Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

NIR Bacteriochlorin Chromophores Accessed by Heck and Sonogashira Cross-Coupling Reactions on a Tetrabromobacteriochlorin Derivative

Francisco F. de Assis, Marco A. B. Ferreira, Timothy J. Brocksom and Kleber T. de Oliveira*

Departamento de Química, Universidade Federal de São Carlos – UFSCar, Rodovia Washington Luíz, km 235, SP 310, 13565-905 São Carlos, SP, Brazil.

*kleber.oliveira@ufscar.br

Keywords: Bacteriochlorin, Palladium Cross - Coupling, NIR Chromophores, Dibromopyrrole.

Technical Information	4
1. Synthesis	6
1.1. 2-methyl-1-(tri-isopropylsilyl)-1 H -pyrrole (8)	6
1.2. 3,4-dibromo-2-methyl-1-(tri-isopropylsilyl)-1 <i>H</i> -pyrrole (9)	7
1.3. 3,4-dibromo-1 H -pyrrole-2-carbaldehyde (10)	8
1.4. (<i>E</i>)-3,4-dibromo-2-(2-nitrovinyl)-1 <i>H</i> -pyrrole (11)	9
1.5. Obtainment of pyrrole 11 directly from pyrrole 9	10
1.6. 3,4-dibromo-2-(2-nitroethyl)-1 <i>H</i> -pyrrole (12)	11
1.7. 6-(3,4-dibromo-1 <i>H</i> -pyrrol-2-yl)-1,1-dimethoxy-4,4-dimeth	ıyl-5-
nitrohexan-2-one (14)	12
1.8. Obtainment of compound 14 directly from pyrrole 11	13
1.9. 7,8-Dibromo-1-(1,1-dimethoxymethyl)-3,3-dimetilhy	'-2,3-
dihydrodipyrrin (15)	14
1.10. Obtainment of compound 15 directly from pyrrole 11	15

1.11.	2,3,12,13-Tetrabromo-5-methoxy-8,8,18,18-
tetramethylbacteriochlorin	(BCBr ₄)17
1.12. Compound 17	
1.13. Compound 19	
1.14. Compound 20	
2. NMR spectra	
2.1. NMR spectra of com	pound 821
2.2. NMR spectra of com	pound 9 23
2.3. NMR spectra of com	pound 10 25
2.4. NMR spectra of com	pound 11 27
2.5. NMR spectra of com	pound 12 29
2.6. NMR spectra of com	pound 14
2.7. NMR spectra of com	pound 15
2.8. NMR spectra of com	pound BCBr ₄ 38
2.9. NMR spectra of com	pound 17 44
2.10. NMR spectra of cor	npound 19 53
2.11. NMR spectra of cor	npound 20 60
3. Mass spectra	
3.1. Mass spectrum of con	mpound 8 69
3.2. Mass spectrum of con	mpound 9 70
3.3. Mass spectrum of con	mpound 10 71

3.4. Mass spectrum of compound 11	72
3.5. Mass spectrum of compound 12	73
3.6. Mass spectrum of compound 14	74
3.7. Mass spectrum of compound 15	75
3.8. Mass spectrum of compound BCBr ₄	76
3.9. Mass spectrum of compound 17	77
3.10. Mass spectrum of compound 19	78
3.11. Mass spectrum of compound 20	78
4. Computational Details	80
5. Photophysical Measurements	93
5.1. Molar Absorption Coefficient	93
5.2 Fluorescence quantum yield (Φ_f)	96
6. References	97

Technical Information

All reagents were purchased from Sigma-Aldrich, Vetec or Synth. When necessary, solvents and reagents were purified by routine methods.¹ ¹H-NMR, ¹³C-NMR and 2D experiments (*g*HSQC (¹H/¹³C), *g*HMBC (¹H/¹³C) and NOESY) were performed on a Brüker AVANCE 400 operating at 400.15 MHz (¹H) and 100.62 MHz (¹³C). CDCl₃ was used as solvent and tetramethylsilane (TMS) as internal reference. The chemical shifts are presented in δ (ppm) and the coupling constants (J) in Hertz (Hz). Compounds **7**^{2,3} and **13**⁴ were synthesized according to the literature.

The UV-Vis spectra were recorded on a Perkin Elmer Lambda 25 spectrophotometer using 1 cm optical length quartz cuvettes at 25° C and CH₂Cl₂ (HPLC grade) as solvent.

Fluorescence emission spectra were recorded on a Shimadzu $RF-5301_{PC}$ spectrofluoremeter using 1 cm optical length cuvettes at 25°C and toluene (HPLC grade) as solvent.

Liquid chromatography was performed with silica-gel 70-230 mesh. Only compound **11** was purified using silica-gel 230-400 mesh. Analytical thin layer chromatography was performed on 20 x 20 cm Aluminium sheets (1mm thick)-Merck TLC silica-gel $60 F_{254}$.

HRMS-ESI-TOF analyses of all compounds, except **17** and **19**, were performed on a Brüker Daltonics MicroTOF Q II spectrometer with capillary: 3.500 V, nebulizer gas pressure: 0.4 Bar, dry gas flow: 4.0 L/min and dry gas temperature: 180°C.

HRMS-ESI-TOF analysis of compound **17** was performed on a Brüker Daltonics MicroTOF Ic spectrometer with capillary: 4.000 V, nebulizer gas pressure: 0.4 Bar, dry gas flow: 5.0 L/min and dry gas temperature: 180°C.

HRMS-MALDI-TOF analysis of compound **19** was performed on a Brüker Daltonics MALDI-TOF/TOF Ultraflextreme with PIE: 110 ns, laser frequency: 1.000 Hz, IS1: 25 kV and IS2: 22.4 kV.

All DFT calculations were performed with the Gaussian 09 suite of programs using an ultrafine grid.⁵ Full optimization of ground-state geometries and population analyses were performed employing the B3LYP⁶ hybrid functional with standard 6-

31G(d) basis set for all atoms. Frequency calculations at 295.15 K (1 atm) ensured that the stationary points represent minima (no imaginary frequency) in potential energy surface. Absorption spectra were computed as vertical excitation employing the B3LYP/6-31G(d) ground-state geometries using the time-dependent DFT (TD-DFT). We considered the PBE0 functional⁷ in conjunction with 6-31+G(d,p) basis set and IEF-PCM solvent effect in CH₂Cl₂. The first 60 exited states were calculated in order to ensure that both Q- and B-bands regions are covered. All plotted orbitals and geometries were made with Gabedit.⁸ The calculated UV-VIS electronic absorption spectra were plotted with Gaussview 5.⁹

1. Synthesis

1.1. 2-methyl-1-(triisopropylsilyl)-1*H*-pyrrole (8)

A solution of pyrrole **7** (11.4 g, 141 mmol) in anhydrous THF (100 mL) under argon atmosphere was cooled to -78°C. *n*-Butyllithium (60 mL of 2.5 M solution in hexanes, 150 mmol) was added drop-wise and the mixture was stirred for 2h at the same temperature. TIPSC1 (33.0 mL, 150 mmol) was added and the mixture was slowly warmed up to room temperature over a period of 2h and stirred overnight. The mixture was concentrated to about one thirtieth of the initial volume using a N₂ flow, poured into water (200 mL) and extracted with hexane (2X 200 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by passing it through a plug of silica-gel (70-230 mesh) and eluted with hexanes. The desired product was obtained as a colourless oil (20.1 g, 84.5 mmol) in 60% yield.

HRMS-ESI-TOF: m/z calcd for $C_{14}H_{27}NSi[M + H]^+$ 238.1991; found 238.1993.

¹**H** NMR (CDCl₃, 400.15 MHz) δ (ppm): 1.12 (d, J= 8.0 Hz, 18H), 1.52 (sept, J= 8.0 Hz, 3H), 2.33 (s, 3H), 6.00 (s, 1H), 6.15 (t, J= 2.1 Hz, 1H), 6.74 (q, J= 2.1 Hz, 1H). ¹³**C** NMR (CDCl₃, 100.62 MHz) δ (ppm): 12.9, 15.5, 18.2, 109.2, 110.9, 124.9, 133.3.

1.2. 3,4-dibromo-2-methyl-1-(triisopropylsilyl)-1*H*-pyrrole (9)

A solution of pyrrole **8** (12.6 g, 52.9 mmol) in anhydrous THF (80 mL) was cooled to -78°C and NBS (19.0 g, 106 mmol) was added. The mixture was warmed up to room temperature over a period of 2h. The mixture was diluted with cold hexane (200 mL) and washed with NaHCO₃ (saturated solution, 3x 200 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by passing it through a plug of silica-gel (70-230 mesh) and eluted with hexanes. The desired product was obtained as a white solid (18.7 g, 47.3 mmol) in 90% yield.

M.P.: 64.6-66.0°C. Literature: 63°C.¹⁰

HRMS-ESI-TOF: m/z calcd for $C_{14}H_{25}Br_2NSi[M + H]^+$ 396.0181; found 396.0176.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): 1.12 (d, J= 7.5 Hz, 18H), 1.49 (sept, J= 7.6 Hz, 3H), 2.31 (s, 3H), 6.74 (s, 1H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 12.8, 14.5, 18.0, 99.8, 102.0, 123.1, 131.1.

1.3. 3,4-dibromo-1*H*-pyrrole-2-carbaldehyde (10)

A solution of pyrrole **9** (207 mg, 0.52 mmol) in 18 mL of a mixture of CH_3CN/H_2O (5:1, v/v) was cooled to 0°C and CAN (2.16 g, 3.86 mmol) was added. The mixture was stirred for 15 min at the same temperature. The reaction was quenched by the addition of NaHCO₃ (saturated solution, 50 mL) and extracted with EtOAc (2X 30 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by column chromatography using silica-gel (70-230 mesh) and hex: EtOAc (8:2) as eluent. Compound **10** was obtained as a yellow solid (39.4 mg, 0.16 mmol) in 30% yield.

M.P.: Unstable above 130°C.

