Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Chemical constituents of the soft corals *Sinularia vanderlandi* and *Sinularia gravis* from the coast of Madagascar

Marie Pascaline Rahelivao, Margit Gruner, Tilo Lübken, Daut Islamov, Olga Kataeva, Hanta Andriamanantoanina, Ingmar Bauer, Hans-Joachim Knölker*

Content

Table S1. NMR spectroscopic data of vanderlandin (1) recorded at 600 MHz (¹ H) and 150 MHz (¹³ C) in CDCl ₃ 4
Table S2. NMR spectroscopic data of gravilin (3) recorded at 600 MHz (1 H) and 150 MHz (13 C) in CDCl ₃ 5
Table S3. Comparison of NMR spectroscopic data of gravilin (3), lobophytumin F, ¹ and leptoclalin A ²
Table S4. NMR spectroscopic data for 1-O-arachidonoyl-3-O-stearylglycerol (4) recorded at 600 MHz (¹ H) and 150 MHz (¹³ C) in CDCl ₃
Table S5. NMR data of compound 5 recorded at 600 MHz (1 H) and 150 MHz (13 C) in CDCl ₃
Table S6. ¹³ C NMR spectroscopic data of (+)-(35,6E,10E)-geranyllinalool (6)
Table S7. ¹³ C NMR spectroscopic data of (–)-(R)-nephthenol (7) 11
Table S8. ¹ H and ¹³ C NMR spectroscopic data of 11,12-epoxysarcophytol A (8)
Table S9. Comparison of the ¹³ C NMR data, melting points, and optical rotation values of isodecaryiol (9)and decaryiol (10)13
Table S10. Comparison of the ¹ H NMR data of isodecaryiol (9) and decaryiol (10)
Fig. S1. ¹ H NMR (600 MHz, CDCl ₃) spectrum of vanderlandin (1)
Fig. S2. 13 C NMR (150 MHz, CDCl ₃) spectrum of vanderlandin (1)
Fig. S3. Details of the 13 C NMR (150 MHz, CDCl ₃) spectrum of vanderlandin (1) 17
Fig. S4. COSY spectrum of vanderlandin (1) 18
Fig. S5. Details of the COSY spectrum of vanderlandin (1) 19
Fig. S6. HSQC spectrum of vanderlandin (1) 20
Fig. S7. Details of the HSQC spectrum of vanderlandin (1)
Fig. S8. HMBC spectrum of vanderlandin (1)
Fig. S9. Details of the HMBC spectrum of vanderlandin (1)
Fig. S10. Details of the HMBC spectrum of vanderlandin (1)
Fig. S11. NOESY spectrum of vanderlandin (1)
Fig. S12. Details of the NOESY spectrum of vanderlandin (1)
Fig. S13. ¹ H NMR (600 MHz, CDCl ₃) of gravilin (3)
Fig. S14. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of gravilin (3)
Fig. S15. Details of the ¹³ C NMR (150 MHz, CDCl ₃) spectrum of gravilin (3)

