Copper-Catalyzed Direct C-H Fluoroalkenylation of Heteroarenes

Kevin Rousée, Cédric Schneider, Jean-Philippe Bouillon, Vincent Levacher, Christophe Hoarau,* Samuel Couve-Bonnaire* and Xavier Pannecoucke

Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France

E-mail: samuel.couve-bonnaire@insa-rouen.fr and christophe.hoarau@insa-rouen.fr

Supporting information

Table of content:

1. General information	S3
2. Optimization of the reaction conditions	S4
a. Optimization of the copper-catalyzed fluoroalkenylation on 5-phenyl-1,3-oxazole	S4
b. Optimization of the copper-catalyzed fluoroalkenylation on 1-methyl-1 <i>H</i> -benzo[d]imidazole	S 5
c. Optimization of the copper-catalyzed fluoroalkenylation on 4,5-dimethylthiazole	S 5
d. Comparison between dppe and Phen ligands for the coupling of different heteroaryles	S6
3. General procedures	S6
a. General procedure for cross-coupling reaction	S6
b. Synthesis of benzoxazoles	S6
4. Experimental data	S7
a. Gem-bromofluoroalkenes – Compounds 1A - 1H	S7
b. Variation of <i>gem</i> -bromofluoroalkene - Compounds 3Aa - 3Ha	310
c. Reluctant substrates	315
d. Variation of phenyloxazole – Compounds 3Ab - 3Ce	316
e. Variation of heteroaryle - Compounds 4Aa - 7G	522
5. ¹ H, ¹³ C and ¹⁹ F NMR spectra	30

1. General information

Commercially available reagents were used without further purification. Reactions were carried out under a nitrogen atmosphere using oven or flame-dried glassware. Anhydrous solvents were purchased from Sigma-Aldrich. THF (Na/benzophenone), CH₂Cl₂ (CaH₂) and toluene (CaH₂) were dried and distillated prior to use. t-BuOLi was sublimated before use. All reactions were monitored by thin-layer chromatography with Merck silica gel 60 F254 pre-coated aluminium plates (0.25 mm). Flash chromatography was carried out using Silicaflash P60 silica gel (40-60 μm). Melting points (mp) were determined on a Fisher Scientific hot stage melting point apparatus and are uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded using a Bruker Avance-300 spectrometer operating at 300 MHz (1H), 75 MHz (13C) and 282 MHz (19F), respectively. The chemical shifts (δ) were calibrated on residual proton and carbon resonance of CDCl₃ (¹H, 7.26 ppm and ¹³C, 77.2 ppm). In the ¹³C NMR spectra, signals corresponding to CH, CH₂, or CH₃ groups were assigned from DEPT-135. The multiplicity signals were indicated with the common abbreviations s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and the combinations thereof. IR spectra were recorded on Perkin Elmer Spectrum 100 FT IR spectrometer. Low resolution mass spectra (MS) were performed with Jeol JMS-AX500 spectrometer in chemical ionisation (CI) or electrospray ionisation (ESI). High resolution mass spectra (HRMS) were recorded on a LC Waters Acquity coupled to a Waters LCT Premier XE instrument.

Preparation of some reactants:

- *Gem*-bromofluoroalkenes were synthetized according to X. Lei, G. Dutheuil, X. Pannecoucke and J. -C. Quirion, *Org. Lett.*, 2004, **6**, 2101; from the appropriate aldehyde and tribromofluoromethane.
- Phenyloxazoles **2a 2d** were synthetized according to A. M. van Leusen, B. E. Hoogenboom and H. Siderius, *Tetrahedron Lett.*, 1972, **13**, 3114; from tosylmethylisocyanide and appropriate aldehyde.

2. Optimization of the reaction conditions

a. Optimization of the copper-catalyzed fluoroalkenylation on 5-phenyl-1,3-oxazole

Entry ^a	[Cu]	Ligand	Base	Solvent	Yield [%] ^b
1	CuI	Phen	t-BuOLi	1,4-Dioxane	51
2	CuI	Phen	t-BuOLi	Toluene	29
3	CuI	Phen	t-BuOLi	DMF	1
4	CuI	PPh ₃	<i>t</i> -BuOLi	1,4-Dioxane	83
5	CuI	dppe	t-BuOLi	1,4-Dioxane	96
6	CuI	-	t-BuOLi	1,4-Dioxane	65
7	CuI	$L_1{}^c$	t-BuOLi	1,4-Dioxane	51
8	CuI	PCy ₃ HBF ₄	t-BuOLi	1,4-Dioxane	51
9	CuI	${\rm L_2}^{ m d}$	t-BuOLi	1,4-Dioxane	81
10	CuI (5 mol%)	dppe	t-BuOLi	1,4-Dioxane	85
11	CuI	dppe	t-BuOLi (2 equiv)	1,4-Dioxane	80
12	CuI	dppe	K ₂ CO ₃	1,4-Dioxane	0
13	-	dppe	t-BuOLi	1,4-Dioxane	0
14	$Cu(OTf)_2$	dppe	t-BuOLi	1,4-Dioxane	65
15	$CuCl_2$	dppe	t-BuOLi	1,4-Dioxane	73
16	$Cu(OAc)_2$	dppe	t-BuOLi	1,4-Dioxane	49
17	CuBr	_	t-BuOLi	1,4-Dioxane	63
18	CuBr	dppe	t-BuOLi	1,4-Dioxane	66
19 ^e	CuI	dppe	t-BuOLi	1,4-Dioxane	19
$20^{\rm f}$	CuI	dppe	t-BuOLi	1,4-Dioxane	42
21 ^g	CuI	dppe	t-BuOLi	1,4-Dioxane	28
22 ^h	CuI	dppe	t-BuOLi	1,4-Dioxane	0

^aReaction conditions: [Cu] (10 mol%), ligand (20 mol%), base (3 equiv), solvent (0.25 M), 110 °C, 12 h. ^bYield based on isolated product after flash chromatography. $^cL_1 = 3,4,7,8$ -(Me)₄-1,10-Phen. $^dL_2 = Trans-N,N'$ -dimethylcyclohexa-1,2-diamine. ^eUnder air atmosphere. ^fWith 50 mg of 4 Å molecular sieve. ^gWith 5 mol% of water. ^hWith 10 mol% of water.

b. Optimization of the copper-catalyzed fluoroalkenylation on 1-methyl-1*H*-benzo[d]imidazole

Entry ^a	Ligand	Base	Solvent	Yield [%] ^b
1	Phen	t-BuOLi	1,4-Dioxane	O_q
2	Phen	t-BuOLi	1,4-Dioxane	43
3	Phen	t-BuOLi	DMF	0
4	dppe	t-BuOLi	1,4-Dioxane	Traces
5	$L_2{}^c$	t-BuOLi	1,4-Dioxane	54
6	L_2^{c}	Cs_2CO_3	1,4-Dioxane	0
7	$L_2^{\ c}$	K_2CO_3	1,4-Dioxane	39
8	$L_2^{\ c}$	t-BuOK	1,4-Dioxane	0

^aReaction conditions: CuI (10 mol%), ligand (20 mol%), base (3 equiv), solvent (0.25 M), 130 °C, 12 h. ^bYield based on isolated product after flash chromatography. $^{c}L_{2} = Trans-N,N'$ -dimethylcyclohexa-1,2-diamine. $^{d}Performed$ at 110 °C.

c. Optimization of the copper-catalyzed fluoroalkenylation on 4,5-dimethylthiazole

Entry ^a	[Cu]	Ligand	Yield [%] ^b
1	CuCl	Phen	30
2	CuBr	Phen	29
3	CuI	Phen	52
4	CuI (20 mol%)	Phen (40 mol%)	<i>71</i>
5	CuI	dppe	12

^aReaction conditions: [Cu] (10 mol%), ligand (20 mol%), base (3 equiv), 1,4-dioxane (0.25 M), 130 °C, 12 h. ^bYield based on isolated product after flash chromatography.

d. Comparison between dppe and Phen ligands for the coupling of different heteroaryles

3. General procedures

a. General procedure for cross-coupling reaction

In a dry vial, was added *gem*-bromofluoroalkene (1.1 equiv), heteroaryle (1 equiv), CuI (10 mol%), ligand (20 mol%) and *t*-BuOLi (3 equiv). The vial was flushed under argon, then filled with dry 1,4-dioxane (4 mL/mmol). The reaction mixture was heated for the night at 110 °C. The mixture was poured into aqueous NH₄Cl solution (25 mL), then was extracted with CH₂Cl₂ (25 mL) three time, then dried over MgSO₄, filtered and concentrated. The crude was purified over silica gel column to afford the pure product.

b. Synthesis of benzoxazoles

$$R \xrightarrow{\text{II}} OH \qquad CH(OEt)_3 \longrightarrow \qquad R \xrightarrow{\text{II}} O$$

$$150 \text{ °C} \longrightarrow \qquad R \xrightarrow{\text{II}} O$$

To triethylorthoformate (1.5 ml/mmol) was added 2-aminophenol (1 equiv). The mixture was heated for the night at 150 °C. After distillation to remove EtOH and CH(OEt)₃, the crude was then purified over silica gel column to afford the pure benzoxazole.

4. Experimental data

a. Gem-bromofluoroalkenes – Compounds 1A - 1H

(*E*)-1-(2-Bromo-2-fluorovinyl)-4-methoxybenzene (1A): mixture of *E/Z* (1/1) 1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (9.6 mmol, 2.2 g), LiHMDS (5.7 mmol, 5.7 mL), THF (50 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1A in 45% yield (1.0 g) as a yellow solid. Exhibited spectral data were identical to previous report: X. Lei, G. Dutheuil, X. Pannecoucke and J. -C. Quirion, *Org. Lett.*, 2004, 6, 2101.

(*E*)-1-(2-Bromo-2-fluorovinyl)benzene (1B): mixture of E/Z (1/1) 1-(2-bromo-2-fluorovinyl)benzene (4.8 mmol, 1.0 g), LiHMDS (2.9 mmol, 3.2 mL), THF (25 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1B in 49% yield (0.5 g) as a colorless oil. IR: 3061, 1646, 1495, 1448, 1041, 914, 846, 831, 806 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.23 (m, 5H), 5.98 (d, J = 32.9 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -67.8 (d, J = 32.7 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 134.0 (d, J = 329.3 Hz, Cq), 132.6 (d, J = 4.5 Hz, Cq), 128.8 (s, 2xCH), 128.2 (d, J = 7.5 Hz, 2xCH), 128.0 (d, J = 2.3 Hz, CH), 113.2 (d, J = 6.0 Hz, CH). MS (CI-TOF): m/z 200 [M+H⁺]. HRMS (CI-TOF): calcd for C₈H₇BrF m/z 200.9715 [M+H⁺], found: 200.9712.

(*E*)-2-(2-Bromo-2-fluorovinyl)naphthalene (1C): mixture of *E/Z* (1/1) 2-(2-bromo-2-fluorovinyl)naphthalene (10.4 mmol, 2.6 g), LiHMDS (6.3 mmol, 7.0 mL), THF (50 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1C in 45% yield (1.2 g) as a colorless solid. Exhibited spectral data were identical to previous report: X. Lei, G. Dutheuil, X. Pannecoucke and J. -C. Quirion, *Org. Lett.*, 2004, 6, 2101.

(*E*)-4-(2-Bromo-2-fluorovinyl)benzonitrile (1D): mixture of *E/Z* (3/2) 4-(2-bromo-2-fluorovinyl)benzonitrile (7.4 mmol, 1.7 g), LiHMDS (4.4 mmol, 4.4 mL), THF (40 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1D in 55% yield (0.9 g) as a colorless solid. Exhibited spectral data were identical to previous report: X. Lei, G. Dutheuil, X. Pannecoucke and J. -C. Quirion, *Org. Lett.*, 2004, 6, 2101.

(*E*)-1-(2-Bromo-2-fluorovinyl)-4-trifluoromethylbenzene (1E): mixture of *E/Z* (1/1) 1-(2-bromo-2-fluorovinyl)-4-trifluoromethylbenzene (4.8 mmol, 1.3 g), LiHMDS (2.9 mmol, 2.9 mL), THF (25 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1E in 29% yield (0.4 g) as a colorless liquid. Exhibited spectral data were identical to previous report: X. Lei, G. Dutheuil, X. Pannecoucke and J. -C. Quirion, *Org. Lett.*, 2004, 6, 2101.