HRMS-ESI-TOF: m/z calcd for $C_5H_3Br_2NO [M + Na]^+ 275.8459$; found 275.8452.

¹**H** NMR (acetone- d_6 , 400.15 MHz) δ (ppm): 7.46 (d, J= 1.0 Hz, 1H), 9.58 (d, J= 1.0 Hz, 1H), 11.55 (br.s, 1H). ¹³**C** NMR (acetone- d_6 , 100.62 MHz) δ (ppm): 101.8, 110.1, 126.9, 130.8, 178.6).

1.4. (E)-3,4-dibromo-2-(2-nitrovinyl)-1*H*-pyrrole (11)

To a solution of pyrrole **10** (50.0 mg, 0.20 mmol) in anhydrous EtOH (1.0 mL), CH₃NH₂.HCl (10.7 mg, 0.16 mmol), KOAc (15.7 mg, 0.16 mmol) and CH₃NO₂ (32 μ L, 0.59 mmol) were added in this sequence. The mixture was stirred for 18h at room temperature, and then poured into water (10 mL) and extracted with EtOAc (2X 10 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 30°C. The crude product was purified by column chromatography using silica-gel (230-400 mesh) and hex: EtOAc (8:2) as eluent. Compound **11** was obtained as a yellow solid (27.0 mg, 0.09 mmol) in 46% yield.

M.P.: Unstable above 135°C.

HRMS-ESI-TOF: m/z calcd for $C_6H_4Br_2N_2O_2 [M + H]^+$ 296.8697; found 296.8692.

¹**H NMR** (acetone- d_6 , 400.15 MHz) δ (ppm): 7.46 (s, 1H), 7.87 (d, J= 13.6 Hz, 1H), 7.92 (d, J= 13.6 Hz, 1H), 11.66 (br.s, 1H). ¹³**C NMR** (acetone- d_6 , 100.62 MHz) δ (ppm): 102.5, 109.6, 126.4, 126.5, 126.7, 134.5.

1.5. Obtainment of pyrrole 11 directly from pyrrole 9

1° Step: a solution of pyrrole **9** (11.7 g, 29.6 mmol) in 1.06 L of a mixture of CH_3CN/H_2O (4:1, v/v) was cooled to 0°C, and CAN (123 g, 220 mmol) was added. The mixture was stirred for 15 min at the same temperature. The reaction was quenched by the addition of NaHCO₃ (saturated solution, 0.6 L) and filtered under vacuum using a sintered funnel. The yellow solid was washed with EtOAc (200 mL). The organic layer was washed with NaCl (saturated solution, 2X 200 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was used without further purification in the next step.

2° Step: Crude **10** was solubilized in EtOH (24 mL), followed by the addition of $CH_3NH_2.HCl$ (1.60 g, 23.7 mmol), KOAc (2.33 g, 23.7 mmol) and CH_3NO_2 (1.60 mL, 29.6 mmol). The mixture was stirred for 19h at room temperature, poured into water (100 mL) and extracted with EtOAc (2X 100 mL). The organic layer was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure at 30°C. The crude product was purified by column chromatography using silica-gel (230-400 mesh) and hex:EtOAc (8:2) as eluent. Compound **11** was obtained as a yellow solid (1.85 g, 6.25 mmol) in 21% overall yield.

1.6. 3,4-dibromo-2-(2-nitroethyl)-1*H*-pyrrole (12)

A solution of pyrrole **11** (1.01 g, 3.40 mmol) in anhydrous THF (20 mL) under argon atmosphere was cooled to -10° C and LiBH₄ (117 mg, 5.10 mmol) was added. The mixture was stirred at the same temperature for 30 min, quenched with NH₄Cl (saturated solution, 50 mL) and extracted with EtOAc (2X 50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by column chromatography using silica-gel (70-230 mesh) and hex: EtOAc (8:2) as eluent. Compound **12** was obtained as a yellow oil (641 mg, 2.15 mmol) in 63% yield.

HRMS-ESI-TOF: m/z calcd for $C_5H_6Br_2N_2O_2$ [M + Na]⁺ 320.8673; found 320.8675.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): 3.31 (t, *J*= 6.2 Hz, 2H), 4.59 (t, *J*= 6.1 Hz, 2H), 6.76 (d, *J*= 3.0 Hz, 1H), 8.48 (br.s, 1H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 24.6, 74.0, 99.2, 99.3, 117.7, 124.9.

1.7. 6-(3,4-dibromo-1*H*-pyrrol-2-yl)-1,1-dimethoxy-4,4-dimethyl-5nitrohexan-2-one (14)

A solution of ketone **13** (2.01 g, 12.7 mmol) in anhydrous THF (8.0 mL), at room temperature, was added to **12** (631 mg, 2.12 mmol), followed by DBU (1.9 mL, 12.7 mmol). The mixture was stirred at room temperature for 13h under an argon atmosphere. The mixture was diluted with EtOAc (100 mL) and washed with NH₄Cl (saturated solution, 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by column chromatography using silica-gel (70-230 mesh) and hex: EtOAc (8:2) as eluent. Compound **14** was obtained as a brown oil (355 mg, 0.778 mmol) in 36% yield.

HRMS-ESI-TOF: m/z calcd for $C_{14}H_{20}Br_2N_2O_5 [M + Na]^+ 478.9616$; found 478.9604.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): 1.15 (s, 3H), 1.27 (s, 3H), 2.62 (d, J= 18.8 Hz, 1H), 2.73 (d, J= 18.8 Hz, 1H), 3.12 (dd, J_1 = 15.4 Hz, J_2 = 2.7 Hz, 1H), 3.32 (dd, J_1 = 15.4 Hz, J_2 = 11.5 Hz, 1H), 3.42 (s, 3H), 3.43 (s, 3H), 4.37 (s, 1H), 5.18 (dd, J_1 = 11.5 Hz, J_2 = 2.7 Hz, 1H), 6.70 (d, J= 3.1 Hz, 1H), 8.47 (br.s, 1H). ¹³C NMR (CDCl₃, 100.62 MHz) δ (ppm): 23.9, 24.2, 26.1, 36.4, 44.8, 55.1, 55.2, 93.3, 99.0, 99.4, 104.6, 117.7, 124.6, 203.4.

1.8. Obtainment of compound 14 directly from pyrrole 11

1° Step: a solution of pyrrole 11 (1.00 g, 3.39 mmol) in anhydrous THF (20 mL) under an argon atmosphere was cooled to -10°C, and LiBH₄ (116 mg, 5.08 mmol) was added. The mixture was stirred at the same temperature for 30 min, quenched with NH₄Cl (saturated solution, 50 mL) and extracted with EtOAc (2X 50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was used without further purification in the next step.

2° Step: a solution of ketone **13** (3.16 g, 20.0 mmol) in anhydrous THF (13 mL), at room temperature, was added to crude **12**, followed by DBU (3.0 mL, 20.0 mmol). The mixture was stirred for 15h at room temperature. The mixture was diluted with EtOAc (200 mL) and washed with NH₄Cl (saturated solution, 200 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by column chromatography using silica-gel (70-230 mesh) and hex: EtOAc (8:2) as eluent. Compound **14** was obtained as a brown oil (389 mg, 0.853 mmol) in 25% overall yield.

dihydrodipyrrin (15)

In the first flask, a solution of **14** (389 mg, 0.853 mmol) in anhydrous THF (4.0 mL) was treated with NaOMe (2.0 mL of a 2.15 M solution in MeOH, 4.3 mmol) and stirred under an argon atmosphere for 1h at room temperature. In the second flask, TiCl₃ (6.2 mL, ~10% wt in 20-30% HCl solution, 4.8 mmol) was diluted in water (34 mL, previously deoxygenated in an ultra-sonic bath and purged with argon), and NH₄OAc (26.2 g, 340 mmol) was added to buffer the solution (pH= 6). The solution in the first flask was transferred (drop-wise) to the second flask via cannula. The resulting mixture was stirred at room temperature under an argon atmosphere for 6h. The reaction was quenched by the addition of NaHCO₃ (saturated solution, 100 mL) and extracted with EtOAc (2X 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by column chromatography using silica-gel (70-230 mesh) and hex: EtOAc (8:2) as eluent. Compound **15** was obtained as a yellow oil (134 mg, 0.330 mmol) in 39% yield.

HRMS-ESI-TOF: m/z calcd for $C_{14}H_{18}Br_2N_2O_2$ [M + Na]⁺ 428.9612; found 428.9602.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): 1.23 (s, 6H), 2.63 (s, 2H), 3.44 (s, 6H), 5.01 (s, 1H), 5.88 (s, 1H), 6.85 (d, J= 3.0 Hz, 1H), 10.89 (br.s, 1H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 29.0, 29.7, 40.4, 48.4, 54.5, 99.1, 99.3, 102.4, 104.7, 118.5, 129.1, 162.1, 176.3.

1.10. Obtainment of compound 15 directly from pyrrole 11

1° Step: a solution of pyrrole 11 (986 mg, 3.33 mmol) in anhydrous THF (20 mL) under an argon atmosphere was cooled to -10° C, and LiBH₄ (115 mg, 5.00 mmol) was added. The mixture was stirred at the same temperature for 30 min, quenched with NH₄Cl (saturated solution, 50 mL) and extracted with EtOAc (2X 50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was used without further purification in the next step.

2° Step: a solution of TBAF (2.17 g, 6.66 mmol) in anhydrous THF (7.0 mL) was added to a mixture of crude **12** and ketone **13** (631 mg, 3.99 mmol) at room temperature. Powdered 3Å molecular sieves (688 mg) were added and the mixture was stirred at room temperature under an argon atmosphere for 13h. The mixture was extracted with EtOAc (2X 100 mL) and H₂O (200 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was used without further purification in the next step.