Fig. S16.	COSY spectrum of gravilin (3).	30
Fig. S17.	Details of the COSY spectrum of gravilin (3).	31
Fig. S18.	HSQC spectrum of gravilin (3)	32
Fig. S19.	Details of the HSQC spectrum of gravilin (3).	33
Fig. S20.	HMBC spectrum of gravilin (3)	34
Fig. S21.	Details of the HMBC spectrum of gravilin (3).	35
Fig. S22.	Details of the HMBC spectrum of gravilin (3).	36
Fig. S23.	NOESY spectrum of gravilin (3).	37
Fig. S24.	Details of the NOESY spectrum of gravilin (3)	. 38
Fig. S25.	1 H NMR (600 MHz, CDCl ₃) spectrum of monoalkylmonoacylglycerol 4	. 39
Fig. S26.	¹³ C NMR (150 MHz, CDCl ₃) spectrum of monoalkylmonoacylglycerol 4	. 40
Fig. S27.	COSY spectrum of monoalkylmonoacylglycerol 4 .	. 41
Fig. S28.	Details of the COSY spectrum of monoalkylmonoacylglycerol 4	. 42
Fig. S29.	Details of the COSY spectrum of monoalkylmonoacylglycerol 4	43
Fig. S30.	HSQC spectrum of monoalkylmonoacylglycerol 4	. 44
Fig. S31.	Details of the HSQC spectrum of monoalkylmonoacylglycerol 4.	. 45
Fig. S32.	Details of the HSQC spectrum of monoalkylmonoacylglycerol 4.	. 46
Fig. S33.	HMBC spectrum of monoalkylmonoacylglycerol 4	. 47
Fig. S34.	Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.	. 48
Fig. S35.	Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.	. 49
Fig. S36.	Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.	. 50
Fig. S37.	Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.	. 51
Fig. S38.	Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.	. 52
Fig. S39.	NOESY spectrum of monoalkylmonoacylglycerol 4	53
Fig. S40.	Details of the NOESY spectrum of monoalkylmonoacylglycerol 4	. 54
Fig. S41.	Details of the NOESY spectrum of monoalkylmonoacylglycerol 4	. 55
Fig. S42.	¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 5 .	56
Fig. S43.	¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 5	57
Fig. S44.	Details of the ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 5	. 58
Fig. S45.	COSY spectrum of compound 5.	59
Fig. S46.	Details of the COSY spectrum of compound 5	60
Fig. S47.	Details of the COSY spectrum of compound 5	61
Fig. S48.	HSQC spectrum of compound 5	62
Fig. S49.	Details of the HSQC spectrum of compound 5.	63
Fig. S50.	HMBC spectrum of compound 5	64

Fig. S51.	Details of the HMBC spectrum of compound 5.	65
Fig. S52.	Details of the HMBC spectrum of compound 5 .	66
Fig. S53.	Details of the HMBC spectrum of compound 5 .	67
Fig. S54.	NOESY spectrum of compound 5	68
Fig. S55.	Details of the NOESY spectrum of compound 5.	69
Fig. S56.	Details of the NOESY spectrum of compound 5.	70
Fig. S57.	¹ H NMR (600 MHz, CDCl ₃) spectrum of isodecaryiol (9)	71
Fig. S58.	¹³ C NMR (150 MHz, CDCl ₃) spectrum of isodecaryiol (9).	72
Fig. S59.	Details of the ¹³ C NMR (150 MHz, CDCl ₃) spectrum of isodecaryiol (9)	73
Fig. S60.	COSY spectrum of isodecaryiol (9).	74
Fig. S61.	Details of the COSY spectrum of isodecaryiol (9).	75
Fig. S62.	HSQC spectrum of isodecaryiol (9).	76
Fig. S63.	Details of the HSQC spectrum of isodecaryiol (9).	77
Fig. S64.	HMBC spectrum of isodecaryiol (9).	78
Fig. S65.	Details of the HMBC spectrum of isodecaryiol (9)	79
Fig. S66.	Details of the HMBC spectrum of isodecaryiol (9)	80
Fig. S67.	Details of the HMBC spectrum of isodecaryiol (9)	81
Fig. S68.	NOESY spectrum of isodecaryiol (9)	82
Fig. S69.	Details of the NOESY spectrum of isodecaryiol (9).	83
Fig. S70.	Details of the NOESY spectrum of isodecaryiol (9).	84
Fig. S71.	X-ray crystal structure of isodecaryiol (9): Fragment of the crystal packing showing the 12	
symmetr	y-independent molecules A–L	85
Antimala	iria Assay	86
Reference	es	87