(*E*)-1-(2-Bromo-2-fluorovinyl)-4-chlorobenzene (1F): mixture of E/Z (1/1) 1-(2-bromo-2-fluorovinyl)-4-chlorobenzene (2.12 mmol, 0.50 g), LiHMDS (1.28 mmol, 1.28 mL), THF (10 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1F in 50% yield (250 mg) as a colorless liquid, which sometimes crystallized at room temperature. IR: 3081, 2937, 2838, 1647, 1598, 1580, 1487, 1461, 1436, 1280, 1247, 1111, 1026, 818 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.32 (m, 4H), 5.94 (d, J = 33.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -67.1 (d, J = 32.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 134.4 (d, J = 329.3 Hz, Cq), 133.6 (d, J = 3.8 Hz, Cq), 131.0 (d, J = 4.5 Hz, Cq), 129.3 (d, J = 8.3 Hz, 2xCH), 128.9 (s, 2xCH), 112.1 (d, J = 6.0 Hz, CH). MS (CI-TOF): m/z 234 [M+H⁺]. HRMS (CI-TOF): calcd for C₈H₆BrClF m/z 234.9325 [M+H⁺], found: 234.9337.

(*E*)-4-(2-Bromo-2-fluorovinyl)-1,2-dimethoxybenzene (1G): mixture of *E/Z* (1/1) 4-(2-bromo-2-fluorovinyl)-1,2-dimethoxybenzene (3.8 mmol, 1.0 g), LiHMDS (2.3 mmol, 2.3 mL), THF (25 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1G in 50% yield (0.5 g) as a yellow liquid. Exhibited spectral data were identical to previous report: X. Lei, G. Dutheuil, X. Pannecoucke and J. -C. Quirion, *Org. Lett.*, 2004, 6, 2101.

(*E*)-1-(2-Bromo-2-fluorovinyl)-2-methoxybenzene (1H): mixture of E/Z (55/45) 1-(2-bromo-2-fluorovinyl)-2-methoxybenzene (5.40 mmol, 1.24 g), LiHMDS (3.20 mmol, 3.2 mL), THF (25 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE) affording compound 1H in 52% yield (645 mg) as a yellow oil. IR: 3081, 2837, 1646, 1598, 1580, 1487, 1461, 1436, 1247, 1111, 1026, 818 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.64 (d, J = 7.7 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 6.43 (d, J = 33.0 Hz, 1H), 3.84 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -69.1 (d, J = 33.8 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 155.8 (d, J = 1.2 Hz, Cq), 133.5 (d, J = 330.2 Hz, Cq), 129.3 (d, J = 14.1 Hz, CH), 129.2 (s, CH), 121.4 (d, J = 4.9 Hz, Cq), 120.8 (s, CH), 110.7 (d, J = 0.6 Hz, CH), 107.0 (d, J = 4.6 Hz, CH), 55.6 (s, CH₃). MS (CI-TOF): m/z 230 [M+H⁺]. HRMS (ESI-TOF): calcd for C₉H₉BrFO m/z 230.9821 [M+H⁺], found: 230.9821.

b. Variation of gem-bromofluoroalkene - Compounds 3Aa - 3Ha

(Z)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-5-phenyloxazole (3Aa): (*E*)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 3Aa in 96% yield (56 mg) as a colorless solid. Exhibited spectral data were identical to previous report: C. Schneider, D. Masi, S. Couve-Bonnaire, X. Pannecoucke and C. Hoarau, *Angew. Chem. Int. Ed.*, 2013, 52, 3246.

(*Z*)-2-(1-Fluoro-2-phenylvinyl)-5-phenyloxazole (3Ba): (*E*)-(2-bromo-2-fluorovinyl)-benzene (0.22 mmol, 44 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 3Ba in 89% yield (47 mg) as a colorless solid. mp 89-91 °C (CH₂Cl₂/PE). IR: 3050, 1531, 1487, 1444, 1354, 1137, 1025, 957, 943, 820 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.70 (m, 4H), 7.49-7.32 (m, 7H), 6.79 (d, *J* = 37.5 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -126.5 (d, *J* = 37.5 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 155.2 (d, *J* = 37.5 Hz, Cq), 152.2 (s, Cq), 146.1 (d, *J* = 255.1 Hz, Cq), 132.1 (d, *J* = 3.9 Hz, Cq), 129.7 (d, *J* = 7.8 Hz, 2xCH), 129.10 (s, 2xCH), 129.06 (s, CH), 128.9 (s, 2xCH), 128.8 (s, CH), 127.4 (s, Cq), 124.5 (s, 2xCH), 123.8 (d, *J* = 1.3 Hz, CH), 111.5 (d, *J* = 5.0 Hz, CH). MS (ESI-TOF): m/z 266 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₇H₁₃FNO m/z 266.0981 [M+H⁺], found: 266.0968.

(*Z*)-2-(1-Fluoro-2-(naphth-2-yl)vinyl)-5-phenyloxazole (3Ca): (*E*)-2-(2-bromo-2-fluorovinyl)naphthalene (0.22 mmol, 55 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 3/7) affording compound 3Ca in 94% yield (59 mg) as a yellow solid. mp 149-151 °C (CH₂Cl₂/PE). IR: 3057, 1660, 1593, 1531, 1485, 1449, 1344, 1320, 1062, 963, 949, 905, 875, 821 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.12 (s, 1H), 7.90-7.80 (m, 4H), 7.72 (d, J = 6.4 Hz, 2H), 7.52-7.45 (m, 5H), 7.40 (d, J = 6.4 Hz, 1H), 6.96 (d, J

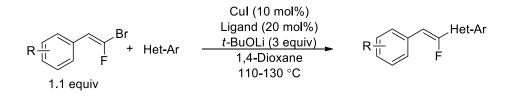
= 37.5 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -126.5 (d, J = 37.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 152.2 (s, Cq), 146.2 (d, J = 253.5 Hz, Cq), 133.4 (s, Cq), 133.2 (d, J = 1.5 Hz, Cq), 129.7 (s, Cq), 129.7 (d, J = 7.5, CH), 129.6 (s, Cq), 129.1 (s, 2xCH), 129.1 (s, CH), 128.5 (d, J = 2.3 Hz, CH), 127.8 (s, CH), 127.4 (s, Cq), 126.9 (s, CH), 126.8 (s, CH), 126.7 (s, CH), 126.6 (s, CH), 124.5 (s, 2xCH), 123.9 (s, CH), 111.7 (d, J = 4.5 Hz, CH). MS (ESI-TOF): m/z 316 [M+H⁺]. HRMS (ESI-TOF): calcd for C₂₁H₁₅FNO m/z 316.1138 [M+H⁺], found: 316.1136.

(Z)-4-(2-Fluoro-2-(5-phenyloxazol-2-yl)vinyl)benzonitrile (3Da): (*E*)-4-(2-bromo-2-fluorovinyl)benzonitrile (0.22 mmol, 50 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 3Da in 45% yield (26 mg) as a yellow solid. Exhibited spectral data were identical to previous report: C. Schneider, D. Masi, S. Couve-Bonnaire, X. Pannecoucke and C. Hoarau, *Angew. Chem. Int. Ed.*, 2013, **52**, 3246.

$$F_3C$$

(*Z*)-2-(1-Fluoro-2-(4-trifluoromethylphenyl)vinyl)-5-phenyloxazole (3Ea): (*E*)-1-(2-bromo-2-fluorovinyl)-4-trifluoromethylbenzene (0.22 mmol, 59 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 3Ea in 62% yield (40 mg) as a yellow solid. mp 89-91 °C (CH₂Cl₂/PE). IR: 1615, 1486, 1406, 1322,

1167, 1115, 1066, 971, 958, 876, 828 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.77 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 7.1 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.51-7.33 (m, 4H), 6.81 (d, J = 36.6 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -62.8 (s, 3F), -123.6 (d, J = 36.6 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 154.6 (d, J = 36.2 Hz, Cq), 152.7 (s, Cq), 147.3 (d, J = 258.1 Hz, Cq), 135.5 (d, J = 2.6 Hz, Cq), 130.4 (qd, J = 32.7, 2.8 Hz, Cq), 129.8 (d, J = 8.1 Hz, 2xCH), 129.4 (s, CH), 129.2 (s, 2xCH), 127,2 (s, Cq), 125.4 (q, J = 276.9 Hz, Cq), 125.9 (q, J = 3.7 Hz, 2xCH), 124.5 (s, 2xCH), 124.0 (d, J = 1.4 Hz, CH), 110.0 (d, J = 4.8 Hz, CH). MS (ESI-TOF): m/z 334 [M+H⁺], HRMS (ESI-TOF): calcd for C₁₈H₁₂F₄NO m/z 334.0855 [M+H⁺], found: 334.0851.


(Z)-2-(1-Fluoro-2-(4-chlorophenyl)vinyl)-5-phenyloxazole (**3Fa**): (*E*)-1-(2-bromo-2fluorovinyl)-4-chlorobenzene (0.22 mmol, 52 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **3Fa** in 71% yield (42 mg) as a colorless solid. mp 139-141 °C (CH₂Cl₂/PE). IR: 3066, 1653, 1486, 1408, 1351, 1335, 1138, 1082, 1012, 957, 941, 874, 810 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.70 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 7.47-7.41 (m, 3H), 7.40-7.34 (m, 3H), 6.73 (d, J = 37.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -125.9 (d, J = 36.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 154.9 (d, J = 33.8 Hz, Cq), 152.3 (s, Cq), 146.4 (d, J = 254.3 Hz, Cq), 134.6 (d, J = 3.8 Hz, Cq), 130.9 (d, J = 8.0 Hz, 2xCH), 130.7 (d, J = 3.8 Hz, Cq), 129.2 (s, 3xCH), 129.1 (s, 2xCH), 127.3 (s, 2xCH),Cq), 124.6 (d, J = 7.1 Hz, 2xCH), 123.9 (d, J = 1.4 Hz, CH), 110.3 (d, J = 5.0 Hz, CH). MS (ESI-TOF): m/z 302 [M+H⁺], 300 [M+H⁺]. HRMS (ESI-TOF): calcd for $C_{17}H_{12}^{35}ClFNO$ m/z300.0591 [M+H⁺], found: 300.0596.

(*Z*)-2-(1-Fluoro-2-(3,4-dimethoxyphenyl)vinyl)-5-phenyloxazole (3Ga): (*E*)-1-(2-bromo-2-fluorovinyl)-3,4-dimethoxybenzene (0.22 mmol, 57 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **3Ga** in 68% yield (44 mg) as a yellow solid. mp 120-122 °C (CH₂Cl₂/PE). IR: 3113, 2833, 1585, 1530, 1514, 1413, 1338, 1263, 1144, 1072, 1018, 869, 848, 803 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.71-7.67 (m, 2H), 7.48-7.42 (m, 3H), 7.38-7.36 (m, 1H), 7.30 (s, 1H), 7.24 (dd, J = 8.4, 2.0 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 37.7 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -129.6 (d, J = 37.7 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 151.9 (s, Cq), 149.8 (s, Cq), 149.7 (s, Cq), 149.0 (s, Cq), 145.0 (d, J = 252.1 Hz, Cq), 129.1 (s, 2xCH), 129.0 (s, CH), 127.5 (s, Cq), 125.0 (d, J = 4.0 Hz, Cq), 124.5 (s, 2xCH), 123.7 (s, CH), 123.4 (d, J = 7.2 Hz, CH), 111.2 (d, J = 9.2 Hz, CH), 111.5 (d, J = 5.0 Hz, CH), 111.2 (s, CH), 56.0 (s, CH₃), 55.9 (s, CH₃). MS (ESI-TOF): m/z 326 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₉H₁₇FNO₃ m/z 326.1192 [M+H⁺], found: 326.1187.

(*Z*)-2-(1-Fluoro-2-(2-methoxyphenyl)vinyl)-5-phenyloxazole (3Ha): (*E*)-1-(2-bromo-2-fluorovinyl)-2-methoxybenzene (0.22 mmol, 51 mg), 5-phenyloxazole (0.20 mmol, 29 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 3/7) affording compound 3Ha in 58% yield (34 mg)

as a colorless solid. mp 135-137 °C (CH₂Cl₂/PE). IR: 3098, 2924, 1570, 1532, 1485, 1463, 1435, 1350, 1284, 1242, 1111, 1024, 957, 944, 851, 844, 821 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.96 (dd, J = 7.8, 1.5 Hz, 1H), 7.73 (m, 1H), 7.71 (s, 1H), 7.51-7.29 (m, 5H), 7.28 (d, J = 39.0 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 3.91 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -128.1 (d, J = 39.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 157.0 (s, Cq), 156.9 (s, Cq), 152.0 (s, Cq), 146.1 (d, J = 254.1 Hz, Cq), 130.6 (d, J = 13.7 Hz, CH), 130.2 (d, J = 2.0 Hz, CH), 129.1 (s, 2xCH), 129.0 (s, CH), 127.5 (s, Cq), 124.5 (s, 2xCH), 123.8 (s, CH), 121.0 (s, Cq), 120.9 (s, CH), 110.7 (s, CH), 105.3 (d, J = 3.4 Hz, CH), 55.7 (s, CH₃). MS (ESI-TOF): m/z 296 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₈H₁₅FNO₂ m/z 296.1087 [M+H⁺], found: 296.1077.

c. Reluctant substrates

Ortho EWG on gem-bromofluoroalkene

Alkyl gem-bromofluoroalkene

Tetrasubstitued gem-bromofluoroalkene

d. Variation of phenyloxazole – Compounds 3Ab - 3Ce

(*Z*)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-5-(4-methoxyphenyl)oxazole (3Ab): (*E*)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), 5-(4-methoxyphenyl)oxazole (0.20 mmol, 35 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 2/8) affording compound **3Ab** in 74% yield (48 mg) as a colorless solid. mp 93-95 °C (EtOAc/PE). IR: 2926, 2842, 1604, 1535, 1497, 1300, 1250, 1174, 1021, 953, 879, 822 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.63 (dd, J = 8.7, 1.3 Hz, 4H), 7.31 (s, 1H), 6.96 (m, 4H), 6.70 (d, J = 37.9 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -129.7 (d, J = 37.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 160.2 (s, Cq), 159.9 (d, J = 3.0 Hz, Cq), 152.0 (s, Cq), 145.0 (d, J = 250.5 Hz, Cq), 131.2 (d, J = 7.5 Hz, 2xCH), 126.0 (s, 2xCH), 124.9 (s, Cq), 124.9 (s, Cq), 122.1 (s, CH), 120.3 (s, Cq), 114.5 (s, 2xCH), 114.4 (s, 2xCH), 110.8 (d, J = 5.3 Hz, CH), 55.4 (s, CH₃), 55.3 (s, CH₃). MS (ESI-TOF): m/z 326 [M+H⁺]. HRMS (ESI-TOF): calcd C₁₉H₁₇FNO₃ m/z 326.1192 [M+H⁺], found: 326.1187.