3° step: In the first flask, a solution of crude **14** in anhydrous THF (4.0 mL) was treated with NaOMe (5.0 mL of a 2.00 M solution in MeOH, 10.0 mmol) and stirred under an argon atmosphere for 1h at room temperature. In the second flask, TiCl₃ (25.8 mL, ~10% wt in 20-30% HCl solution, 20.0 mmol) was diluted in water (138 mL, previously deoxygenated in an ultra-sonic bath and purged with argon) and NH₄OAc (101.0 g, 1.31 mol) was added to buffer the solution (pH = 6). The solution in the first flask was transferred (drop-wise) to the second flask via cannula. The resulting mixture was stirred at room temperature under an argon atmosphere for 12h. The reaction was quenched by the addition of NaHCO₃ (saturated solution, 100 mL) and extracted with EtOAc (2X 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure at 25°C. The crude product was purified by column

chromatography using silica-gel (70-230 mesh) and hex: EtOAc (9:1) as eluent. Compound **15** was obtained as a yellow oil (219 mg, 0.540 mmol) in 16% overall yield. tetramethylbacteriochlorin (BCBr₄)

A solution of compound **15** (113 mg, 0.279 mmol) in anhydrous CH_2Cl_2 (15.5 mL) was treated first with 2,6-DTBP (1.3 mL, 5.50 mmol) and then with TMSOTf (254 µL, 1.38 mmol). The resulting mixture was stirred at room temperature under an argon atmosphere for 12h. The mixture was concentrated almost to dryness and submitted to purification by column chromatography using silica-gel (70-230 mesh) and CH_2Cl_2 :hex (8:2) as eluent. After crystallization from CH_2Cl_2 :MeOH, **BCBr**₄ was obtained as a green solid (39.8 mg, 0.056 mmol) in 40% yield.

M.P.: Unstable above 160°C.

HRMS-ESI-TOF: m/z calcd for $C_{25}H_{24}Br_4N_4O [M + H]^+$ 716.8721; found 716.8701.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): -1.65 (s, 1H), -1.45 (s, 1H), 1.94 (s, 12H), 4.30 (s, 3H), 4.36 (s, 4H), 8.67 (s, 1H), 8.72 (s, 2H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 30.8, 31.0, 45.8, 45.9, 47.3, 51.6, 64.3, 95.9, 96.0, 96.9, 107.8, 114.4, 114.6, 115.5, 126.4, 131.7, 133.4, 133.9, 135.3, 155.4, 162.1, 170.7, 171.2.

1.12. Compound 17

BCBr₄ (10.0 mg, 14.0 μ mol), Pd(OAc)₂ (1.6 mg, 7.0 μ mol), PPh₃ (4.7 mg, 18.0 μ mol), K₂CO₃ (8.0 mg, 58.0 μ mol) and methyl acrylate (**16**) (64 μ L, 698 μ mol) were added to a high pressure screw cap tube. The tube was closed with a septum and purged with argon. Anhydrous toluene (5.0 mL) was added and the mixture was deoxygenated in an ultra-sonic bath for 15 min (the purge was kept during all this time). The septum was rapidly removed and the cap was screwed on. The mixture was stirred at 120°C for 2h, concentrated to dryness and submitted to purification by column chromatography using silica-gel (70-230 mesh) and CH₂Cl₂:hex:EtOAc (6.5:3:0.5) as eluent. The resulting dark-purple solid was washed with pentane. Compound **17** was obtained as a purple solid (6.9 mg, 9.4 μ mol) in 67% yield.

M.P.: Unstable above 200°C.

HRMS-ESI-TOF: m/z calcd for $C_{41}H_{44}N_4O_9$ [M + H]⁺ 759.3006; found 759.2996.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): -0.97 (s, 1H), -0.74 (s, 1H), 1.91 (s, 6H), 1.93 (s, 6H), 3.98 (s, 3H), 4.01 (s, 3H), 4.02 (s, 6H), 4.20 (s, 3H), 4.33 (s, 2H), 4.34 (s, 2H), 6.63 (d, J= 16.1 Hz, 1H), 6.90 (d, J= 16.0 Hz, 1H), 6.91 (d, J= 16.1 Hz, 1H), 6.99 (d, J= 16.2 Hz, 1H), 8.64 (s, 1H), 8.68 (s, 1H), 8.72 (s, 1H), 8.78 (d, J= 16.2 Hz, 1H), 8.90 (d, J= 16.3 Hz, 1H), 8.95 (d, J= 16.2 Hz, 1H), 9.38 (d, J= 16.1 Hz, 1H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 30.8, 45.8, 46.0, 47.7, 51.7, 51.9, 52.1, 63.6, 95.6, 96.6, 124.6, 124.7, 125.0, 126.3, 126.6, 127.0, 127.8, 129.0, 134.0, 134.6, 135.0, 136.7, 136.9, 137.0, 138.5, 140.0, 157.4, 162.4, 167.2, 167.3, 171.8, 172.4.

1.13. Compound 19

BCBr₄ (10.0 mg, 14.0 μ mol), (PPh₃)₂PdCl₂ (5.0 mg, 7.0 μ mol) and phenylacetylene (5) (13 μ L, 117 μ mol) were added to a high pressure screw cap tube. The system was closed with a septum and purged with argon. Anhydrous toluene (2.8 mL) and triethylamine (1.4 mL) were added, and the mixture was deoxygenated in an ultra-sonic bath for 15 min (the purge was kept for all this time). The septum was rapidly removed and the cap was screwed on. The mixture was stirred at 100°C for 6h, concentrated to dryness and submitted to purification by column chromatography using silica-gel (70-230 mesh) and CH₂Cl₂:hex (1:1) as eluent. Compound **19** was obtained as a purple solid (7.8 mg, 9.7 μ mol) in 70% yield.

M.P.: Unstable above 200°C.

HRMS-MALDI-TOF: m/z calcd for $C_{57}H_{44}N_4O [M]^+ 800.3509$; found 800.3473.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): -1.19 (s, 1H), -0.99 (s, 1H), 1.98 (s, 12H), 4.37 (s, 2H), 4.39 (s, 2H), 4.50 (s, 3H), 7.48-7.53 (m, 12H), 7.90-7.94 (m, 8H), 8.79 (s, 1H), 8.81 (s, 2H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 30.8, 31.0, 45.8, 47.4, 51.6, 64.4, 83.8, 83.9, 84.4, 86.5, 95.5, 95.7, 96.8, 97.6, 99.7, 100.0, 100.3, 114.3, 118.4, 118.5, 119.4, 123.6, 124.0, 124.4, 128.3, 128.5, 128.6, 128.7, 128.8, 130.8, 131.8, 131.9, 135.5, 136.1, 137.1, 137.4, 156.0, 162.3, 171.3, 171.6.

1.14. Compound 20

BCBr₄ (10.0 mg, 14.0 μ mol), (PPh₃)₂PdCl₂ (5.0 mg, 7.0 μ mol) and 4-ethylnylanisole (18) (30 μ L, 224 μ mol) were added to a high pressure screw cap tube. The system was closed with a septum and purged with argon. Anhydrous toluene (2.8 mL) and triethylamine (1.4 mL) were added, and the mixture was deoxygenated in an ultra-sonic bath for 15 min (the purge was kept for all this time). The septum was rapidly removed and the cap was screwed on. The mixture was stirred at 100°C for 5h, concentrated to dryness and submitted to purification by column chromatography using silica-gel (70-230 mesh) and CH₂Cl₂:hex (7:3) as eluent. Compound **20** was obtained as a purple solid (6.3 mg, 6.8 μ mol) in 49% yield.

M.P.: Unstable above 200°C.

HRMS-ESI-TOF: m/z calcd for $C_{61}H_{52}N_4O_5$ [M + H]⁺ 921.4016; found 921.4017.

¹**H NMR** (CDCl₃, 400.15 MHz) δ (ppm): -1.25 (s, 1H), -1.05 (s, 1H), 1.97 (s, 12H), 3.91 (s, 3H), 3.92 (s, 6H), 3.93 (s, 3H), 4.36 (s, 2H), 4.38 (s, 2H), 4.48 (s, 3H), 7.04-7.07 (m, 8H), 7.82-7.87 (m, 8H), 8.76 (s, 1H), 8.79 (s, 2H). ¹³**C NMR** (CDCl₃, 100.62 MHz) δ (ppm): 30.8, 31.0, 45.7, 45.8, 47.4, 51.6, 55.4, 64.3, 82.3, 82.8, 83.3, 95.4, 95.5, 96.6, 97.5, 99.5, 99.9, 100.2, 114.2, 114.3, 115.8, 118.4, 130.6, 133.2, 133.3, 133.4, 135.4, 136.0, 137.0, 137.4, 155.6, 159.7, 159.9, 160.0, 162.0, 170.9, 171.3.

2. NMR spectra

2.1. NMR spectra of compound 8

Figure S1. ¹H NMR spectrum of compound 8 in CDCl₃.

Figure S2. ¹³C NMR spectrum of compound 8 in CDCl₃.

2.2. NMR spectra of compound 9

Figure S3. ¹H NMR spectrum of compound 9 in CDCl₃.

Figure S4. ¹³C NMR spectrum of compound 9 in CDCl₃.

2.3. NMR spectra of compound 10

Figure S5. ¹H NMR spectrum of compound 10 in acetone- d_6 .

Figure S6. ¹³C NMR spectrum of compound 10 in acetone- d_6 .

2.4. NMR spectra of compound 11

Figure S7. ¹H NMR spectrum of compound 11 in acetone- d_6 .

Figure S8. ¹³C NMR spectrum of compound 11 in acetone- d_6 .

2.5. NMR spectra of compound 12

Figure S9. ¹H NMR spectrum of compound 12 in CDCl₃.

Figure S10. ¹³C NMR spectrum of compound 12 in CDCl₃.

2.6. NMR spectra of compound 14

Figure S11. ¹H NMR spectrum of compound 14 in CDCl₃.

Figure S12. ¹³C NMR spectrum of compound 14 in CDCl₃.

Figure S13. DEPT-135 spectrum of compound 14 in CDCl₃.

Figure S14. gCOSY spectrum of compound 14 in CDCl₃.

Figure S15. gHSQC spectrum of compound 14 in CDCl₃.