Position	δ_н (<i>J</i> in Hz)	δ _c ^a	COSY ^b	NOESY ^b	HMBC ^{b,c}
1		89.10, C			2α, 2β, 3α, 3β, 5, 9α, 9β, 14
2α	1.85 ddd (13.7, 8.8, 3.7)		2β, 3α, 3β	2β, 3α	2a 20 15
2β	1.97 ddd (13.7, 8.9, 7.6)	34.37, CH ₂	2α, 3α, 3β	2α	3u, 3p, 15
3α	1.78 dt (13.4, 8.0)		2α, 2β, 3β	2α, 3β, 15	2 a 20 15
3β	2.07 ddd (13.4, 7.5, 3.7)	54.40, CH ₂	2α, 2β, 3α	3α	2u, 2p, 15
4		90.27 <i>,</i> C			2α, 2β, 3β, 5, 15
5	6.12 s	124.33, CH		3α, 11, 12, 13, 15	8α, 11
6		148.05, C			2α, 2β, 3α, 3β, 5, 15
7		83.46 <i>,</i> C			5, 8α, 8β, 9α, 9β, 11, 12, 13
8α	1.89 ddd (14.7, 11.9, 4.9)	20.61.04	8β, 9α, 9β	8β, 9α, 9β, 12, 13	E 0 ~ 0 R 10 11
8β	1.70 dddd (14.5, 5.3, 3.8, 0.6)	50.01, CH ₂	8α, 9α, 9β	8α, 9α, 9β, 12, 13	5, 90, 9p, 10, 11
9α	1.50 ddd (14.1, 11.9, 5.7)	27.01.04	8α, 8β, 9β	8α, 8β, 9β, 10	9 a 9 B 1 A
9β	1.41 dddd (14.1, 5.0, 3.7, 2.9)	27.91, CH ₂	8α, 8β, 9α	8α, 8β, 9α, 10, 14	δά, δρ, 14
10	1.90–1.96 m	38.50, CH	14	9α, 9β, 14	2β, 5, 8α, 8β, 9α, 9β, 14
11	1.88 sept (6.9)	35.52, CH	12, 13	5, 12, 13	5, 8β, 12, 13
12, 13	0.97 d (7.2), 0.99 d (6.8)	17.03, CH ₃	11	5, 8α, 8β, 11	11, 12, 13
14	1.06 d (7.2)	13.40, CH ₃	10	9β, 10	9α, 9β, 10
15	1.54 s	19.84, CH ₃		3α, 5	3α
ОН	7.38 s				

Table S1. NMR spectroscopic data of vanderlandin (1) recorded at 600 MHz (¹H) and 150 MHz (¹³C) in CDCl₃

^a Number of attached protons determined by the DEPT experiment. ^b Only selected signals are shown. ^c HMBC correlations are from carbon atoms (position) to protons.

Position	δ_н (<i>J</i> in Hz)	δ _c ^a	COSY ^b	NOESY ^b	HMBC ^{b,c}
1		157.33, C			
2α	2.48–2.56 m	22.75.04	2β, 3α, 3β, 11a, 11b	2β, 3α, 3β, 8, 12	2 x 2 B 0 10 11 - 11 h
2β	2.28 dd (15.1, 7.9)	55.75, CH ₂	2α, 3β, 11a, 11b	2α, 3α, 3β, 11a	30, 3p, 9, 10, 11a, 11b
3α	1.80 dd (13.3, 7.9)		2α, 3β, 11b	2α, 2β, 3β, 10, 12	20, 28, 0, 10
3β	1.58 m ^d	27.22, CH ₂	2α, 2β, 3α, 10	2α, 2β, 3α	20, 20, 9, 10
4		43.14, C			3α, 3β, 5, 6β, 8, 10, 12
5	1.52 m ^d	42.19, CH ₂		6α, 9, 10, 12	6α, 6β, 7, 8, 10, 12
6α	1.51 m ^d		6β	5, 6β, 12, 13, 14	5 7 8 15h
6β	1.86–1.92 m	29.95, CH ₂	6α, 7	6α, 3β/7, 9, 10, 14	5, 7, 8, 150
7	1.62 m ^d	55.22, CH	6β, 8, 13	6β, 9, 13, 14	6α, 6β, 9, 13, 14, 15a, 15b
8	1.54 m ^d	55.29 <i>,</i> CH	7, 9	2α, 10, 12, 13	9, 10, 12
9	2.42 dd (6.9, 3.9)	48.04, CH	8, 10, 11a, 11b	5, 6β, 7, 11b	2α, 3α, 3β, 10, 11a, 11b
10	2.32 t (7.5)	45.77, CH	3β, 9	3α, 5/8, 6β	2β, 3α, 3β, 5, 8, 9, 12
11a	4.70 s	102 76 CH	2α, 2β, 9	2β	
11b	4.73 s	105.70, CH ₂	2α, 2β, 3α, 9	9	
12	0.97 s	21.55, CH ₃		2α, 3α, 5/6α/8	3β, 5, 6α, 6β
13	1.10–1.15 m	36.38, CH	7, 14	6α, 7, 8, 14, 15a	6α, 6β, 7, 14, 15a, 15b, 16a, 16b
14	0.85 d (6.8)	17.87, CH ₃	13	6α, 6β, 7, 13, 15a, 15b, 16a, 16b	13, 15a, 15b
15a	1.49 m ^d	22.10 CH	15b, 16a, 16b	13, 14, 15b, 16a, 16b, 17	14 17 165 16b
15b	1.18–1.22 m	52.10, CH ₂	15a, 16a	14, 15a, 16a, 16b, 17	14, 17, 108, 100
16a	1.63 m ^d		15a, 15b, 16b, 17	14, 15a, 15b, 16b, 17	15a 15b 17
16b	1.31–1.37 m	20.45, CH ₂	15a, 16a, 17	14, 15a, 15b, 16a, 17	138, 130, 17
17	2.66 t (6.4)	64.70, CH	16a, 16b	15a, 15b, 16a, 16b, 19	15a, 15b, 16a, 16b, 19, 20
18		58.31, C			16a, 16b, 17, 19, 20
19	1.29 s	24.91, CH ₃		17	17, 20
20	1.24 s	18.69, CH ₃			19