(*Z*)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-5-(4-trifluoromethylphenyl)oxazole (3Ac): (*E*)-1-(2-bromo-2-fluorovinyl)-2-methoxybenzene (0.22 mmol, 51 mg), 5-(4-trifluoromethyl-

phenyl)oxazole (0.20 mmol, 43 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 4/6) affording compound **3Ac** in 83% yield (60 mg) as a yellow solid. mp 145-147 °C (CH₂Cl₂/PE). IR: 1700, 1613, 1546, 1413, 1322, 1249, 1165, 1111, 1095, 1069, 954, 871, 842, 824 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.74 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 7.50 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 37.7 Hz, 1H), 3.76 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -62.7 (s, 3F), -130.1 (d, J = 37.7 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 160.3 (d, J = 3.3 Hz, Cq), 156.4 (d, J = 37.4 Hz, Cq), 150.4 (s, Cq), 144.7 (d, J = 252.2 Hz, Cq), 131.5 (d, J = 8.0 Hz, 2xCH), 130.8 (s, Cq), 130.4 (s, Cq), 126.2 (q, J = 3.8 Hz, 2xCH), 125.5 (d, J = 1.5 Hz, CH), 124.6 (d, J = 4.0 Hz, Cq), 124.5 (s, 2xCH), 124.0 (q, J = 272.0 Hz, Cq), 114.5 (s, 2xCH), 112.2 (d, J = 5.2 Hz, CH), 55.5 (s, CH₃). MS (ESI-TOF): m/z 364 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₉H₁₄F₄NO₂ m/z 364.0961 [M+H⁺], found: 364.0967.

(*Z*)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-5-(naphth-2-yl)oxazole (3Ad): (*E*)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), 5-(naphthal-2-yl)oxazole (0.20 mmol, 39 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 1/9) affording compound **3Ad** in 80% yield (60 mg) as a yellow solid. mp 135-137 °C (CH₂Cl₂/PE). IR: 3133, 1605, 1529, 1504, 1254, 1182, 1114, 1073, 1024, 948, 886, 863, 836, 811 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.18 (s, 1H), 7.90 (m, 2H), 7.85 (m, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.6 Hz, 2H), 7.60-7.46 (m, 3H), 6.96 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 37.8 Hz, 1H), 3.86 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -129.8 (d, J = 37.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 160.1(d, J = 2.9 Hz, Cq), 156.0 (d, J = 37.4 Hz, Cq), 152.0 (s, Cq), 145.0 (d, J = 249.8 Hz, Cq), 133.5 (s, Cq),

133.4 (s, Cq), 131.3 (d, J = 8.3 Hz, 2xCH), 129.0 (s, CH), 128.4 (s, CH), 128.0 (s, CH), 127.0 (s, CH), 126.9 (s, CH), 124.9 (s, Cq), 124.8 (s, Cq), 124.3 (s, CH), 123.5 (s, CH), 122.2 (s, CH), 114.5 (s, 2xCH), 111.4 (d, J = 5.3 Hz, CH), 55.4 (s, CH₃). MS (ESI-TOF): m/z 346 [M+H⁺]. HRMS (ESI-TOF): calcd for C₂₂H₁₇FNO₂ m/z 346.1243 [M+H⁺], found: 346.1238.

(*Z*)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-4-phenyloxazole (3Ae): (*E*)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), 4-phenyloxazole (0.20 mmol, 26 μL), CuI (0.02 mmol, 4 mg), Phen (0.04 mmol, 7 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **3Ae** in 70% yield (41 mg) as a yellow solid. mp 138-140 °C (CH₂Cl₂/PE). IR: 1606, 1545, 1508, 1485, 1453, 1296, 1255, 1179, 1117, 1077, 1032, 940, 866, 811 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.93 (d, *J* = 1.5 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.54-7.29 (m, 3H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 38.0 Hz, 1H), 3.84 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -129.5 (dd, *J* = 38.0, 1.5 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 160.1 (d, *J* = 3.3 Hz, Cq), 156.4 (d, *J* = 37.3 Hz, Cq), 145.0 (d, *J* = 252.4 Hz, Cq), 142.5 (s, Cq), 133.9 (s, CH), 131.4 (d, *J* = 7.9 Hz, 2xCH), 130.6 (s, Cq), 128.9 (s, 2xCH), 128.6 (s, CH), 125.9 (s, 2xCH), 124.8 (d, *J* = 4.0 Hz, Cq), 114.4 (s, 2xCH), 111.7 (d, *J* = 5.2 Hz, CH), 55.4 (s, CH₃). MS (ESI-TOF): m/z 296 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₈H₁₅FNO₂ m/z 296.1088 [M+H⁺], found: 296.1087.

(Z)-2-(1-Fluoro-2-(naphth-2-yl)vinyl)-5-(4-methoxyphenyl)oxazole (3Cb): (E)-2-(2bromo-2-fluorovinyl)naphthalene (0.22 mmol, 55 mg), 5-(4-methoxyphenyl)oxazole (0.20 mmol, 35 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 2/8) affording compound **3Cb** in 70% yield (48 mg) as a colorless solid. mp 151-153 °C (EtOAc/PE). IR: 2937, 1616, 1497, 1461, 1425, 1309, 1255, 1177, 1070, 1019, 935, 907, 867, 817 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.10 (s, 1H), 7.91-7.77 (m, 4H), 7.64 (d, J = 8.8 Hz, 2H), 7.50 (dd, J = 6.2, 3.2 Hz, 2H), 7.35 (s, 1H), 6.98 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 37.9 Hz, 1H), 3.86 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -126.4 (d, J = 37.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 160.4 (s, Cq), 152.3 (s, Cq), 146.4 (d, J = 253.5 Hz, Cq), 133.5 (s, Cq), 133.2 (d, J = 2.1 Hz, Cq), 129.8 (s, Cq), 129.8 (s, Cq), 128.5 (s, CH), 128.5 (s, CH), 127.8 (s, CH), 126.9 (s, CH), 126.8 (s, CH), 126.7 (s, CH), 126.6 (s, CH), 126.1 (s, 2xCH), 122.4 (s, CH), 120.3 (s, Cq), 114.6 (s, 2xCH), 111.2 (d, J = 5.3 Hz, CH), 55.5 (s CH₃). MS (ESI-TOF): m/z 346 [M+H⁺]. HRMS (ESI-TOF): calcd for $C_{22}H_{17}FNO_2$ m/z 346.1243 [M+H⁺], found: 346.1256.

(Z)-2-(1-Fluoro-2-(naphth-2-yl)vinyl)-4-phenyloxazole (3Ce): (E)-2-(2-bromo-2-fluorovinyl)naphthalene (0.22 mmol, 55 mg), 4-phenyloxazole (0.20 mmol, 26 μ L), CuI (0.02 mmol, 4 mg), Phen (0.04 mmol, 7 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel

column chromatography (PE/CH₂Cl₂, 8/2) affording compound **3Ce** in 99% yield (62 mg) as a yellow solid. mp 181-183 °C (CH₂Cl₂/PE). IR: 3055, 1538, 1449, 1272, 1118, 1080, 941, 907, 870, 836, 819 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.12 (s, 1H), 7.99 (d, J = 1.7 Hz, 1H), 7.92-7.78 (m, 6H), 7.56-7.33 (m, 5H), 6.99 (d, J = 37.6 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -126.2 (dd, J = 37.5, 1.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 156.2 (d, J = 37.5 Hz, Cq), 146.3 (d, J = 254.3 Hz, Cq), 142.7 (s, Cq), 134.2 (s, CH), 133.5 (s, Cq), 133.3 (d, J = 1.5 Hz, Cq), 130.5 (s, Cq), 129.8 (d, J = 8.3 Hz, CH), 129.6 (d, J = 3.8 Hz, Cq), 129.0 (s, 2xCH), 128.7 (s, CH), 128.6 (s, CH), 128.6 (s, CH), 127.0 (s, CH), 126.8 (d, J = 8.3 Hz, CH), 126.7 (s, CH), 125.9 (s, 2xCH), 112.1 (d, J = 5.3 Hz, CH). MS (ESI-TOF): m/z 316 [M+H⁺]. HRMS (ESI-TOF): calcd for C₂₁H₁₅FNO m/z 316.1138 [M+H⁺], found: 316.1149.

(Z)-4-(2-Fluoro-2-(5-(4-trifluoromethylphenyl)oxazol-2-yl)vinyl)benzonitrile (3Dc): (E)-4-(2-bromo-2-fluorovinyl)benzonitrile mmol, 50 (0.22)mg), 5-(4-trifluoromethylphenyl)oxazole (0.20 mmol, 43 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 3/7) affording compound 3Dc in 75% yield (57 mg) as a colorless solid. mp 182-184 °C (CH₂Cl₂/PE). IR: 2926, 2226, 1620, 1603, 1533, 1413, 1322, 1164, 1111, 1069, 942, 843, 827 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.67 (m, 9H), 6.84 (d, J = 36.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -62.8 (s, 3F), -122.1 (d, J = 36.0 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 155.1 (d, J = 36.8 Hz, Cq), 151.3 (s, Cq), 147.5 (d, J = 258.8 Hz, Cq), 136.3 (d, J = 3.8 Hz, Cq), 132.6 (s, 2xCH), 131.0 (q, J = 32.3 Hz, Cq), 130.3 (s, Cq), 130.1 (d, J = 8.3 Hz, 2xCH), 126.3 (q, J = 3.8 Hz, 2xCH), 125.8 (s, CH), 124.8 (s, 2xCH), 123.9 (q, J = 270.8 Hz, Cq), 118.6(s, Cq), 112.2 (d, J = 3.0 Hz, Cq), 110.3 (d, J = 4.5 Hz, CH). MS (ESI-TOF): m/z 359 [M+H⁺]. HRMS (ESI-TOF): calcd for $C_{19}H_{11}F_4N_2O$ m/z 359.0808 [M+H⁺], found: 359.0807.

$$F_3C$$

(Z)-2-(1-Fluoro-2-(4-trifluoromethylphenyl)vinyl)-4-phenyloxazole (3Ee): (E)-1-(2bromo-2-fluorovinyl)-4-trifluoromethylbenzene (0.22 mmol, 59 mg), 4-phenyloxazole (0.20 mmol, 26 μL), CuI (0.02 mmol, 4 mg), Phen (0.04 mmol, 7 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 4/6) affording compound 3Ee in 61% yield (40 mg) as a yellow solid. mp 165-167 °C (CH₂Cl₂/PE). IR: 3106, 1613, 1549, 1415, 1322, 1167, 1106, 1066, 1017, 939, 871, 844, 803 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, J = 1.4 Hz, 1H), 7.86-7.77 (m, 4H), 7.69 (d, J = 8.2 Hz, 2H), 7.50-7.40 (m, 3H), 6.88 (d, J = 8.2 Hz, 2H)= 36.6 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -62.8 (s, 3F), -123.4 (d, J = 36.6 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 155.3 (d, J = 37.1 Hz, Cq), 147.3 (d, J = 258.6 Hz, Cq), 146.6 (s, Cq), 142.9 (d, J = 1.6 Hz, Cq), 142.4 (s, Cq), 130.8 (qd, J = 32.5, 3.1 Hz, Cq), 129.8 (d, J = 7.5Hz, 2xCH), 129.0 (s, 2xCH), 128.8 (s, CH), 125.8 (s, 2xCH), 125.7 (s, CH), 125.6 (q, J = 3.8Hz, 2xCH), 123.8 (q, J = 273.1 Hz, Cq), 110.4 (d, J = 4.5 Hz, CH). MS (ESI-TOF): m/z 334 $[M+H^+]$. HRMS (ESI-TOF): calcd for $C_{18}H_{12}F_4NO$ m/z 334.0855 $[M+H^+]$, found: 334.1099.