2.7. NMR spectra of compound 15

Figure S16. ¹H NMR spectrum of compound 15 in CDCl₃.

2.8. NMR spectra of compound BCBr₄

Figure S18. ¹H NMR spectrum of compound $BCBr_4$ in CDCl₃.

Figure S19. ¹³C NMR spectrum of compound $BCBr_4$ in $CDCl_3$ with expansions (a).

Figure S20. ¹³C NMR spectrum of compound $BCBr_4$ in CDCl₃ with expansions (b).

Figure S21. gHSQC spectrum of compound BCBr₄ in CDCl₃.

Figure S22. gHMBC spectrum of compound BCBr₄ in CDCl₃.

Figures S23 and S24. Expansions of gHMBC spectrum of compound BCBr₄ in CDCl₃.

2.9. NMR spectra of compound 17

Figure S25. ¹H NMR spectrum of compound 17 in CDCl₃ with expansions (a).

Figure S26. ¹H NMR spectrum of compound 17 in $CDCl_3$ with expansions (b).

Figure S27. ¹³C NMR spectrum of compound 17 in CDCl₃ with expansions (a).

Figure S28. 13 C NMR spectrum of compound 17 in CDCl₃ with expansions (b).

Figure S30. gHSQC spectrum of compound 17 in CDCl₃.

Figure S31. gHMBC spectrum of compound 17 in CDCl₃.

Figures S32 and S33. Expansions of gHMBC spectrum of compound 17 in CDCl₃.

Figure S34. Expansion of gHMBC spectrum of compound 17 in CDCl₃.

2.10. NMR spectra of compound 19

Figure S36. 13 C NMR spectrum of compound 19 in CDCl₃ with expansions (a).

Figure S37. 13 C NMR spectrum of compound 19 in CDCl₃ with expansions (b).

Figure S38. ¹³C NMR spectrum of compound 19 in CDCl₃ with expansions (c).

Figure S41. Expansion of gHMBC spectrum of compound 19 in CDCl₃.

Figure S43. ¹H NMR spectrum of compound 20 in CDCl₃ with expansions (b).

Figure S47. gHSQC spectrum of compound 20 in CDCl₃.

Figure S48. gHMBC spectrum of compound 20 in CDCl₃.

Figures S49 and S50. Expansions of gHMBC spectrum of compound 20 in CDCl₃.

Figure S51. Expansion of gHMBC spectrum of compound 20 in CDCl₃.

3. Mass spectra

3.1. Mass spectrum of compound 8

Figure S52. HRMS-ESI-TOF spectrum of compound 8.

3.2. Mass spectrum of compound 9

Figure S53. HRMS-ESI-TOF spectrum of compound 9.

3.3. Mass spectrum of compound 10

Figure S54. HRMS-ESI-TOF spectrum of compound 10.

3.4. Mass spectrum of compound 11

Figure S55. HRMS-ESI-TOF spectrum of compound 11.

3.5. Mass spectrum of compound 12

Figure S56. HRMS-ESI-TOF spectrum of compound 12.

3.6. Mass spectrum of compound 14

Figure S57. HRMS-ESI-TOF spectrum of compound 14.

3.7. Mass spectrum of compound 15

Figure S58. HRMS-ESI-TOF spectrum of compound 15.

Figure S59. HRMS-ESI-TOF spectrum of compound BCBr₄.

3.9. Mass spectrum of compound 17

Figure S60. HRMS-ESI-TOF spectrum of compound 17.

Figure S61. HRMS-MALDI-TOF spectrum of compound 19.

calculated for [M]⁺ 800.3509 C₅₇H₄₄N₄O

3.11. Mass spectrum of compound 20

Figure S62. HRMS-ESI-TOF spectrum of compound 20.

4. Computational Details

Table S1: Optimized geometries of compounds 17, 19, 20, 21, 22, 23 and BCBr₄ at B3LYP/6-31G(d).

80

Table S2: Electronic absorption spectra for 17, 19, 20, 23 and BCBr₄ at TD-DFT PBE0/6-31+g(d,p)//B3LYP/6-31G(d) IEF-PCM [CH₂Cl₂].

Transition	E (eV)	E (nm)	f	Assign.	Excitations (Major expansion coefficients)
1	2.03	610	0.34	Q _y	H -> L (0.67875); H-1 -> L+1 (-0.21366)
2	2.48	500	0.139	Q _x	H-1 ->L (0.63147); H ->L+1 (0.31962)
3	3.55	349	1.42	B_x	H ->L+1 (0.62925); L-1 ->L (-0.32506); L-1 <-L (0.10445)
4	3.83	324	1.24	$\mathbf{B}_{\mathbf{y}}$	L-1 ->L+1 (0.67432); H ->L (0.22603); H <-L (-0.11300)
32	5.61	221	0.13		H-9 ->L (0.11736); H-4 ->L+1 (0.34115); H-4 - >L+1 (0.34115); H-3 ->L+1 (0.40905); H -> L+11 (0.19673); H ->L+12 (-0.30039); H -> H+15 (- 0.13238); H -> L+16 (0.13481)

Table S3: Selected energies, oscillator strengths, and expansion coefficients for vertical transitions in 23.

Only transitions with oscillator strengths greater than 0.2 are shown.

Table S4: Selected energies, oscillator strengths, and expansion coefficients for vertical transitions in **BCBr**₄.

Transition	E (eV)	E (nm)	f	Assign.	Excitations (Major expansion coefficients)
1	1.93	642	0.52	Qy	H-1 ->L+1 (0.19742); H ->H (0.68323)
2	2.41	514	0.15	Q _x	H-1 ->L (0.63683); H ->L+1 (-0.30815)
3	3.46	359	1.10	B _x	H-1 ->H (0.30333); H ->L+1 (0.62452)
6	3.72	333	1.58	B_{y}	H-1 ->L+1 (0.67715); H ->L (-0.20825);
				2	H ->L (0.10674)
37	5.34	232	0.21		H-1 ->L+1 (-0.11162); H -> L+11 (0.66253)
~			-		

Only transitions with oscillator strengths greater than 0.2 are shown.

Transition	E (eV)	E (nm)	f	Assign.	Excitations (Major expansion
					coefficients)
1	1.66	747	0.95	Q_y	H-1 -> L+2 (-0.13247); H -> L (0.69566)
2	2.08	597	0.21	Qx	H-1 -> L (0.67736); H -> L+2 (0.18924)
5	3.04	408	0.26		H-3 -> L (0.34584); H-2 -> L (-0.14096);
					H-1 -> L (-0.15058); H-1 -> L+1 (-0.28630);
					H-1 -> L+3 (0.13549); H -> L+2 (0.47894)
8	3.10	400	0.60		H-1 -> L+2 (-0.34924); H -> L+3 (0.59976)
9	3.40	365	0.25		H-4 -> L (-0.12726); H-1 -> L+2 (-0.22852);
					H -> L+3 (-0.12154); H -> L+4 (0.63728)
10	3.49	355	0.69		H-4 -> L (-0.25376); H-1 -> L+2 (0.51491); H
					->L+3 (0.30834); H $->L+4$ (0.19519)
16	3.91	317	0.55		H-7 -> L (-0.12578); H-5 -> L (0.12954); H-2
					-> L+1 (-0.11231); H-1 -> L (0.10531); H-1 ->
					L+3 (0.35121): H-1 \rightarrow L+4 (0.17554): H \rightarrow
					L+2 (-0.13554): H -> L+5 (0.50818)
19	4.17	297	0.44		$182 \rightarrow L (0.12255)$: H-3 \rightarrow L+1 (-0.26136):
					H-2 -> L+1 (0.47851): H-2 -> L+3 (-0.23174):
					H-1 -> L+5 (-0.30171)
20	4 19	296	0 35		182 -> L (-0 18942): H-9 -> L (0 16498): H-8
20		270	0.00		-> L (0.14336): H-3 $-> L+3 (0.12289)$: H-2 $->$
					L+1 (0 38447): H-1 -> L+5 (0 43855)
22	4 23	294	0.30		$182 \rightarrow L (0.13621)$; $183 \rightarrow L (0.11817)$; H-3 -
		,	0.20		$L + 1$ (0.54921); H-3 ${-} > L + 3$ (0.20252); H-2 $_{-}$
					1 + 1 (0.14536); H-2 -> L+3 (0.11708); H-1 -
					> L + 1 (0.1+350), H - 2 - > L + 3 (0.11700), H - 1 - > L + 5 (0.11700), H - 1 + 5 (0.11700), H - 1 + 5 (0.11700), H - 1 + 5 (0
					> L+J (-0.22121)

Table S5: Selected energies, oscillator strengths, and expansion coefficients for vertical transitions in 17.

Only transitions with oscillator strengths greater than 0.2 are shown. Molecular orbitals in **BOLD** are composed mainly by ligand moieties.

Transition	E (eV)	E (nm)	f	Assign.	Excitations (Major expansion coefficients)
1	1.65	749	1.30	Qy	H-1 -> L+2 (-0.12057); H -> L (0.69528)
2	2.15	577	0.39	Q _x	H-1 -> L (0.67017); H -> L+2 (0.21291)
3	2.48	500	0.45		H-3 -> L (0.12416); H-1 -> L (-0.H25); H-1 ->
					L+3 (0.13500); H -> L+1 (0.14432); H -> L+2
					(0.62303)
7	3.23	383	2.00		H-5 -> L (-0.11740); H-1 -> L+1 (0.18961);
					H-1 -> L+2 (0.48155); H -> L (0.10296); H ->
					L+3 (-0.43841)
10	3.47	357	0.43		H-5 -> L (-0.40512); H-1 -> L+2 (0.30148); H
					->L+3 (0.47058)
14	3.73	332	0.48		H-3 -> L+3 (0.11884); H-2 -> L+1 (0.44667);
					H-1 -> L+3 (0.44570); H -> L+5 (0.25520)
25	4.01	309	0.77		H-2 -> L+1 (-0.23924); H-2 -> L+2 (0.10724);
					H-1 -> L+3 (0.49036); H -> L+2 (-0.10999); H
					->L+5 (-0.40231)
38	4.48	277	0.20		H-19 -> L (-0.35014); H-18 -> L (0.15693);
					H-15 -> L (0.12779); H-3 -> L+3 (0.50873);
					H-3 -> L+4 (0.10501); H-2 -> L+1 (-0.15147)
43	4.64	267	0.39		H-4 -> L+1 (-0.11190); H-3 -> L+5 (-
					0.28097); H-2 -> L+4 (0.59254); H-1 -> L+5
					(0.13333)

Table S6: Selected energies, oscillator strengths, and expansion coefficients for vertical transitions in 19.