Table S2. NMR spectroscopic data of gravilin (**3**) recorded at 600 MHz (¹H) and 150 MHz (¹³C) in CDCl₃

^a Number of attached protons determined by the DEPT experiment. ^b Only selected signals are shown. ^c HMBC correlations are from carbon atoms (position) to protons. ^d Chemical shift derived from the HSQC spectrum.

	gravilin (3)	lobophytumin F ¹	leptoclalin A ²	gravilin (3)	lobophytumin F 1	leptoclalin A ²	
Position	δ _н (<i>J</i> in Hz)	δ _н (<i>J</i> in Hz)	δ _н (<i>J</i> in Hz)	δ _c	δ _c	δ _c	
	(600 MHz, CDCl ₃)	(300 MHz, CDCl ₃)	(500 MHz, CDCl ₃)	(150 MHz, CDCl ₃)	(100 MHz, CDCl ₃)	(125 MHz, CDCl ₃)	
1				157.33	157.3	157.5	
2α	2.48–2.56 m	2.27 m	$2 E 4 m \cdot 2 20 m$	22 7E	22.7	7 22	
2β	2.28 dd (15.1, 7.9)	2.53 m	2.34 111, 2.20 111	55.75	55.7	55.7	
3α	1.80 dd (13.3, 7.9)	1.55 m	1 91 m· 1 50 m	22.22	27.2	ר דר	
3β	1.58 m ^a	1.92 m	1.01 III, 1.39 III	27.22	27.2	27.2	
4				43.14	43.2	43.1	
5	1.52 m ^a	1.57 m	1.50 m	42.19	42.0	42.0	
6α	1.51 m ^a	1.82 m	1 80 m· 1 55 m	20.02	20.8	20.7	
6β	1.86–1.92 m	1.60 m	1.05 m, 1.55 m	29.93	29.8	29.7	
7	1.62 m ^a	1.63 m	1.62 m	55.22	55.2	54.5	
8	1.54 m ^a	1.46 m	1.62 m	55.29	55.2	55.0	
9	2.42 dd (6.9, 3.9)	2.44 m	2.35 m	48.04	48.0	47.8	
10	2.32 t (7.5)	2.32 m	2.32 m	45.77	45.7	45.7	
11a	4.70 s	4.69 br s	4 74 ct 4 70 c	102 76	102.9	102 7	
11b	4.73 s	4.73 br s	4.74 5, 4.70 5	105.70	105.0	105.7	
12	0.97 s	0.99 s	1.00 s	21.55	21.4	21.6	
13	1.10–1.15 m	1.74 m	1.20 m	36.38	32.3	36.3	
14	0.85 d (6.8)	0.84 d (6.4)	0.83 d (6.5)	17.87	18.7	17.8	
15a	1.49 m ^a	2.43 dd (15.3, 2.7)	2.15 ddd (13.5, 3.5, 3.5);	22.10	10.8	20.2	
15b	1.18–1.22 m	2.12 m	1.74 m	52.10	49.8	50.2	
16a	1.63 m ^a		5 58 m	26 42	211 1	175.8	
16b	1.31–1.37 m		2.2011	20.45	211.1	123.0	
17	2.66 t (6.4)	2.24 d (6.6)	5.58 m	64.70	52.4	139.2	
18				58.31	24.5	70.7	
19	1.29 s	0.89 d (6.5)	1.31 s	24.91	22.5	29.9	
20	1.24 s	0.90 d (6.5)	1.31 s	18.69	22.6	29.8	