(*Z*)-2-(2-(4-Chlorophenyl)-1-fluorovinyl)-5-(naphth-2-yl)oxazole (3Fd): (*E*)-1-(2-bromo-2-fluorovinyl)-4-chlorobenzene (0.22 mmol, 52 mg), 5-(naphth-2-yl)oxazole (0.20 mmol, 39 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 2/8) affording compound 3Fd in 59% yield (42 mg) as a yellow solid. mp 149-151 °C (CH₂Cl₂/PE). IR: 3055, 1660, 1489, 1333, 1090, 1066, 955, 866, 833, 810 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.15 (s, 1H), 7.87 (m, 3H), 7.72

(d, J = 8.6 Hz, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.53 (m, 3H), 7.38 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 37.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -125.9 (d, J = 37.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 146.3 (d, J = 254.8 Hz, Cq), 136.3 (s, Cq), 134.7 (d, J = 3.0 Hz, Cq), 133.4 (s, CH), 133.4 (d, J = 4.2 Hz, Cq), 130.9 (d, J = 7.7 Hz, CH), 130.6 (s, Cq), 130.5 (s, Cq) 129.2 (s, 2xCH), 129.1 (s, CH), 129.0 (s, CH), 128.4 (s, CH), 128.0 (s, CH), 127.0 (d, J = 6.7 Hz, 2xCH), 124.6 (s, Cq), 123.6 (s, CH), 122.0 (s, CH), 119.3 (s, Cq), 110.4 (d, J = 4.1 Hz, CH). MS (ESITOF): m/z 350 [M+H⁺]. HRMS (ESI-TOF): calcd for C₂₁H₁₄³⁵CIFNO m/z 350.0748 [M+H⁺], found: 350.0736.

e. Variation of heteroaryle - Compounds 4Aa - 7G

(Z)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)benzo[d]oxazole (4Aa): (*E*)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), benzo[d]oxazole (0.20 mmol, 24 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 4Aa in 82% yield (44 mg) as a yellow solid. Exhibited spectral data were identical to previous report: C. Schneider, D. Masi, S. Couve-Bonnaire, X. Pannecoucke and C. Hoarau, *Angew. Chem. Int. Ed.*, 2013, 52, 3246.

(Z)-5-Chloro-2-(1-fluoro-2-(4-methoxyphenyl)vinyl)benzo[d]oxazole (4Ab): (E)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), 5-chlorobenzo[d]oxazole (0.20 mmol, 31 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), t-BuOLi (0.60 mmol, 48

mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 8/2) affording compound **4Ab** in 70% yield (42 mg) as a colorless solid. mp 159-161 °C (CH₂Cl₂/PE). IR: 3093, 2959, 2216, 1660, 1605, 1542, 1449, 1259, 1179, 1071, 1021, 937, 841, 821, 803 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, J = 1.4 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.6 Hz, 1H), 7.33 (dd, J = 8.6, 1.4 Hz, 1H), 6.95 (d, J = 37.3 Hz, 1H), 6.94 (d, J = 8.6 Hz, 2H), 3.85 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -130.3 (d, J = 37.3 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 160.7 (d, J = 3.3 Hz, Cq), 158.7 (d, J = 36.5 Hz, Cq), 149.2 (s Cq), 144.2 (d, J = 252.3 Hz, Cq), 142.9 (s, Cq), 131.9 (d, J = 8.1 Hz, 2xCH), 130.7 (s, Cq), 126.1 (s, CH), 124.3 (d, J = 4.1 Hz, Cq), 120.4 (s, CH), 115.3 (d, J = 4.6 Hz, CH), 114.6 (s, 2xCH), 111.4 (s, CH), 55.5 (s, CH₃). MS (ESI-TOF): m/z 304 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₆H₁₂³⁵ClFNO₂ m/z 304.0541 [M+H⁺], found: 304.0539.

(*Z*)-2-(1-Fluoro-2-phenylvinyl)benzo[d]oxazole (4Ba): (*E*)-(2-bromo-2-fluorovinyl)benzene (0.22 mmol, 44 mg), benzo[d]oxazole (0.20 mmol, 24 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **4Ba** in 53% yield (25 mg) as a colorless solid. mp 93-95 °C (CH₂Cl₂/PE). IR: 2920, 2223, 1548, 1449, 1341, 1234, 1110, 1066, 935, 838 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.81-7.77 (m, 1H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.61-7.55 (m, 1H), 7.49-7.33 (m, 5H), 7.02 (d, *J* = 37.1 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -126.4 (d, *J* = 37.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 156.9 (d, *J* = 36.6 Hz, Cq), 150.6 (s, Cq), 145.8 (d, *J* = 255.5 Hz, Cq), 141.5 (s, Cq), 131.6 (d, *J* = 4.1 Hz, Cq), 130.0 (d, *J* = 7.9 Hz, 2xCH), 129.4 (d, *J* = 2.7 Hz, CH), 128.9 (s, 2xCH), 126.1 (s, CH), 125.1 (s, CH), 120.6 (s, CH), 114.5 (d, *J* = 4.6 Hz, CH), 110.7 (s, CH). MS (ESI-TOF): m/z 240 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₅H₁₁FNO m/z 240.0825 [M+H⁺], found: 240.0823.

(Z)-2-(1-Fluoro-2-phenylvinyl)-5-methoxybenzo[d]oxazole **(4Bc)**: (E)-1-(2-bromo-2fluorovinyl)benzene (0.22 mmol, 45 mg), 5-methoxybenzo[d]oxazole (0.20 mmol, 30 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5 to 3/7) affording compound **4Bc** in 99% yield (55 mg) as a colorless solid. mp 109-111 °C (CH₂Cl₂/PE). IR: 2919, 2220, 1607, 1545, 1484, 1435, 1339, 1273, 1113, 1073, 833, 812 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.74 (d, J = 7.5 Hz, 2H), 7.51-7.37 (m, 4H), 7.27 (m, 1H), 7.01 (d, J = 8.9 Hz, 1H), 7.00 (d, J = 37.1 Hz, 1H), 3.89(s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -126.5 (d, J = 37.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 157.9 (s, Cq), 157.7 (d, J = 36.6 Hz, Cq), 146.0 (d, J = 255.4 Hz, Cq), 145.4 (s, Cq), 142.5 (s, Cq), 131.8 (d, J = 4.3 Hz, Cq), 130.1 (d, J = 7.9 Hz, 2xCH), 129.4 (d, J = 2.3 Hz, CH), 129.0 (s, 2xCH), 115.0 (s, CH), 114.3 (d, J = 4.6 Hz, CH), 111.0 (s, CH), 103.2 (s, CH), 56.1 (s, CH₃).MS (ESI-TOF): m/z 270 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₆H₁₃FNO₂ m/z 270.0930 $[M+H^+]$, found: 270.0930.

(*Z*)-2-(2-(4-chlorophenyl)-1-fluorovinyl)benzo[d]oxazole (4Fa): (*E*)-1-(2-bromo-2-fluorovinyl)-4-chlorobenzene (0.22 mmol, 52 mg), benzo[d]oxazole (0.20 mmol, 24 mg), CuI (0.02 mmol, 4 mg), dppe (0.04 mmol, 16 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **4Fa** in 74% yield (40 mg) as a yellow solid. mp 143-145 °C (CH₂Cl₂/PE). IR: 3060, 2219, 1659, 1544, 1450, 1335, 1242, 1098, 1064, 937, 866, 839, 809 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.85-7.75 (m, 1H), 7.69-7.55 (m, 3H), 7.48-7.37 (m, 4H), 6.98 (d, J = 36.7 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃):

 δ -125.7 (d, J = 36.5 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 150.7 (s, Cq), 146.2 (d, J = 255.0 Hz, Cq), 141.6 (s, Cq), 135.4 (s, Cq), 133.8 (s, Cq), 131.2 (d, J = 8.3 Hz, 2xCH), 130.2 (s, Cq), 129.3 (s, 2xCH), 126.3 (s, CH), 125.3 (s, CH), 120.8 (s, CH), 113.4 (d, J = 4.5 Hz, CH), 110.9 (s, CH). MS (ESI-TOF): m/z 274 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₅H₁₀³⁵ClFNO m/z 274.0435 [M+H⁺], found: 274.0439.

(Z)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-1-methyl-1H-benzo[d]imidazole (5A): (E)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22)51 mmol, mg), 1-methyl-1Hbenzo[d]imidazole (0.20 mmol, 26 mg), CuI (0.02 mmol, 4 mg), trans-N,N'-dimethyl-1,2cyclohexanediamine (0.04 mmol, 7 µL), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **5A** in 54% yield (31 mg) as an orange solid. mp 125-127 °C (CH₂Cl₂/PE). IR: 3045, 2931, 1605, 1512, 1393, 1297, 1253, 1177, 1027, 870, 825 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.79-7.74 (m, 1H), 7.65 (d, J = 8.8Hz, 2H), 7.40-7.29 (m, 3H), 6.97 (d, J = 39.9 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.97 (d, J = 3.4Hz, 3H), 3.84 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ - 122.6 (dq, J = 39.9, 3.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 159.8 (d, J = 3.3 Hz, Cq), 148.7 (d, J = 252.6 Hz, Cq), 146.3 (d, J = 32.4 Hz, Cq), 142.8 (d, J = 2.3 Hz, Cq), 136.7 (s, Cq), 131.2 (d, J = 8.0 Hz, 2xCH), 125.3 (d, J = 3.6Hz, Cq), 123.5 (s, CH), 123.0 (s, CH), 119.9 (s, CH), 114.3 (s, 2xCH), 112.9 (d, J = 6.5 Hz, CH), 109.6 (s, CH), 55.4 (s, OCH₃), 31.9 (d, J = 10.8 Hz, NCH₃). MS (ESI-TOF): m/z 283 $[M+H^+]$. HRMS (ESI-TOF): calcd for $C_{17}H_{16}FN_2O$ m/z 283.1247 $[M+H^+]$, found: 283.1241.

(*Z*)-2-(1-Fluoro-2-(2-methoxyphenyl)vinyl)-1-methyl-1H-benzo[d]imidazole (5H): (*E*)-1-(2-bromo-2-fluorovinyl)-2-methoxybenzene (0.22 mmol, 51 mg), 1-methyl-1H-benzo[d]imidazole (0.20 mmol, 26 mg), CuI (0.02 mmol, 4 mg), *trans-N,N'*-dimethyl-1,2-

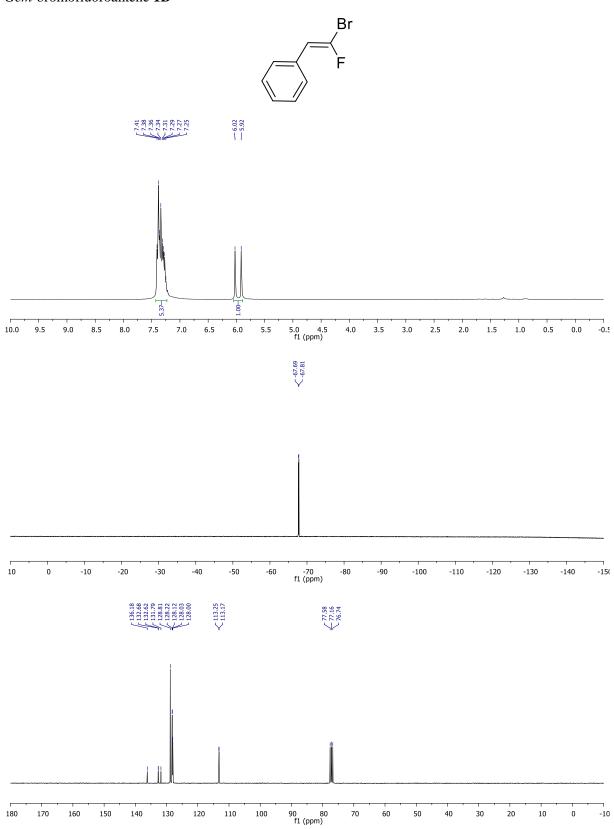
cyclohexanediamine (0.04 mmol, 7 μL), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **5H** in 55% yield (31 mg) as a brown solid. mp 101-103 °C (CH₂Cl₂/PE). IR: 3036, 2933, 1597, 1462, 1387, 1245, 1053, 1025, 856 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, J = 7.4 Hz, 1H), 7.77 (d, J = 5.7 Hz, 1H), 7.38 (d, J = 40.6 Hz, 1H), 7.30-7.16 (m, 4H), 6.97 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 3.93 (d, J = 2.3 Hz, 3H), 3.83 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -119.9 (d, J = 40.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 157.2 (s, Cq), 149.7 (d, J = 254.8 Hz, Cq), 142.9 (s, Cq), 142.9 (s, Cq), 130.3 (d, J = 13.4 Hz, CH), 129.9 (d, J = 1.8 Hz, CH), 123.6 (s, CH), 123.0 (s, CH), 121.43 (s, Cq), 121.38 (s, Cq), 120.7 (s, CH), 120.2 (s, CH), 110.7 (s, CH), 109.7 (s, CH), 107.3 (d, J = 4.8 Hz, CH), 55.6 (s, OCH₃), 31.9 (d, J = 9.6 Hz, NCH₃). MS (ESI-TOF): m/z 283 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₇H₁₆FN₂O m/z 283.1247 [M+H⁺], found: 283.1252.