Only transitions with oscillator strengths greater than 0.2 are shown. Molecular orbitals in **BOLD** are composed mainly by ligand moieties.

Transition	E (eV)	E (nm)	f	Assign.	Excitations (Major expansion coefficients)
1	1.65	752	1.40	Q _v	H-1 -> L+1 (-0.11126); H -> L (0.69535)
2	2.11	586	0.51	Q _x	H-1 -> L (0.67911); H -> L+1 (0.19033)
6	3.11	399	0.29	-	H-5 -> L (-0.24107); H-4 -> L (0.19152); H-1 -
					> L+1 (0.12002); H -> L+1 (-0.31639); H ->
					L+2 (0.51834)
7	3.13	396	1.16		H-5 -> L (0.49688); H-4 -> L (0.14885); H-1 ->
					L+1 (-0.33912); H -> L+2 (0.29042)
8	3.18	390	0.43		H-5 -> L (-0.15878); H-3 -> L (0.17580); H-1 ->
					L (-0.18578); H -> L+1 (0.55764); H -> L+2
					(0.26L+1)
9	3.32	374	1.14		H-5 -> L (0.37183); H-1 -> L+1 (0.44614); H ->
					L+3 (-0.37123)
12	3.67	338	0.64		H-6 -> L (-0.11911); H-2 -> L+1 (-0.41508);
					H-2 -> L+2 (0.45118); H-1 -> L+3 (-0.28233)
24	4.08	304	0.31		H-8 -> L (-0.17613); H-2 -> L+2 (0.10156); H-1
					->L+3 (0.32488); H ->L+ 5 (0.55700)
41	4.45	279	0.39		223 -> L (-0.11488); H-3 -> L+3 (0.65464); H-2
					->L+2 (0.14931)
48	4.61	269	0.28		H-5 \rightarrow L+1 (0.54302); H-4 \rightarrow L+2 (0.27241);
					H-2 \rightarrow L+4 (0.12830); H-1 \rightarrow L+5 (0.14073);
					H-1 -> L+9 (0.13879)
49	4.62	268	0.33		H-5 -> L+1 (0.41066); H-4 -> L+2 (-0.38388);
					$H-2 \rightarrow L+4$ (-0.11805); $H-1 \rightarrow L+5$ (-0.23080);
					H-1 -> L+7 (-0.12448); H-1 -> L+9 (-0.17933)
50	4.64	267	0.30		222 -> L (0.10576); H-3 -> L+5 (0.22568); H-2
					-> L+4 (0.54166); H-1 -> L+5 (-0.32316)

Table S7: Selected energies, oscillator strengths, and expansion coefficients for vertical transitions in 20.

Only transitions with oscillator strengths greater than 0.2 are shown. Molecular orbitals in **BOLD** are composed mainly by ligand moieties.

1	7	1	9	2	20
Н-9	H-7	H-19	H-18	H-6	Н-5
Н-3	H-2	H-15	Н-5	H-4	Н-3
L+2	L+3	H-4	Н-3	Н-2	L+2
L+4	L+5	H-2	L+2	L+3	L+4
				L+5	
		115		110	1

Table S8: Molecular orbital electron distribution of bacteriochlorin compounds calculated at B3LYP/6-31G(d).

L+5		

Cartesian Coordiantes

17	Energy: -155927	6.1889885		Н	-4.73775	0.64426	1.78204
С	-1.30802	-2.91914	-0.11635	С	-5.14257	1.55329	-1.56307
С	0.95798	-2.91535	-0.00776	Н	-6.19344	1.25423	-1.65861
С	2.27286	-2.44223	0.01320	Н	-5.12135	2.63927	-1.41940
С	2.74452	-1.13719	-0.09481	Н	-4.63813	1.32892	-2.50964
С	2.78892	1.04754	-0.34294	С	4.80409	-1.06185	1.35578
С	2.38839	2.38390	-0.38874	Н	4.71057	-2.11186	1.65519
С	1.08662	2.90791	-0.22134	Н	5.86548	-0.78938	1.40359
С	-1.18062	2.87488	-0.07263	Н	4.26322	-0.45395	2.08949
С	-2.97169	1.10313	-0.28139	С	5.05312	-1.67024	-1.08403
С	-3.01008	-1.09574	-0.37889	Н	6.10213	-1.35032	-1.09570
С	-2.60179	-2.42476	-0.30406	Н	5.03988	-2.73727	-0.83501
Ν	-2.20900	-0.01562	-0.25568	Н	4.65211	-1.55646	-2.09743
Η	3.03306	-3.20943	0.10752	С	3.63289	3.67011	-1.93595
Η	-3.37971	-3.17204	-0.40625	Н	4.47376	4.36733	-1.93607
С	0.52340	-4.28722	0.05059	Н	3.87999	2.79664	-2.55227
С	-0.88241	-4.28877	-0.00713	Н	2.74748	4.16406	-2.35542
С	-2.49841	2.40241	-0.16920	0	3.42001	3.29764	-0.57011
Η	-3.24956	3.18283	-0.17482	С	-1.72520	-5.47044	-0.03753
С	4.25412	-0.83454	-0.06916	Н	-1.29425	-6.34445	-0.52124
С	4.25648	0.67005	-0.42768	С	1.43483	-5.40660	0.15833
Η	4.64363	0.83899	-1.44137	Н	2.45236	-5.22914	-0.18041
Η	4.87120	1.27589	0.24464	С	-2.95911	-5.59969	0.49257
С	-4.48162	0.81037	-0.38848	Н	-3.43371	-4.80369	1.05589
С	-4.46401	-0.72169	-0.60621	С	1.16498	-6.63837	0.64372
Η	-4.76739	-0.99002	-1.62710	Н	0.20077	-6.90345	1.06188
Η	-5.13717	-1.25646	0.07342	С	1.20329	6.58635	0.75047
Ν	1.97940	-0.02713	-0.19759	Н	0.23461	6.78667	1.19229
Ν	-0.17223	-2.14587	-0.09142	С	-2.77548	5.47799	0.88375
Η	-0.18354	-1.13341	-0.14033	Н	-3.14509	4.65321	1.48352
Ν	-0.04085	2.12100	-0.20364	С	1.52265	5.41042	0.16392
Η	-0.02722	1.11348	-0.31429	Н	2.54891	5.28329	-0.15254
С	-5.18690	1.17501	0.93508	С	0.64947	4.26664	-0.02515
Η	-5.12316	2.24961	1.13911	С	-0.75949	4.23789	0.06057
Η	-6.24897	0.90530	0.88855	С	-1.62359	5.39920	0.18570

Η	-1.28713	6.29725	-0.32783	С	1.17867	4.17610	0.77918
С	-3.77130	-6.83009	0.41153	С	-1.90325	2.21280	0.89187
С	2.14913	-7.73577	0.69798	Н	-2.64331	2.96702	1.14038
С	-3.62549	6.68360	0.94932	С	4.92581	-0.73178	-0.22687
С	2.15032	7.70613	0.90360	С	4.87804	0.81619	-0.21807
0	-4.66936	6.73622	1.57252	Н	5.24230	1.23889	-1.16282
0	1.87735	8.74646	1.47383	Н	5.48971	1.26093	0.57388
0	-4.88422	-6.93303	0.89272	С	-3.84935	0.55416	0.89521
0	1.90589	-8.83714	1.15424	С	-3.84089	-0.93264	0.46230
0	3.36223	-7.39753	0.18742	Н	-4.35715	-1.07885	-0.49601
0	-3.15025	-7.83738	-0.25009	Н	-4.33246	-1.58976	1.18910
0	-3.12357	7.72951	0.24791	Ν	2.63448	0.00932	-0.00749
0	3.36559	7.47007	0.34197	Ν	0.52739	-2.16342	-0.04330
С	4.34870	-8.43779	0.22870	Н	0.48836	-1.16125	0.09688
Н	4.01734	-9.30694	-0.34610	Ν	0.54305	2.02969	0.47935
Н	5.24794	-8.00694	-0.21342	Н	0.58809	1.03438	0.29703
Н	4.53910	-8.74913	1.25953	С	-4.25425	0.70001	2.37720
С	-3.89338	-9.06172	-0.33610	Н	-4.16204	1.73868	2.71378
Н	-4.83331	-8.90488	-0.87248	Н	-5.29596	0.38791	2.52292
Н	-3.25172	-9.75536	-0.88031	Н	-3.61988	0.08165	3.02216
Н	-4.11603	-9.44771	0.66230	С	-4.77099	1.40904	0.00785
С	-3.90364	8.93252	0.30213	Н	-5.81040	1.07018	0.09902
Н	-3.35672	9.66255	-0.29533	Н	-4.74196	2.46624	0.29462
Н	-4.90096	8.76407	-0.11354	Н	-4.48225	1.34006	-1.04686
Н	-4.00428	9.27947	1.33402	С	5.64882	-1.27450	1.02345
С	4.31725	8.53142	0.49160	Н	5.60470	-2.36870	1.06620
Н	5.22573	8.18284	-0.00153	Н	6.70523	-0.97874	1.01336
Н	3.95221	9.44796	0.01966	Н	5.19540	-0.88472	1.94161
Н	4.50913	8.73329	1.54913	С	5.59441	-1.27634	-1.50240
				Н	6.63985	-0.94796	-1.55433
19	Energy: -15641	136.8407830		Н	5.59002	-2.37184	-1.52657
С	-0.58444	-2.96701	-0.06892	Н	5.08113	-0.92002	-2.40258
С	1.68000	-2.88872	-0.21236	С	4.09821	4.04426	-1.13344
С	2.98346	-2.39214	-0.24980	Н	4.88434	4.79135	-1.00366
С	3.42603	-1.07559	-0.16371	Н	4.40285	3.32131	-1.90168
С	3.40525	1.12019	-0.01345	Н	3.17653	4.54401	-1.45038
С	2.95571	2.42977	0.16888	0	3.93461	3.40962	0.13812
С	1.64350	2.85782	0.45334	С	1.93060	5.35822	0.91343
С	-0.60172	2.71901	0.78759	С	2.50903	6.42156	1.04511
С	-2.36082	0.91473	0.71990	С	-1.08500	5.13307	1.33505
С	-2.36289	-1.25160	0.31562	С	-1.83268	6.04409	1.64420
С	-1.90606	-2.54491	0.08365	С	2.16687	-5.34147	-0.55188
Ν	-1.58308	-0.15441	0.42970	С	2.93689	-6.27075	-0.72031
Н	3.74240	-3.15705	-0.38054	С	-0.94582	-5.44674	-0.36163
Н	-2.64986	-3.33367	0.02482	C	-1.66813	-6.42515	-0.43798
С	1.28526	-4.26408	-0.35694	C	3.23105	7.63756	1.19903
С	-0.12079	-4.31228	-0.27225	С	4.63174	7.61964	1.36550
С	-0.21651	4.08486	0.98350	С	2.56386	8.87968	1.18667

