.3, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃) δ : 1.45 (m, 1 H), 1.63 (dd, *J* = 12.9, 3.7 Hz, 1 H), 1.70 (m, 1 H), 1.80 (br s, 1 H), 2.00 (m, 1 H), 2.27 (m, 1 H), 2.78 (m, 1 H), 3.20 (m, 1 H), 3.94 (d, *J* = 3.0 Hz, 1 H), 4.11 (dd, *J* = 11.1, 5.5 Hz, 1 H), 4.50 (dd, *J* = 11.1, 8.6 Hz, 1 H), 7.09-7.30 (m, 7 H), 7.40 (tt, *J* = 7.4, 1.2 Hz, 1 H), 7.68 (dd, *J* = 8.2, 1.4 Hz, 2 H); ¹³C NMR (62.5 MHz, CDCl₃) δ : 20.9, 27.6, 39.4, 48.0, 62.9, 63.1, 126.3, 126.8, 128.0, 128.4, 129.4, 130.4, 132.5, 143.1, 166.4; HRMS-ESI : *m/z* [M+H]⁺calcd for C₁₉H₂₂NO₂: 296.1651; found: 296.1646.

(RS)-N-Benzyl-1-[(RS)-cyclopent-2-enyl]-1-phenylmethanamine 2a

2-[(RS)-[(RS)-Cyclopent-2-enyl](phenyl)methylamino]ethanol 2b

ppm (t1)

(R)-2-[(R)-[(R)-Cyclopent-2-enyl](phenyl)methylamino]-2-phenylethanol 3a

(R)-N-[(S)-[(S)-cyclopent-2-en-1-yl](phenyl) methyl]-2-methylpropane-2-sulfinamide 3'a

(R) - 2 - [(R) - [(R) - Cyclopent - 2 - enyl] (4 - methoxyphenyl) methylamino] - 2 - phenylethanol 3b

 $(R) - 2 - [(R) - [(R) - Cyclopent - 2 - enyl] (4 - bromophenyl) methylamino] - 2 - phenylethanol \ 3c$

Methyl 4-[(R)-[(R)-cyclopent-2-enyl][(R)-2-hydroxy-1-phenylethylamino]methyl]benzoate 3d

(R)-2-[(R)-[(R)-Cyclopent-2-enyl](pyridin-3-yl)methylamino]-2-phenylethanol 3e

(R)-N-[(S)-[(S)-cyclopent-2-en-1-yl](pyridin-3-yl)methyl]-2-methylpropane-2-sulfinamide 3'e

(R)-2-[(R)-[(R)-Cyclopent-2-enyl](furan-3-yl)methylamino]-2-phenylethanol 3f

(S)-N-[(E)-1-(Cyclopent-2-enyl)-3-phenylallyl]-2-methylpropane-2-sulfinamide 3'g (less polar isomer)

(S)-N-[(E)-1-(Cyclopent-2-enyl)-3-phenylallyl]-2-methylpropane-2-sulfinamide 3'g (more polar isomer)

(R)-2-[(R,E)-1-[(R)-Cyclopent-2-enyl]-2-methyl-3-phenylallylamino]-2-phenylethanol 3h

(R)-2-[(S)-1-[(R)-Cyclopent-2-enyl]-2-methylpropylamino]-2-phenylethanol 3j

Tert-Butyl (R)-[(R)-cyclopent-2-enyl](phenyl)methylcarbamate 4

N-[(R)-[(R)-Cyclopent-2-en-1-yl](phenyl)methyl]-4-methylbenzenesulfonamide

Tert-Butyl (1*R*,2*S*)-5-hydroxy-2-(hydroxymethyl)-1-phenylpentylcarbamate

Tert-Butyl (R)-[(R)-1-allylpiperidin-3-yl](phenyl)methylcarbamate 5

N-[(R)-[(R)-Cyclopent-2-en-1-yl](phenyl)methyl]-4-methylbenzenesulfonamide

3-[(4R,5S)-2,4-Diphenyl-5,6-dihydro-4H-1,3-oxazin-5-yl]propyl methanesulfonate 9

$\label{eq:2.1} 3-[(2R, 3R)-1-Benzoyl-2-phenylazetidin-3-yl] propylmethanesulfonate$

3-[(4R,5S)-2,4-Diphenyl-5,6-dihydro-4H-1,3-oxazin-5-yl]propyl benzoate

(2R,3R)-3-(3-(Tert-Butyldiphenylsilyloxy)propyl)-2-phenyl-1-tosylazetidine 10

)