(Z)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)benzo[d]thiazole (6A): (E)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), benzo[d]thiazole (0.20 mmol, 22 μL), CuI (0.02 mmol, 4 mg), phenanthroline (0.04 mmol, 7 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 6A in 91% yield (52 mg) as a yellow solid. Exhibited spectral data were identical to previous report: C. Schneider, D. Masi, S. Couve-Bonnaire, X. Pannecoucke and C. Hoarau, Angew. Chem. Int. Ed., 2013, 52, 3246.

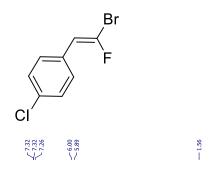
(**Z**)-2-(1-Fluoro-2-(4-trifluoromethylphenyl)vinyl)benzo[d]thiazole (6E): (*E*)-1-(2-bromo-2-fluorovinyl)-4-trifluoromethylbenzene (0.22 mmol, 59 mg), benzo[d]thiazole (0.20 mmol, 22

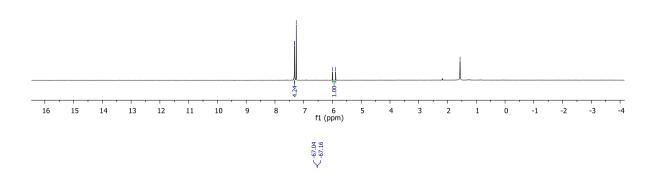
μL), CuI (0.02 mmol, 4 mg), phenanthroline (0.04 mmol, 7 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **6E** in 41% yield (26 mg) as a yellow solid. mp 123-125 °C (CH₂Cl₂/PE). IR: 3063, 1699, 1614, 1413, 1321, 1253, 1169, 1106, 1066, 997, 865, 831 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.09 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.56 (m, 1H), 7.45 (m, 1H), 7.12 (d, J = 37.8 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -62.8 (s, 3F), -111.6 (d, J = 37.8 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 160.4 (d, J = 39.0 Hz, Cq), 153.7 (d, J = 2.2 Hz, Cq), 152.9 (d, J = 256.0 Hz, Cq), 135.9-135.4 (m, Cq), 135.2 (s, Cq), 130.4 (qd, J = 32.7, 2.8 Hz, Cq), 130.1 (d, J = 8.1 Hz, 2xCH), 127.1 (s, CH), 126.1 (s, CH), 125.9 (q, J = 3.6 Hz, 2xCH), 124.0 (q, J = 270.8 Hz, Cq), 123.7 (s, CH), 122.0 (s, CH), 109.1 (d, J = 6.0 Hz, CH). MS (ESI-TOF): m/z 324 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₆H₁₀F₄NS m/z 324.0470 [M+H⁺], found: 324.0467.

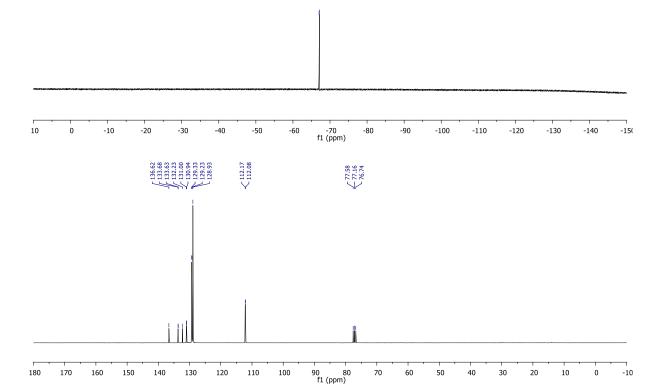
(Z)-2-(1-Fluoro-2-(2-methoxyphenyl)vinyl)benzo[d]thiazole **(6H)**: (*E*)-1-(2-bromo-2fluorovinyl)-2-methoxybenzene (0.22 mmol, 51 mg), benzo[d]thiazole (0.20 mmol, 22 µL), CuI (0.02 mmol, 4 mg), phenanthroline (0.04 mmol, 7 mg), t-BuOLi (0.60 mmol, 48 mg), 1,4dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 6H in 54% yield (31 mg) as a yellow solid. mp 99-101 °C (CH₂Cl₂/PE). IR: 2922, 1727, 1597, 1576, 1481, 1456, 1291, 1244, 1231, 1183, 1053, 1027, 935, 877 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.05 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.2 Hz, 1H), 7.50 (dd, J = 39.0, 1.8 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.00 (t, J = 7.5Hz, 1H), 6.89 (d, J = 9.0 Hz, 1H), 3.87 (d, J = 2.1 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -115.6 (d, J = 39.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 161.4 (d, J = 37.5 Hz, Cq), 157.3 (d, J = 15.0 Hz, Cq), 153.7 (d, J = 15.0 Hz, Cq), 151.5 (d, J = 251.5 Hz, Cq), 134.8 (s, Cq), 130.6 (d, J = 15.0 Hz, CH), 130.2 (d, J = 4.5 Hz, CH), 126.6 (s, CH), 125.5 (s, CH), 123.4 (s, CH),121.7 (s, CH), 120.9 (d, J = 4.5 Hz, Cq), 120.8 (s, CH), 110.7 (s, CH), 105.0 (d, J = 4.5 Hz, CH), 55.7 (s, CH₃). MS (ESI-TOF): m/z 286 [M+H⁺]. HRMS (ESI-TOF): calcd for $C_{16}H_{13}FNOS$ m/z 286.0702 [M+H⁺], found: 286.0697.

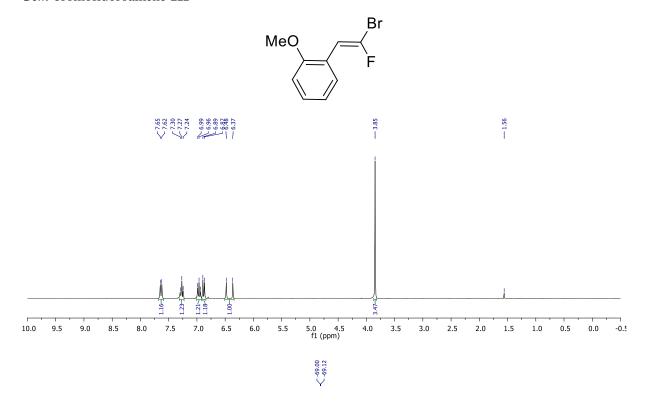

(Z)-2-(1-Fluoro-2-(4-methoxyphenyl)vinyl)-4,5-dimethylthiazole (7A): (*E*)-1-(2-bromo-2-fluorovinyl)-4-methoxybenzene (0.22 mmol, 51 mg), 4,5-dimethylthiazole (0.20 mmol, 21 μL), CuI (0.04 mmol, 8 mg), phenanthroline (0.08 mmol, 14 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound **7A** in 72% yield (37 mg) as a yellow solid. Exhibited spectral data were identical to previous report: K. Rousée, C. Schneider, S. Couve-Bonnaire, X. Pannecoucke, V. Levacher and C. Hoarau, *Chem. Eur. J.*, 2014, **10**, 15000.

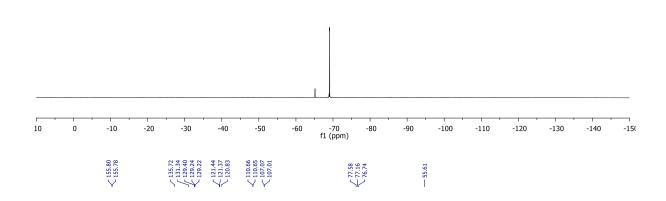
(*Z*)-2-(1-Fluoro-2-(3,4-dimethoxyphenyl)vinyl)-4,5-dimethylthiazole (7G): (*E*)-1-(2-bromo-2-fluorovinyl)-3,4-dimethoxybenzene (0.22 mmol, 57 mg), 4,5-dimethylthiazole (0.20 mmol, 21 μL), CuI (0.04 mmol, 8 mg), phenanthroline (0.08 mmol, 14 mg), *t*-BuOLi (0.60 mmol, 48 mg), 1,4-dioxane (0.8 mL) were reacted according to general procedure. The crude product was purified by silica gel column chromatography (PE/CH₂Cl₂, 5/5) affording compound 7G in 86% yield (42 mg) as a yellow solid. mp 106-108 °C (CH₂Cl₂/PE). IR: 2917, 1512, 1439, 1268, 1242, 1156, 1143, 1024, 848, 803 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.24 (s, 1H), 7.17 (dd, J = 8.4, 1.7 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 39.6 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -117.0 (d, J = 39.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 156.4 (d, J = 39.3 Hz, Cq), 150.9 (d, J = 248.6 Hz,

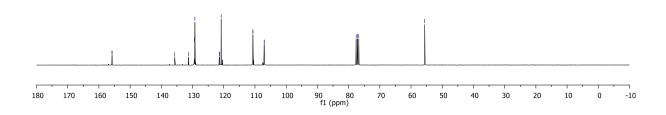

Cq), 150.0 (d, J = 2.2 Hz, Cq), 149.2 (d, J = 3.2 Hz, Cq), 148.9 (s, Cq), 127.6 (s, Cq), 125.7 (d, J = 3.7 Hz, Cq), 123.0 (d, J = 7.0 Hz, CH), 112.1 (d, J = 9.2 Hz, CH), 111.2 (s, CH), 106.6 (d, J = 6.8 Hz, CH), 56.0 (s, CH₃), 55.9 (s, CH₃), 15.0 (s, CH₃), 11.6 (s, CH₃). MS (ESI-TOF): m/z 294 [M+H⁺]. HRMS (ESI-TOF): calcd for C₁₅H₁₇FNO₂S m/z 294.0964 [M+H⁺], found: 294.0962.