С	5.33784	8.80977	1.51431	С	2.87515	1.92721	0.98401
Н	5.14649	6.66381	1.38319	С	1.61206	2.54295	0.87524
С	3.27903	10.06451	1.33594	С	-0.55661	2.82418	0.25195
Н	1.48637	8.89788	1.05298	С	-2.25798	1.55161	-1.10560
С	4.66645	10.03542	1.49999	С	-2.27126	-0.36105	-2.20162
Н	6.41652	8.78186	1.64385	С	-1.87150	-1.60641	-2.67597
Н	2.75254	11.01516	1.32332	Ν	-1.52736	0.45844	-1.42769
Н	5.22115	10.96240	1.61675	Н	3.35009	-3.30431	-1.14820
С	-2.68188	7.12445	2.01173	Н	-2.58135	-2.16069	-3.28247
С	-2.13152	8.36826	2.38587	С	1.03945	-3.79906	-2.44415
С	-4.08405	6.97503	2.01125	С	-0.26443	-3.55512	-2.92054
С	-2.96173	9.42559	2.74557	С	-0.18130	3.95804	1.04292
Н	-1.05212	8.48539	2.39416	С	1.16573	3.78690	1.43544
С	-4.90587	8.03861	2.37254	С	-1.81141	2.61367	-0.33376
Н	-4.51387	6.02030	1.72384	Н	-2.51843	3.41499	-0.14271
С	-4.35015	9.26673	2.74037	С	4.55104	-1.34861	0.27880
Н	-2.52416	10.37792	3.03293	С	4.63096	0.10003	0.82095
Н	-5.98486	7.90923	2.36717	Н	5.40562	0.68366	0.30802
Н	-4.99498	10.09465	3.02188	Н	4.86838	0.14641	1.88905
С	3.82130	-7.36697	-0.91820	С	-3.69950	1.50083	-1.65066
С	5.21749	-7.17044	-0.94989	С	-3.63509	0.22507	-2.52630
С	3.31569	-8.67288	-1.08664	Н	-3.70135	0.46348	-3.59640
С	6.07636	-8.24818	-1.14383	Н	-4.44632	-0.47985	-2.30952
Н	5.61323	-6.16770	-0.82063	Ν	2.45997	-0.20869	-0.13874
С	4.18259	-9.74410	-1.28002	Ν	0.40056	-1.75662	-1.72990
Н	2.24152	-8.82871	-1.06368	Н	0.38964	-0.85167	-1.27562
С	5.56440	-9.53774	-1.30949	Ν	0.54465	2.00940	0.18691
Н	7.15003	-8.08184	-1.16576	Н	0.58005	1.12062	-0.29751
Н	3.77910	-10.74491	-1.40850	С	-4.69744	1.32763	-0.48655
Н	6.23805	-10.37668	-1.46059	Н	-4.67022	2.18796	0.19158
С	-2.49692	-7.57745	-0.52826	Н	-5.72124	1.23000	-0.86922
С	-3.90059	-7.46366	-0.45169	Н	-4.46638	0.43174	0.10061
С	-1.92785	-8.85708	-0.69611	С	-4.05987	2.74901	-2.47534
С	-4.70494	-8.59587	-0.54078	Н	-5.06086	2.64294	-2.91194
Н	-4.34490	-6.48146	-0.32267	Н	-4.06235	3.65449	-1.85814
С	-2.74059	-9.98320	-0.78414	Н	-3.34698	2.90336	-3.29297
Н	-0.84771	-8.94949	-0.75474	С	4.62360	-2.37850	1.42514
С	-4.13034	-9.85868	-0.70713	Н	4.47767	-3.39942	1.05425
Н	-5.78508	-8.49312	-0.48023	Н	5.60263	-2.33445	1.91852
Н	-2.28845	-10.96293	-0.91321	Н	3.85367	-2.18307	2.17983
Н	-4.76160	-10.74028	-0.77626	С	5.65416	-1.63252	-0.75730
				Н	6.64459	-1.54634	-0.29322
20	Energy: -18	351594.711323	81	Н	5.56949	-2.64290	-1.17301
С	-0.65485	-2.25270	-2.45295	Н	5.60670	-0.92320	-1.59120
С	1.44762	-2.64298	-1.69131	С	4.60093	3.54412	0.87288
С	2.67596	-2.45850	-1.05622	Н	5.31630	4.02469	1.54413
С	3.14658	-1.35294	-0.35356	Н	5.14299	3.02003	0.07444
С	3.24687	0.65670	0.54009	Н	3.95392	4.30935	0.43080

0	3.85033	2.62892	1.67533	Ο	5.19529	9.10278	6.24679
С	1.88119	4.68479	2.24934	0	-4.81844	-8.63689	-7.51206
С	2.43111	5.51206	2.95428	0	5.50685	-10.58007	-3.74933
С	-1.02367	5.03347	1.37553	С	6.81562	-10.74552	-3.22552
С	-1.75093	5.96592	1.67067	Н	7.14900	-11.72940	-3.56014
С	1.82465	-4.94618	-2.65211	Н	7.50300	-9.97988	-3.60860
С	2.51080	-5.93826	-2.82788	Н	6.81737	-10.71577	-2.12800
С	-1.06275	-4.40484	-3.70547	С	-6.12426	-8.30182	-7.95584
С	-1.76123	-5.13566	-4.38657	Н	-6.47228	-9.15935	-8.53435
С	3.11030	6.44407	3.78438	Н	-6.80598	-8.13278	-7.11195
С	4.30337	6.08313	4.45180	Н	-6.11597	-7.41079	-8.59731
С	2.61990	7.74952	3.96671	С	4.73615	10.42802	6.46331
С	4.96838	6.98956	5.26025	Н	5.46013	10.88861	7.13783
Н	4.69133	5.07667	4.32825	Н	4.69806	10.99998	5.52682
С	3.28415	8.66677	4.77875	Н	3.74402	10.43943	6.93347
Н	1.70782	8.04603	3.45741	Н	-5.60846	8.45988	1.32499
С	4,46530	8.28983	5.43127	0	-4.90937	10.33056	3.20536
Н	5.88336	6.71696	5.77690	C	-6.18676	10.57071	2.63546
Н	2.87656	9.66457	4.89399	Н	-6.87770	9.73982	2.82966
C	-2.57580	7.06300	2.03844	Н	-6.56429	11.47385	3.11817
C	-2.14987	7.98850	3.01886	Н	-6.12018	10.73902	1.55251
C	-3.83510	7.26285	1.44507				
C	-2.94873	9.05967	3.38123	BCB	\mathbf{r}_{4} Energy:	-7246576.716	3973
Н	-1.18369	7.84604	3.49320	C	-1.14977	-2.90918	-0.10191
С	-4.64422	8.33878	1.80514	C	1.12362	-2.90442	0.02171
Н	-4.18077	6.56367	0.68973	C	2.44164	-2.45172	0.07831
С	-4.20330	9.24562	2.77766	С	2.92689	-1.14815	0.04044
Н	-2.62683	9.77172	4.13471	С	2.98649	1.04551	-0.11502
С	3.29389	-7.10363	-3.04503	С	2.58258	2.38177	-0.16859
C	4.58770	-7.22326	-2.50619	C	1.26593	2.88449	-0.09798
С	2 79253	0.10020		-			
C		-8.18032	-3.81199	С	-1.01407	2.83412	-0.00697
C	5.35853	-8.18032 -8.36460	-3.81199 -2.71692	C C	-1.01407 -2.83000	2.83412 1.08278	-0.00697 -0.04931
С Н	5.35853 4.99148	-8.18032 -8.36460 -6.40768	-3.81199 -2.71692 -1.91405	C C C	-1.01407 -2.83000 -2.88573	2.83412 1.08278 -1.11560	-0.00697 -0.04931 -0.16355
н С	5.35853 4.99148 3.55293	-8.18032 -8.36460 -6.40768 -9.31729	-3.81199 -2.71692 -1.91405 -4.02540	C C C C	-1.01407 -2.83000 -2.88573 -2.46247	2.83412 1.08278 -1.11560 -2.44051	-0.00697 -0.04931 -0.16355 -0.16706
H C H	5.35853 4.99148 3.55293 1.79598	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611	C C C C N	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378	2.83412 1.08278 -1.11560 -2.44051 -0.03801	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142
H C H C	5.35853 4.99148 3.55293 1.79598 4.84324	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001	C C C N H	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550
H C H C H	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524	C C C N H H	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049
H C H C H H	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351	C C C N H H C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355
H C H C H H H C	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994	C C C N H H C C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586
H C H C H H C C C	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775	C C C N H H C C C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130
H C H C H H C C C	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337	C C C N H C C C C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270
H C H C H C H C C C C	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782 -4.63476	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256 -6.47543	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337 -6.37573	C C C N H H C C C C C C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361 -2.33827	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104 2.37796	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270 0.00677
H C H C H H C C C C H	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782 -4.63476 -4.23753	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256 -6.47543 -4.65652	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337 -6.37573 -5.30643	C C C C N H H C C C C H	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361 -2.33827 -3.07144	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104 2.37796 3.17571	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270 0.00677 0.06409
H C H C H H C C C C H C H C C C C H C	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782 -4.63476 -4.23753 -2.85310	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256 -6.47543 -4.65652 -8.11995	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337 -6.37573 -5.30643 -6.34628	C C C C N H H C C C C C H C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361 -2.33827 -3.07144 4.43695	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104 2.37796 3.17571 -0.85906	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270 0.00677 0.06409 0.11970
H C H C H C C C C H C H C H C H C H C H	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782 -4.63476 -4.23753 -2.85310 -1.08480	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256 -6.47543 -4.65652 -8.11995 -7.57988	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337 -6.37573 -5.30643 -6.34628 -5.26039	C C C C N H H C C C C C H C C	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361 -2.33827 -3.07144 4.43695 4.45808	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104 2.37796 3.17571 -0.85906 0.67370	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270 0.00677 0.06409 0.11970 -0.09868
H C H C H C C C C H C H C H C H C H C H	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782 -4.63476 -4.23753 -2.85310 -1.08480 -4.13906	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256 -6.47543 -4.65652 -8.11995 -7.57988 -7.72980	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337 -6.37573 -5.30643 -6.34628 -5.26039 -6.75496	C C C C N H H C C C C C H C C H	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361 -2.33827 -3.07144 4.43695 4.45808 4.94475	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104 2.37796 3.17571 -0.85906 0.67370 0.94087	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270 0.00677 0.06409 0.11970 -0.09868 -1.04499
H C H C H C C C C H C H C H C H C H C H	5.35853 4.99148 3.55293 1.79598 4.84324 6.35125 3.17204 -2.55934 -3.84905 -2.07782 -4.63476 -4.23753 -2.85310 -1.08480 -4.13906 -5.62378	-8.18032 -8.36460 -6.40768 -9.31729 -8.10628 -9.42065 -8.42004 -10.14632 -6.00284 -5.62762 -7.27256 -6.47543 -4.65652 -8.11995 -7.57988 -7.72980 -6.15107	-3.81199 -2.71692 -1.91405 -4.02540 -4.23611 -3.48001 -2.28524 -4.61351 -5.17994 -5.59775 -5.57337 -6.37573 -5.30643 -6.34628 -5.26039 -6.75496 -6.67837	C C C C N H H C C C C C H C C H H H	-1.01407 -2.83000 -2.88573 -2.46247 -2.07378 3.17922 -3.22721 0.67409 -0.70027 -0.58617 0.79361 -2.33827 -3.07144 4.43695 4.45808 4.94475 4.99648	2.83412 1.08278 -1.11560 -2.44051 -0.03801 -3.24475 -3.20945 -4.26284 -4.26562 4.19182 4.23104 2.37796 3.17571 -0.85906 0.67370 0.94087 1.21307	-0.00697 -0.04931 -0.16355 -0.16706 -0.10142 0.14550 -0.21049 0.01355 -0.06586 0.05130 -0.00270 0.00677 0.06409 0.11970 -0.09868 -1.04499 0.68741