Table S3. Comparison of NMR spectroscopic data of gravilin (3), lobophytumin F,¹ and leptoclalin A^2

^a Chemical shift derived from the HSQC spectrum.

gravilin (**3**)

lobophytumin F

leptoclalin A

Position	δ_н (<i>J</i> in Hz)	δ _c ª	NOESY ^b	HMBC ^{b,c}	
1a	4.16 dd (11.7, 4.1)		2, 3a, 3b, OH		
1b	4.11 dd (11.7, 6.4)	65.50, CH ₂	2, 3a, 3b, OH	2, 3d, 3D, UH	
2	3.96–4.01 m	68.87, CH	1a, 1b, 3a, 3b, 2", OH	1a, 1b, 3a, 3b, OH	
3a	3.48 dd (9.8, 4.5)		1a, 1b, 2, 3b, OH	1a 1b 2 1" OU	
3b	3.41 dd (9.8, 6.4)	$/1.37, CH_2$	1a,1b, 2, 3a, OH	1a, 10, 2, 1 , OH	
1′		173.68, C		1a, 1b, 2', 3'	
2′	2.35 t (7.5)	33.53, CH ₂	3′, 4′, 5′	3', 4'	
3'	1.71 quint (7.5)	24.75, CH ₂	2′, 4′, 5′	2′, 4′	
4′	2.11 q (7.3)	26.53, CH ₂	2′, 3′, 7′	2′, 3′, 5′	
5′	5.29–5.42 m	128.59 <i>,</i> CH	2′, 3′	3′, 4′, 7′	
6', 8', 9', 11', 12'	5.29–5.42 m	127.86, 128.13, 128.25, 128.86, 128.93, CH			
7′, 13′	2.80 q (5.6)		7'/4', 13'/16'		
10'	2.83 t (6.0)	25.61–25.63, CH ₂			
14′	5.29–5.42 m	127.53 <i>,</i> CH		13′,16′	
15′	5.29–5.42 m	130.50, CH		13', 16', 17'	
16′	2.04 q (7.2)	27.22, CH ₂	13′, 17′	14′, 17′	
17′	1.32–1.37 m	29.32, CH ₂	16′	16′	
18′	1.26–1.32 m	31.52, CH ₂		16', 17', 19', 20'	
19′	1.26–1.32 m	22.57, CH ₂		17', 18', 20'	
20'	0.88 t (6.8)	14.07, CH ₃			
1″	3.42–3.46 m	71.78, CH ₂	2″	3a, 3b, 2", 3"	
2″	1.53–1.58 m	29.58–29.66, CH ₂	2, 1″	1″	
3"	1.26–1.32 m	26.08, CH ₂		1", 2", 4"	
4″	1.26–1.32 m	29.47, CH ₂		2″	
5''-15''	1.24 br s	29.58-29.66, CH ₂			
16"	1.24 br s	31.92, CH ₂		18"	
17″	1.26–1.32 m	22.69, CH ₂		18″	
18"	0.87 t (7.2)	14.11, CH ₃			
ОН	2.45 d (4.5)		1a, 1b, 2, 3a, 3b		

Table S4. NMR spectroscopic data for 1-O-arachidonoyl-3-O-stearylglycerol (4) recorded at 600 MHz (¹H) and 150 MHz (¹³C) in CDCl₃

^a Number of attached protons determined by the DEPT experiment. ^b Only selected signals are shown. ^c HMBC correlations are from carbon atoms (position) to protons.