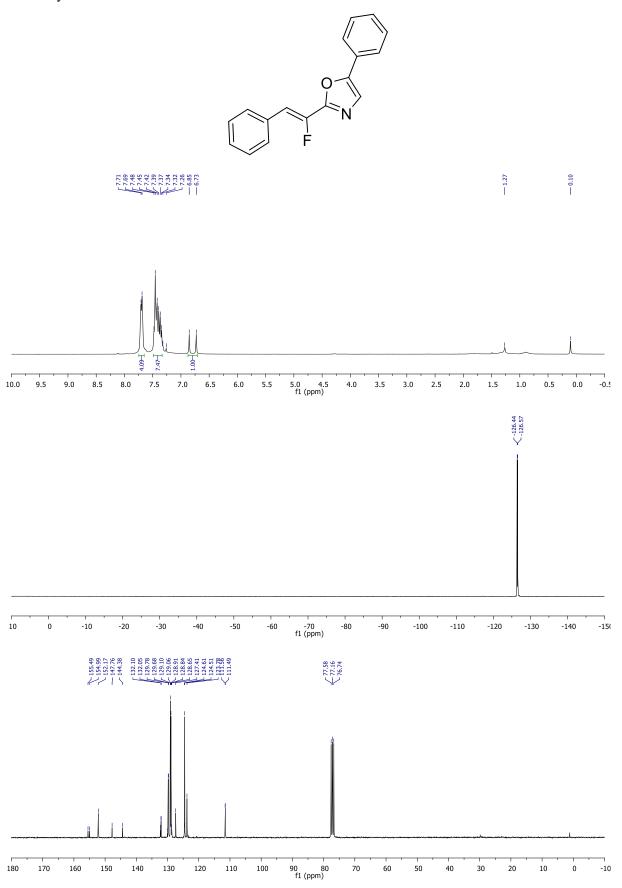

5. ^{1}H , ^{13}C and ^{19}F NMR spectra

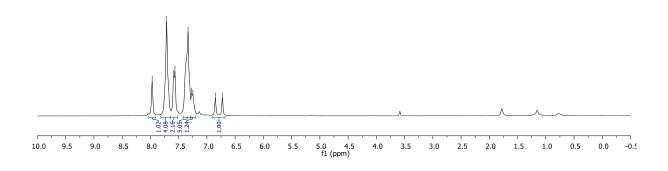

Gem-bromofluoroalkene 1B

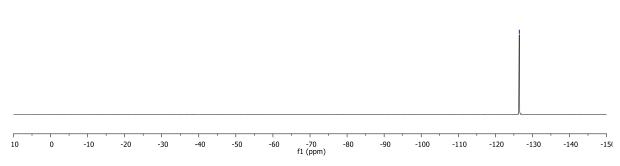

$\it Gem$ -bromofluoroalkene $\it 1F$

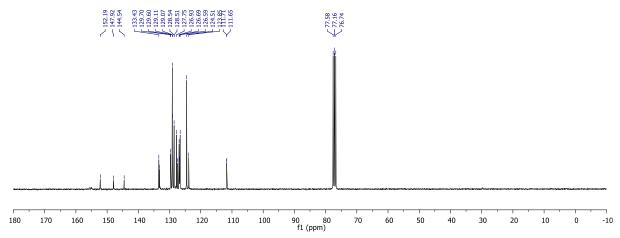




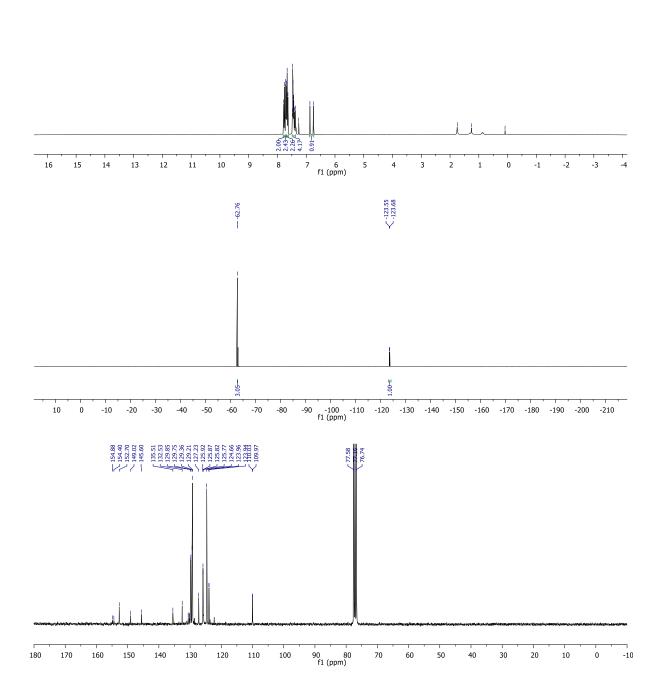

Gem-bromofluoroalkene 1H

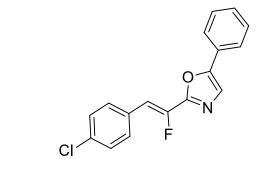


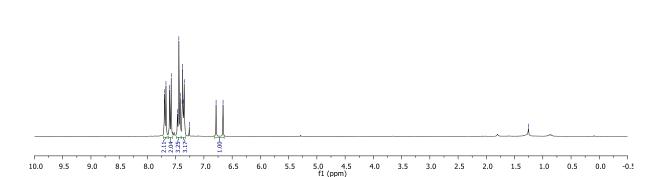

Heteroaryle 3Ba

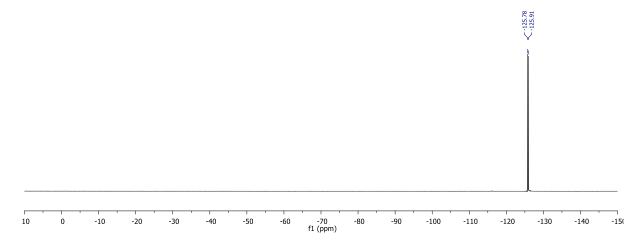


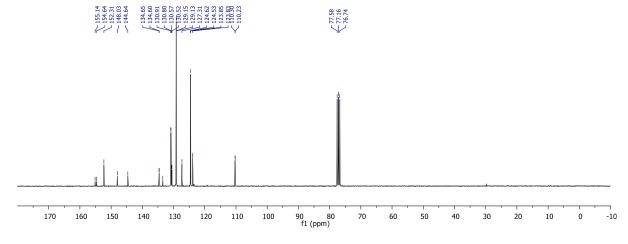
Heteroaryle **3Ca**


7.37 7.39 7.37 7.25 7.25 7.25 7.25 7.25 7.25

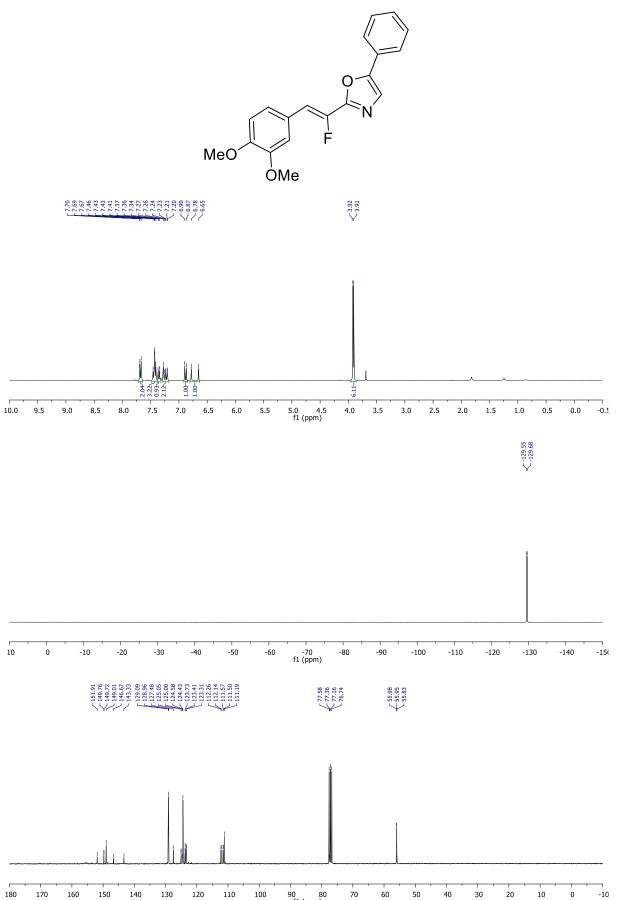


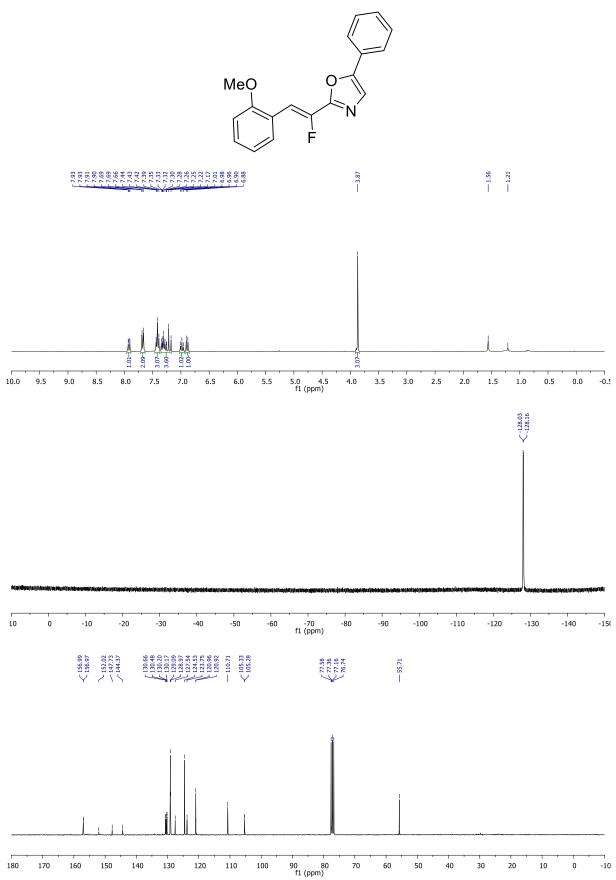

Heteroaryle **3Ea**



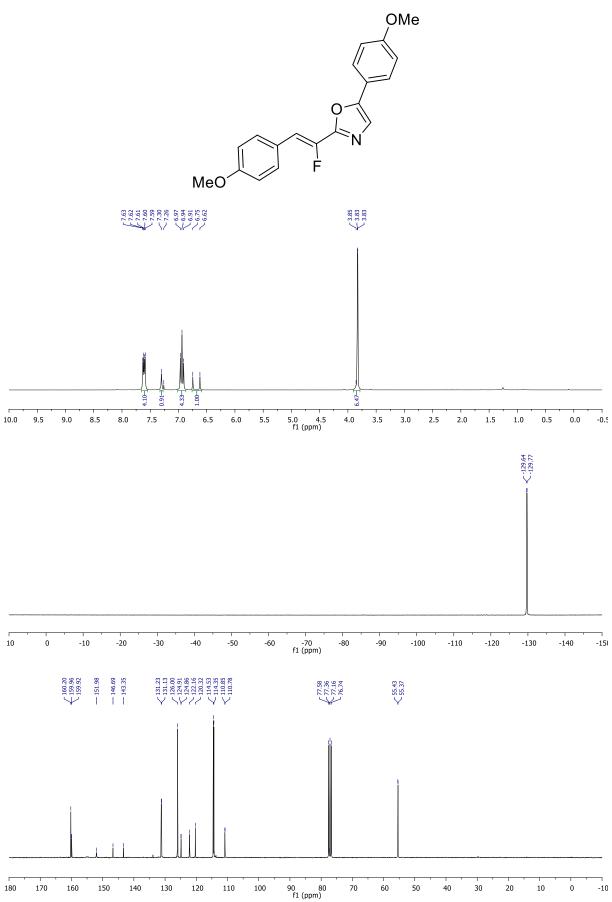

Heteroaryle **3Fa**

7.70 7.70 7.67 7.61 7.44 7.44 7.42 7.43 7.33 6.66

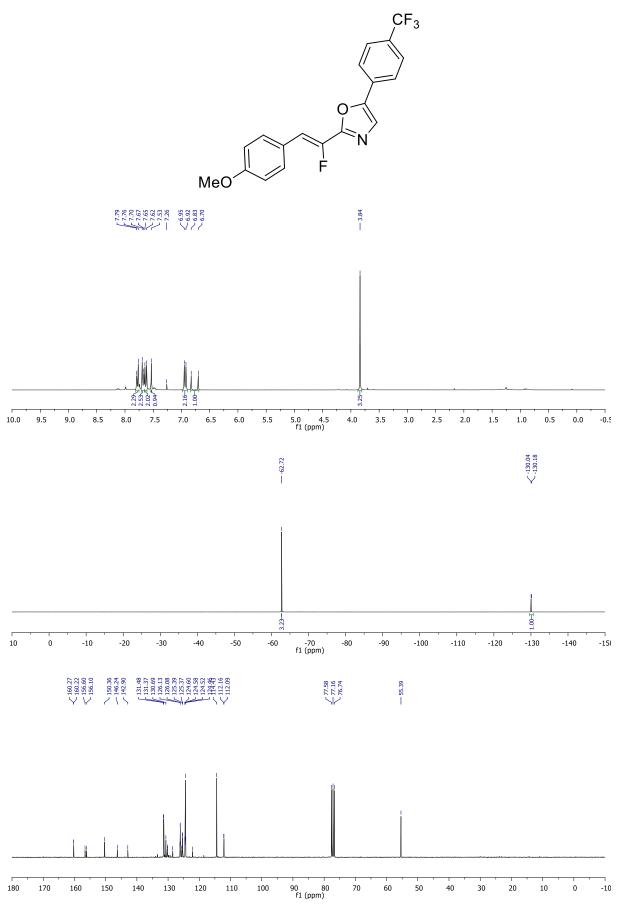


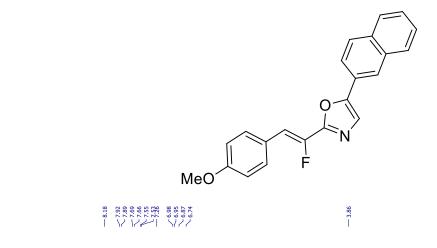


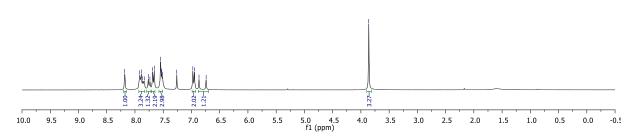
Heteroaryle **3Ga**

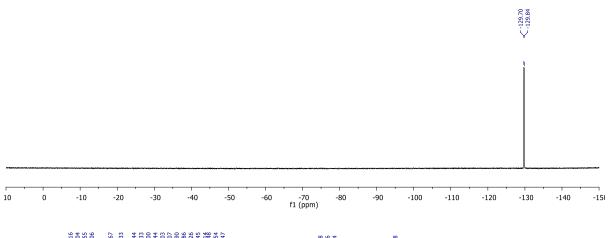


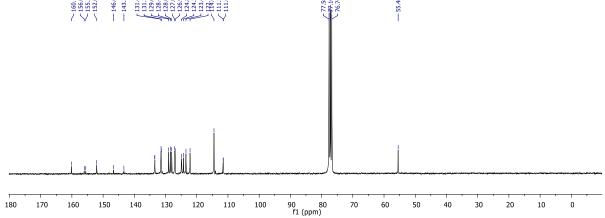
90 80 f1 (ppm)