С	-4.35438	-0.73671	-0.23703	Н	-3.21332	-3.17975	-0.13145
Н	-4.76562	-0.99947	-1.22082	С	0.67270	-4.26935	0.04688
Н	-4.95387	-1.27168	0.50860	Н	1.32250	-5.13384	0.08606
Ν	2.17096	-0.03108	-0.05046	С	-0.70252	-4.25437	-0.01159
Ν	-0.01448	-2.13588	-0.04911	Н	-1.37246	-5.10401	-0.02706
Н	-0.03313	-1.12309	-0.04710	С	-0.56491	4.19927	-0.00585
Ν	0.13744	2.08893	-0.08987	Н	-1.21342	5.06415	0.04417
Н	0.17289	1.07713	-0.13345	С	0.81423	4.18662	-0.03290
C	-4 91472	1 15827	1 37546	H	1 48556	5 03184	0.00789
н	-4 81672	2.23078	1 57731	C	-2 35889	2.41183	-0.03216
Н	-5.97941	0.89982	1.43130	H	-3.09289	3.21207	-0.00096
н	-4 39066	0.61798	2 17187	C	4 46455	-0 87744	0.09965
C	-5 11267	1 54643	-1 11323	C	4 47368	0.66697	-0.04316
н	-6 17007	1.25479	-1 10662	н	4 98523	0.98851	-0.95909
н	-5.06889	2 63175	-0.96933	н	4.90525	1 16862	0.78578
н	-4 70464	1 32264	-2 10519	C II	-4 36148	0.81210	-0.02211
C	4.70404	-1 23017	1 51761	C C	-/ 35611	-0.72855	_0.10018
с и	4.97473	2 30/15/	1.71018	с ц	4.33011 1 77807	1 03271	1 15708
и П	6.03664	0.06780	1.71018	и Ц	- 4 .77077 10/168	1 23023	0 58366
и Ц	4 43021	-0.90789	2 30462	N N	-4.94100 2 10225	-1.23923	0.00084
п С	4.43021 5.23284	1 60380	2.30402	N	2.19555	-0.03994 2 12471	0.02904
с u	5.23284	-1.00300	-0.90755		0.01044	-2.12471	-0.01408
п ц	0.28943	-1.51157	-0.93232	II N	0.01/13	-1.11550	-0.02110
п	J.16002	-2.09012	-0.63221	IN	0.09022	2.03722	-0.06952
п	4.84939	-1.3/390	-1.90807	п	0.08390	1.04039	-0.11310
С П	3.96263	5./5/88 1.1515	-1.53/3/	U U	-4.95255	1.22178	1.342/4
п	4.81083	4.41343	-1.41651	П	-4.80917	2.30238	1.30420
п	4.23047	2.00002	-2.10042	п	-0.01305	0.93514	1.39009
п	3.13023	4.27392	-2.01489	П	-4.45018	0.71975	2.10460
U D	3.60900	5.30838	-0.218/3	U U	-5.12519	1.51218	-1.16019
Br	-1./2828	5.6/1/0	0.18968	H	-6.18133	1.21487	-1.15316
Br	1.79200	5.81534	0.09593	Н	-5.08868	2.60302	-1.06037
Br	1.78758	-5.76703	0.09204	Н	-4./0514	1.25124	-2.13/99
Br	-1.81527	-5.76933	-0.11593	C	5.05522	-1.31/65	1.45436
				H	4.97566	-2.40217	1.59204
23	Energy: -7930)12.9696949	0.04054	H	6.11690	-1.04771	1.51665
C	-1.13065	-2.89132	-0.04864	Н	4.53234	-0.83508	2.28/60
C	1.13392	-2.91658	0.04302	С	5.22344	-1.55977	-1.05390
С	2.46065	-2.47569	0.08078	H	6.28288	-1.27483	-1.03719
С	2.95313	-1.17369	0.04517	Н	5.17281	-2.65216	-0.98072
C	2.99875	1.02471	-0.07558	H	4.80883	-1.27033	-2.02614
С	2.56013	2.34670	-0.12120	С	3.89686	3.79299	-1.43908
С	1.23711	2.82741	-0.08844	Н	4.67889	4.54383	-1.29988
С	-1.02592	2.85088	-0.04196	Н	4.28187	2.98104	-2.07043
С	-2.84963	1.11393	-0.05847	Н	3.03387	4.25072	-1.93906
С	-2.88093	-1.09118	-0.11874	0	3.55096	3.32385	-0.13557
С	-2.44414	-2.41243	-0.10423				
Ν	-2.08398	-0.00240	-0.08226	22	Energy: -6	94333.033710	4
Η	3.19715	-3.27232	0.13617	С	-1.11844	-2.85485	0.00230