Heteroaryle **3Ha**

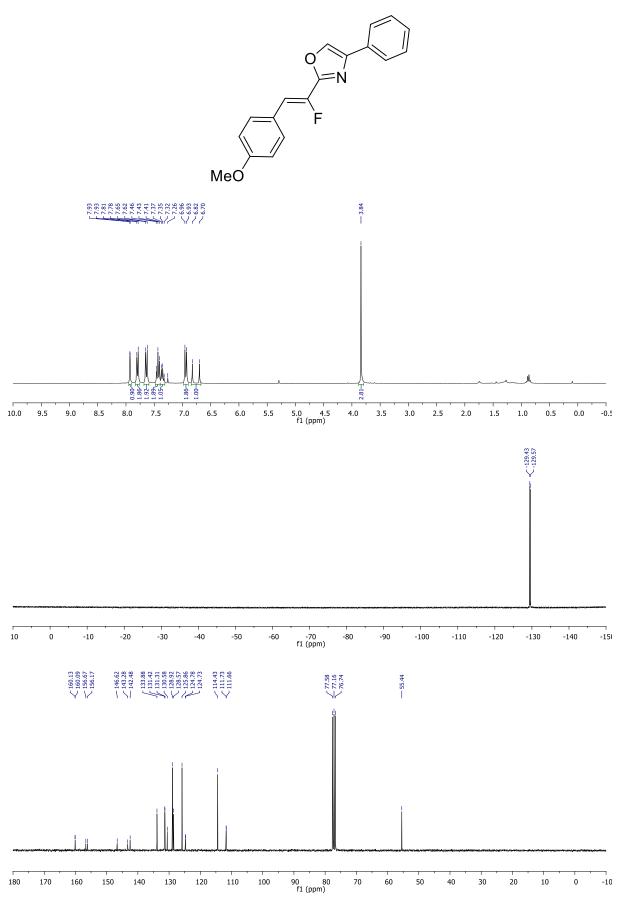

Heteroaryle **3Ab**

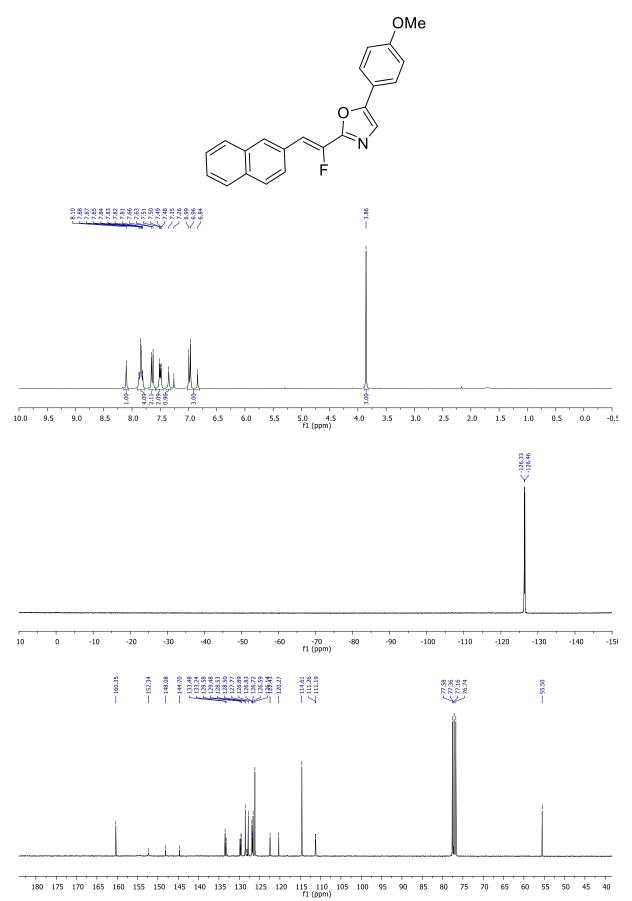


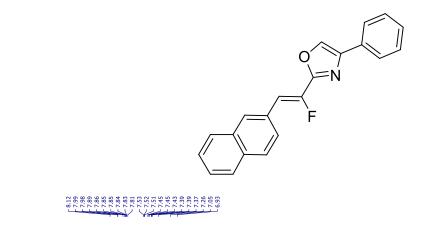

Heteroaryle **3Ac**

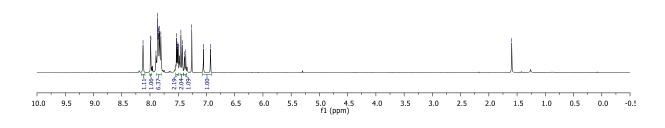


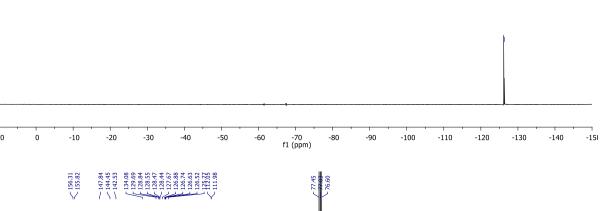
Heteroaryle **3Ad**

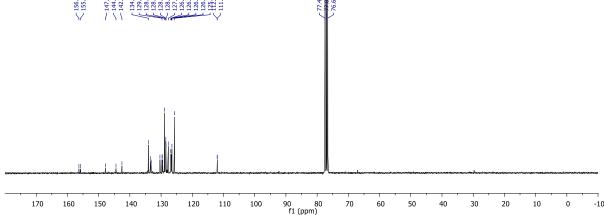




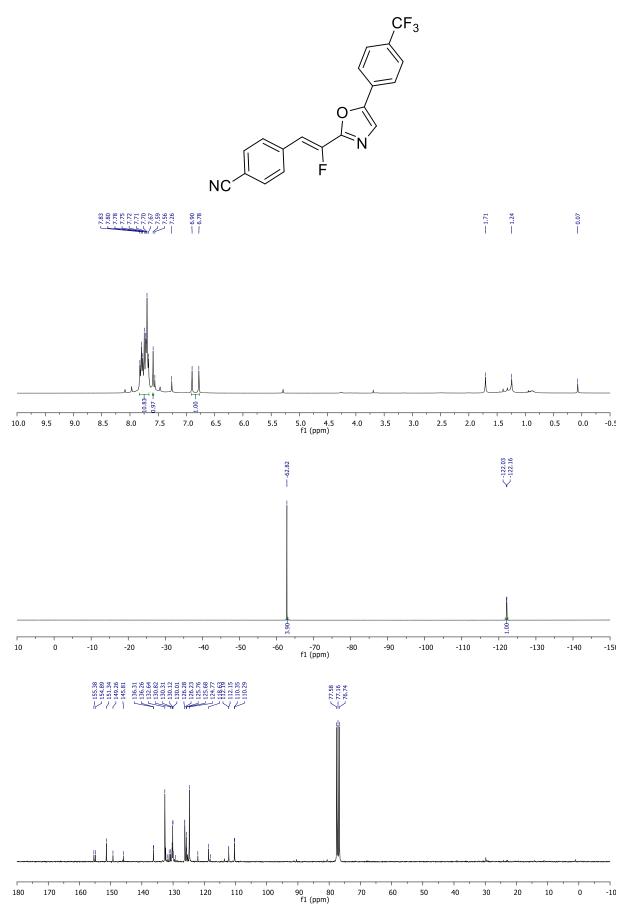

Heteroaryle **3Ae**

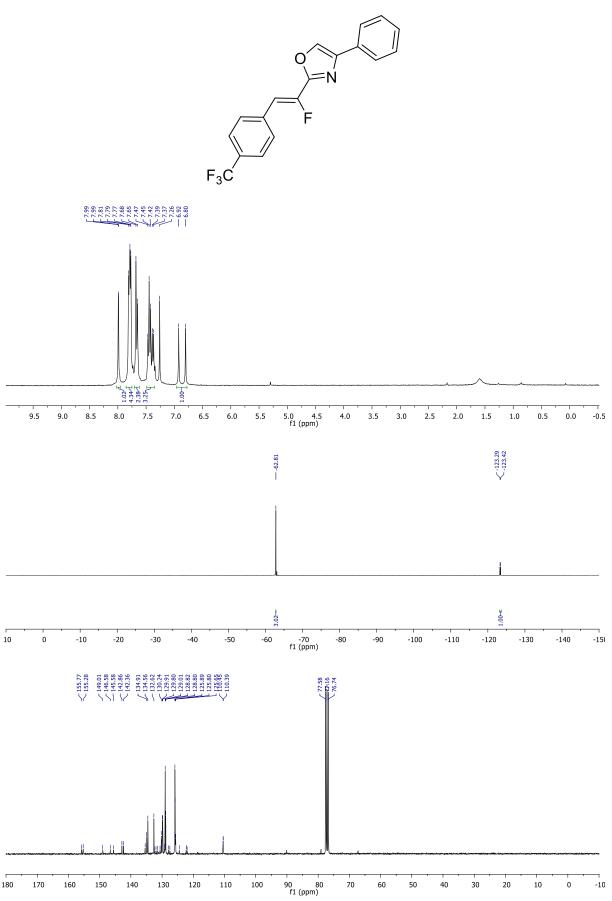


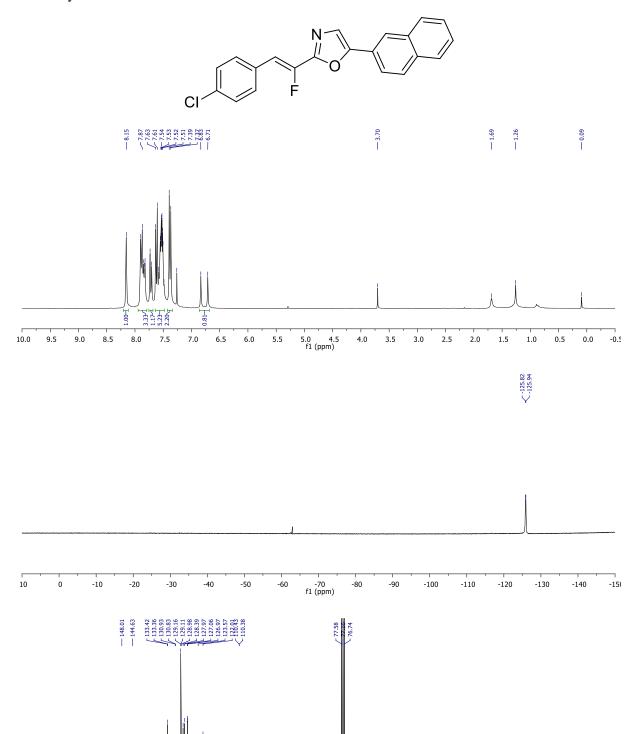

Heteroaryle **3Cb**



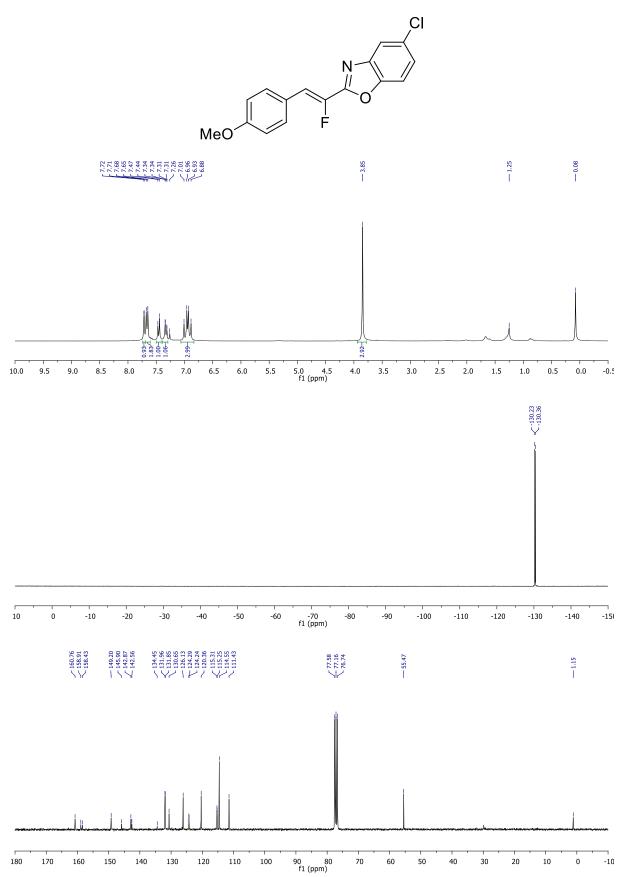
Heteroaryle **3Ce**



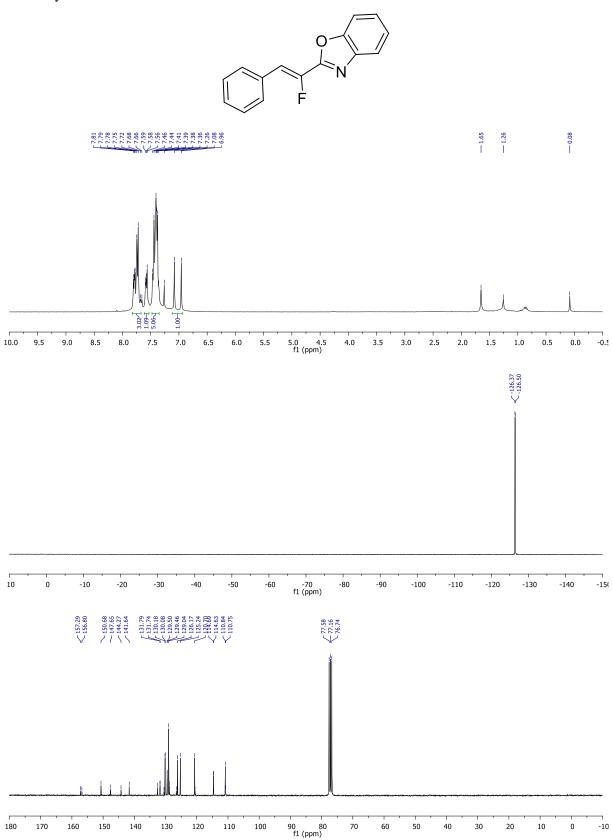



Heteroaryle 3Dc

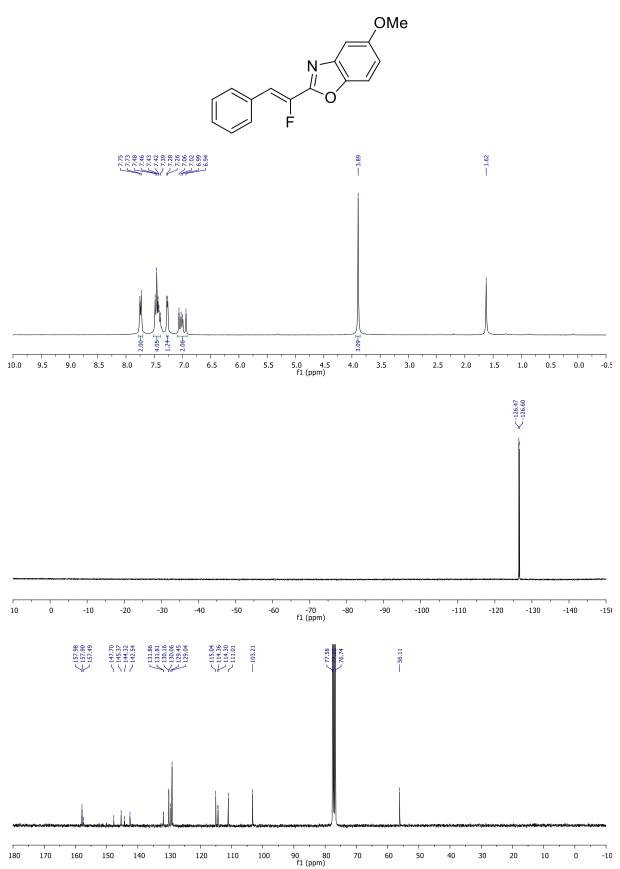
Heteroaryle **3Ee**



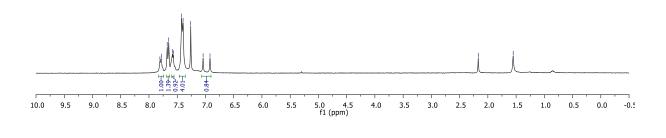