С	1.14465	-2.87335	-0.04784	21	Energy: -6224	474.4320919	
С	2.47527	-2.41404	-0.08523	С	-1.13331	-2.87698	0.00003
С	2.93143	-1.09827	-0.04876	С	1.13325	-2.87700	0.00006
С	2.90997	1.10381	0.04867	С	2.45512	-2.41479	0.00005
С	2.44631	2.41604	0.07474	С	2.91492	-1.10287	0.00004
С	1.12842	2.88294	0.05032	С	2.91483	1.10508	0.00002
С	-1.13748	2.89887	-0.00671	С	2.45545	2.41682	-0.00000
С	-2.91434	1.12629	-0.04116	С	1.13323	2.87937	0.00001
С	-2.90565	-1.08200	-0.00381	С	-1.13317	2.87939	0.00004
С	-2.44224	-2.38947	0.01353	С	-2.91480	1.10514	0.00002
Ν	-2.13059	0.02741	-0.02422	С	-2.91494	-1.10281	0.00001
Н	3.20505	3.19353	0.11240	С	-2.45517	-2.41474	0.00002
Н	-3.19766	-3.17066	0.03916	Ν	-2.13608	0.00115	0.00002
С	0.69697	-4.22436	0.00832	Н	3.21303	-3.19401	0.00006
Н	1.35245	-5.08202	0.04801	Н	3.21293	3.19642	-0.00005
С	-0.68237	-4.21161	0.03682	Н	-3.21310	-3.19395	0.00001
Н	-1.34667	-5.06435	0.08740	С	0.68874	-4.23438	0.00005
С	-0.68401	4.25397	0.01519	Н	1.34887	-5.09180	0.00005
Н	-1.33832	5.11579	0.00507	С	-0.68883	-4.23437	0.00006
С	0.69215	4.24406	0.05194	Н	-1.34897	-5.09177	0.00006
Η	1.35822	5.09661	0.07589	С	-0.68895	4.23659	0.00009
С	-2.45945	2.44116	-0.03696	Н	-1.34854	5.09442	0.00015
Н	-3.21763	3.21971	-0.05043	С	0.68904	4.23658	-0.00005
С	4.41752	-0.75999	-0.01767	Н	1.34864	5.09439	-0.00010
Н	4.91170	-1.24377	0.83098	С	-2.45540	2.41687	0.00004
Η	4.93086	-1.11535	-0.91849	Н	-3.21287	3.19648	0.00006
С	4.40108	0.77692	0.08081	С	4.40579	-0.76859	0.00003
Η	4.93276	1.26101	-0.74663	Н	4.90500	-1.19081	0.88010
Η	4.86092	1.14083	1.00753	Н	4.90500	-1.19085	-0.88001
С	-4.40297	0.78574	-0.06554	С	4.40596	0.77087	-0.00000
Η	-4.93325	1.25296	0.77208	Н	4.90510	1.19304	-0.88011
Η	-4.87263	1.15744	-0.98437	Н	4.90514	1.19308	0.88006
С	-4.39735	-0.75172	0.01158	С	-4.40594	0.77095	0.00004
Η	-4.91932	-1.22201	-0.82946	Н	-4.90507	1.19312	0.88016
Η	-4.87046	-1.12608	0.92741	Н	-4.90512	1.19320	-0.88001
Ν	2.13944	-0.00309	-0.00919	С	-4.40580	-0.76850	-0.00002
Ν	0.01824	-2.08218	-0.04584	Н	-4.90499	-1.19069	-0.88011
Η	0.02768	-1.07128	-0.07298	Н	-4.90505	-1.19077	0.88001
Ν	-0.01021	2.11165	0.01413	Ν	2.13608	0.00111	0.00003
Η	-0.02486	1.10047	0.01400	Ν	-0.00002	-2.09737	0.00006
0	3.45188	-3.40510	-0.09662	Н	-0.00001	-1.08597	0.00006
С	3.78868	-3.88531	-1.39857	Ν	0.00002	2.09972	0.00005
Η	4.18403	-3.08187	-2.03450	Н	0.00001	1.08827	0.00007
Η	4.56012	-4.64661	-1.25718				
Η	2.91836	-4.33284	-1.89498				

5. Photophysical measurements

5.1. Molar Absorption coefficient (ε)

General Procedure

The values for ε were obtained by weighing a small amount of the compound (~1.00 mg) and adding it to a volumetric flask, which was filled up to the meniscus with CH₂Cl₂. Other solutions were prepared by making dilutions from the first one. Each one of the solutions had its absorption spectrum acquired, and the values of absorbance were plotted against concentration for each band, individually. All the graphs obtained are in agreement with the Lambert-Beer Law,¹¹ affording straight lines with R² >0,98. From each graph the values of the angular coefficient is taken as ε for the corresponding band, using equation (1).

$$A = \varepsilon. b. l$$
 Equation (1)

In equation (1) A is the absorbance, b is the concentration and l is the optical path length. The Tables below present the data related to concentration of the solutions prepared and the values of absorbance obtained.

Concentration	Abs B _y	Abs B _x	Abs Q _x	Abs Q _y
x 10 ⁻⁵ (mol.L- ¹)	(353 nm)	(374 nm)	(509 nm)	(737 nm)
2.79	-	-	0.84	-
2.09	-	-	0.62	-
1.40	-	-	0.41	-
0.838	0.87	0.77	0.24	0.94
0.698	0.71	0.63	0.19	0.77
0.503	0.55	0.50	-	0.59
0.335	0.36	0.32	-	0.39

Table S9. Data for obtainment of ε for BCBr₄.

 $\varepsilon_{353} = 98,948 \text{ mol}^{-1}.\text{L.cm}^{-1}; \varepsilon_{374} = 86,560 \text{ mol}^{-1}.\text{L.cm}^{-1}; \varepsilon_{509} = 30,865 \text{ mol}^{-1}.\text{L.cm}^{-1}; \varepsilon_{737} = 107,118 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

Concentration x 10 ⁻⁵	Abs B_y/B_x	Abs Q _x	Abs Q _y
$(mol.L^{-1})$	(398 nm)	(556 nm)	(802 nm)
4.78	-	0.89	-
3.58	-	0.67	-
2.39	-	0.44	-
1.19	0.83	0.22	1.06
0.952	0.66	0.17	0.84
0.669	0.45	-	0.57
0.478	0.33	-	0.41
0.287	0.19	-	0.25

Table S10. Data for obtainment of ε for 17.

 $\boldsymbol{\epsilon}_{398} = 69,306 \text{ mol}^{-1}.\text{L.cm}^{-1}; \ \boldsymbol{\epsilon}_{556} = 18,795 \text{ mol}^{-1}.\text{L.cm}^{-1}; \ \boldsymbol{\epsilon}_{802} = 88,341 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

Table S11. Data for obtainment of ε for 19.

Concentration x 10 ⁻⁵	Abs B_y/B_x	Abs Q _x	Abs Q _y
$(mol.L^{-1})$	(391 nm)	(550 nm)	(807 nm)
2.42	-	0.90	-
1.81	-	0.66	-
1.21	-	0.44	-
0.604	0.85	0.22	0.99
0.423	0.58	0.14	0.68
0.314	0.43	-	0.51
0.202	0.29	-	0.35
0.157	0.20	-	0.24

 $\boldsymbol{\varepsilon}_{391} = 142,333 \text{ mol}^{-1}.\text{L.cm}^{-1}; \ \boldsymbol{\varepsilon}_{550} = 37,633 \text{ mol}^{-1}.\text{L.cm}^{-1}; \ \boldsymbol{\varepsilon}_{807} = 163,582 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

Concentration x 10 ⁻⁵	Abs $\mathbf{B}_{\mathbf{y}}/\mathbf{B}_{\mathbf{x}}$	Abs Q _x	Abs Q _y
$(mol.L^{-1})$	(394 nm)	(550 nm)	(808 nm)
2.12		0.85	
1.59		0.63	
1.06		0.42	
0.530	0.89	0.21	0.94
0.371	0.60	0.13	0.64
0.276	0.45	0.10	0.49
0.191	0.30		0.33
0.138	0.22		0.24

Table S12. Data for obtainment of ε for 20.

 $\boldsymbol{\epsilon}_{394} = 170,961 \text{ mol}^{-1}.\text{L.cm}^{-1}; \ \boldsymbol{\epsilon}_{550} = 40,661 \text{ mol}^{-1}.\text{L.cm}^{-1}; \ \boldsymbol{\epsilon}_{808} = 177,847 \text{ mol}^{-1}.\text{L.cm}^{-1}.$

5.2 Fluorescence quantum yield ($\Phi_{\rm f}$)

General Procedure

The values of $\Phi_{\rm f}$ were obtained by comparing the areas under the fluorescence spectra of the compounds with the area under the fluorescence spectra of the standard. A solution of each compound was prepared in toluene and the absorbances at the excitation wavelength (λ_{ex}) were adjusted between 0.1 and 0.2. Oxygen was removed from the solutions by bubbling argon. The solutions had their fluorescence spectra acquired using $\lambda_{ex} = 510$ nm for **BCBr**₄ and $\lambda_{ex} = 550$ nm for **17**, **19** and **20**. The *meso*-tetraphenylporphyrin (TPP) was used as standard. In the case of TPP, the fluorescence spectra were acquired without degassification for both λ_{ex} and the value of 0.07 was used as $\Phi_{\rm f}^{\rm Std}$. The values of $\Phi_{\rm f}$ were calculated using equation (2).

$$\Phi_{\rm f} = \Phi_{\rm f}^{\rm Std} \frac{F.A_{\rm Std}}{F_{\rm Std}.A} \qquad \qquad \text{Equation (2)}$$

In equation (2), Φ_f^{Std} is the fluorescence quantum yield of the standard, F and F_{Std} are the areas obtained from the fluorescence spectra of the sample and the standard, respectively. A and A_{Std} correspond to the absorbances. The Tables below present the data related to the values of absorbance and the area obtained for the fluorescence spectrum of each compound and also for the standard in both λ_{ex} .

Compound	Absorbance	Area
TPP $\lambda_{ex} = 510$	0.14529	6005.189
TPP $\lambda_{ex} = 550$	0.18852	8902.858
BCBr ₄	0.13014	370.905
17	0.14986	2803.559
19	0.15405	5622.031
20	0.15636	6184.829

Table S13. Data for obtainment of Φ_f for BCBr₄, 17, 19 and 20.

6. References

- (1) Armarego, WLF, Chai CLL. Purification of Laboratory Chemicals. 2009, Elsevier.
- (2) Hunt, J. T.; Mitt, T.; Borzilleri, R.; Gullo-Brown, J.; Fargnoli, J.; Fink, B.; Han, W.-C.; Mortillo, S.; Vite, G.; Wautlet, B.; Wong, T.; Yu, C.; Zheng, X.; Bhide, R. J. Med. Chem. 2004, 47, 4054.
- (3) Shin, J.-Y.; Patrick, B. O.; Dolphin, D. Tetrahedron Lett. 2008, 49, 5515.
- (4) Kim, H.-J.; Lindsey, J. S. J. Org. Chem. 2005, 70, 5475.
- (5) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.
- (6) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
- (7) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
- (8) Allouche, A.-R. J. Comp. Chem. 2011, 32, 174.
- (9) GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J.. Semichem Inc., Shawnee Mission, KS, **2009**.

(10) Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.; Artis, D. R. & Muchowski, J. M. J. Org. Chem. **1990**, 55, 6317.

(11) Hardesty JH, Attili B, Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry. **2010**, Collin College, Department of Chemistry.