Heteroaryle **3Fd**

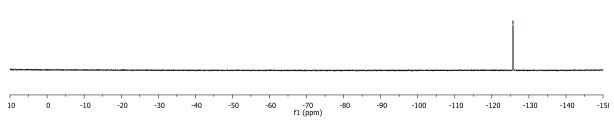


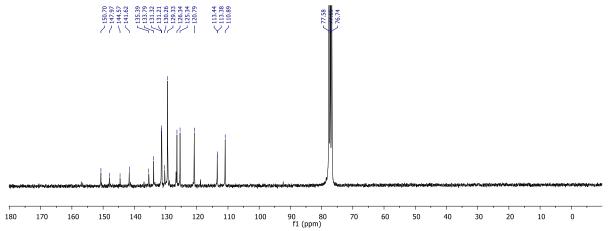
90 80 f1 (ppm)


Heteroaryle **4Ab**

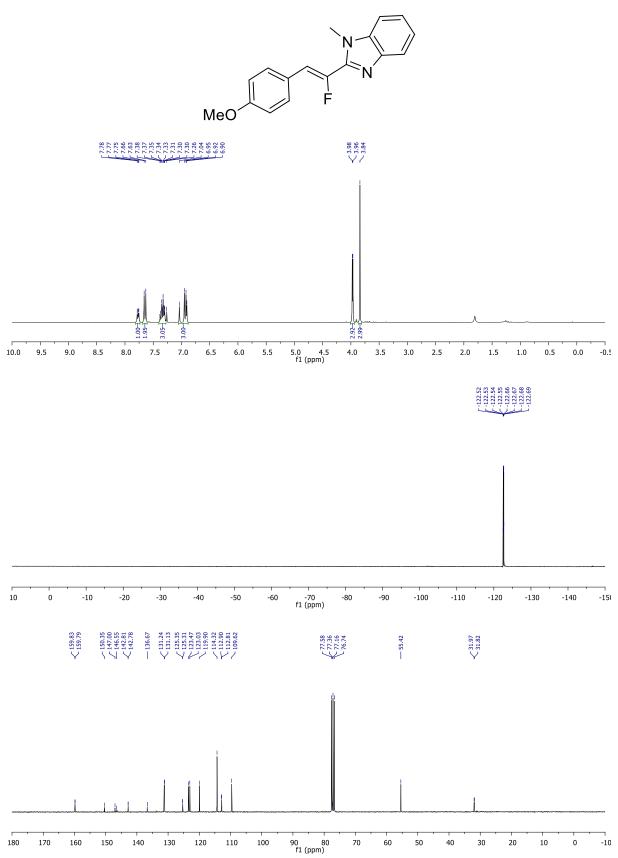
Heteroaryle 4Ba

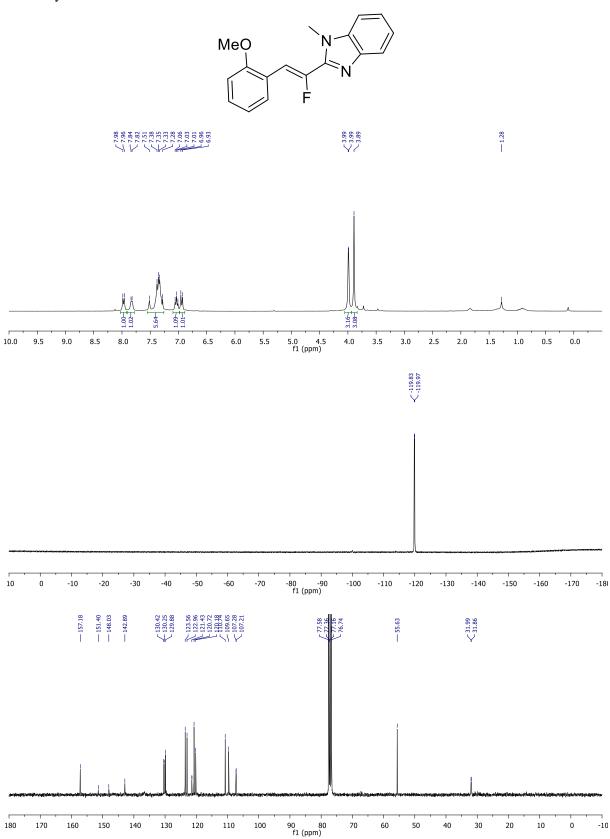


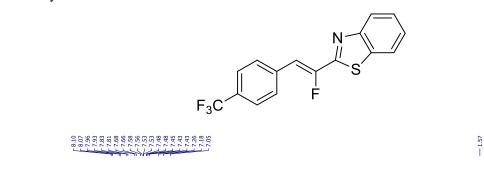

Heteroaryle **4Bc**

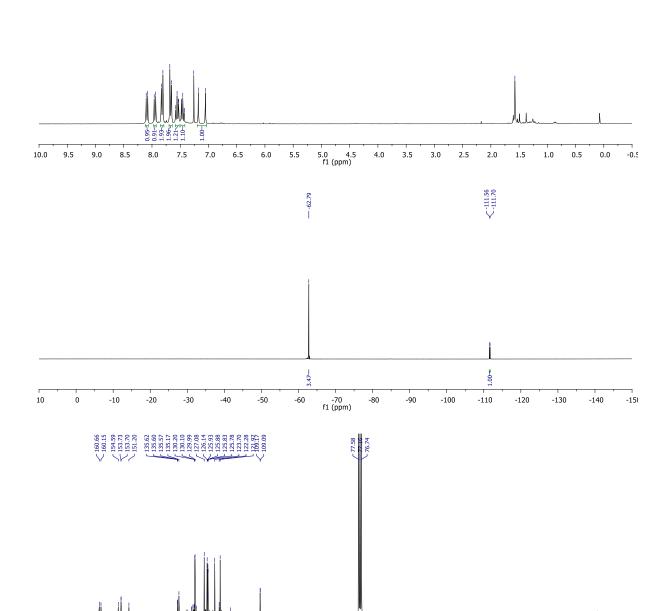


Heteroaryle **4Fa**

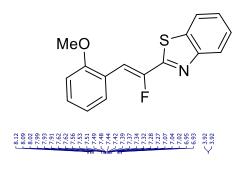


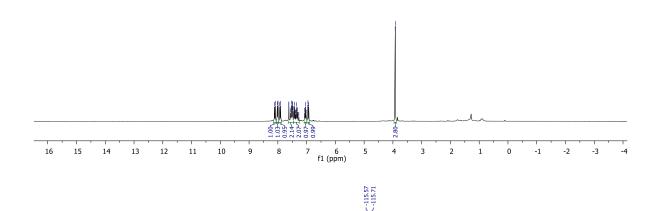


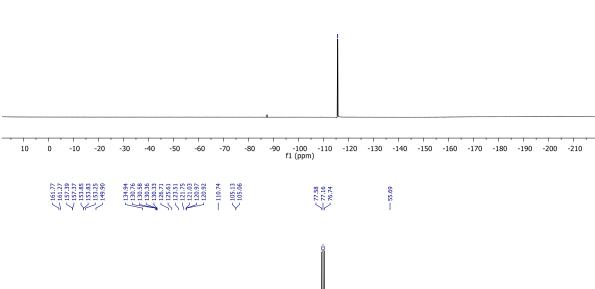

Heteroaryle **5A**

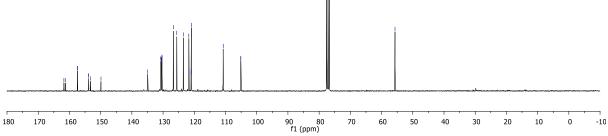


Heteroaryle **5H**

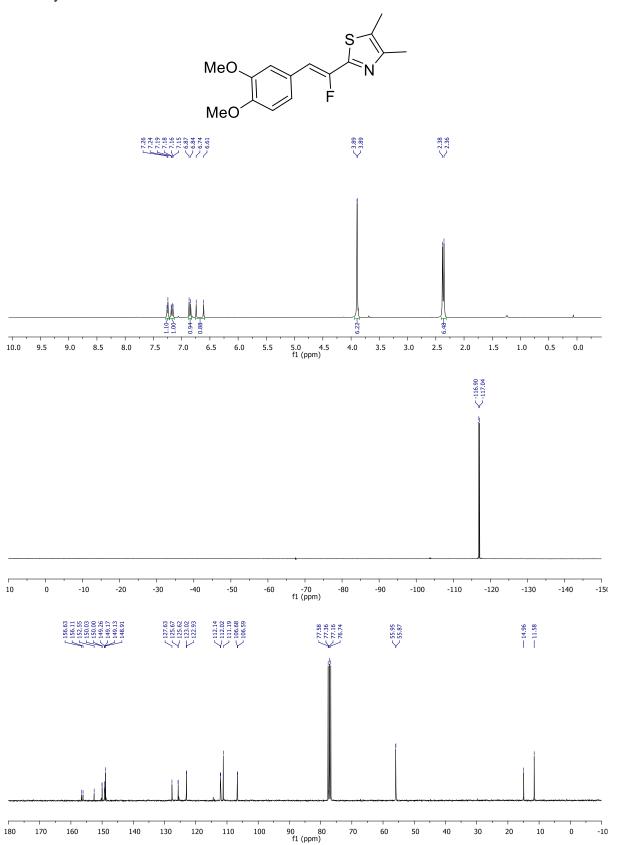

Heteroaryle **6E**






90 80 f1 (ppm)

Heteroaryle **6H**



Heteroaryle **7G**