Position	δ_н (<i>J</i> in Hz)	δ _c ^a	NOESY ^b	HMBC ^{b,c}
1	1.74 s	25.72, CH₃	3	3, 17
2		135.39 or 135.23, C		1, 4, 17
3	5.30 br t (7.2)	116.09, CH	1, 4	1, 4, 17
4	3.12 d (6.8)	41.00, CH ₂	3, 6, 8, 17, 18	3
5		213.13, C		1, 4, 6, 7b, 17, 18
6	2.48–2.58 m	45.64, CH	4, 7b, 8, 18	7a, 7b, 8, 18
7a	1.57–1.61 m		7b, 9, 18	
7b	1.27–1.30 m	52.52, CH ₂	6, 7a, 9, 18	0, 0, 9, 10
8	1.30–1.34 m	25.45, CH₂	4, 6, 9, 18	6, 7b, 9
9	1.93 t (7.1)	39.55, CH₂	7a, 7b, 8	7a, 7b, 8, 11
10		135.23 or 135.39, C		8, 9, 12, 19
11	5.07–5.14 m	124.45, CH	12, 13	9, 12, 13
12	2.02–2.07 m	22.65, CH₂	11, 19, 20	11
13	1.57–1.61 m	42.05, CH ₂	11, 20	11, 12, 15, 20, 21
14		73.45, C		12, 13, 15, 16, 20, 21, 22
15, 21	5.90 dd (17.3, 10.9)	145.00, CH	20	13, 16, 20, 22
16a, 22a	5.20 d (17.3)	111 70 CH	20	20
16b, 22b	5.05 d (10.9)	111.70, CH ₂		20
17	1.61 s	18.07, CH ₃	4	1, 3
18	1.05 d (6.8)	16.44, CH ₃	4, 6, 7a, 7b, 8	6, 7a, 7b
19	1.56 s	15.84, CH ₃	12	9, 11, 12
20	1.27 s	27.88, CH ₃	12, 13, 15, 16a, 21, 22a	15, 21

Table S5. NMR data of compound 5 recorded at 600 MHz (1 H) and 150 MHz (13 C) in CDCl₃

^a Number of attached protons determined by the DEPT experiment. ^b Only selected signals are shown. ^c HMBC correlations are from carbon atoms (position) to protons.

Position	from S. gravis	(±)-(6 <i>E</i> ,10 <i>E</i>)-geranyllinalool
	$\delta_{C}{}^{a}$	δ_{c}^{b}
1	111.67	111.68
2	145.05	145.06
3	73.49	73.49
4	42.06	42.07
5	22.71	22.72
6	124.19	124.21
7	135.61	135.58
8	39.69	39.72
9	26.55	26.56
10	124.09	124.11
11	135.05	135.04
12	39.71	39.70
13	26.75	26.75
14	124.38	124.39
15	131.27	131.25
16	25.69	25.71
17	27.90	27.88
18	16.03	16.04
19	16.00	16.01
20	17.69	17.69

 Table S6.
 ¹³C NMR spectroscopic data of (+)-(3S,6E,10E)-geranyllinalool (6)

^a Spectrum recorded at 150 MHz in $CDCl_3$. ^b Spectrum recorded at 50 MHz in $CDCl_3$. ^c (±)-(6*E*,10*E*)-geranyllinalool after separation from other *E*,*Z*-isomers by chromatography on silica gel.

Position	from Sinularia gravis	from <i>Litophyton arboreum</i> ⁴
	δ_{C} (150 MHz, CDCl ₃)	δ_{C} (125 MHz, CDCl ₃)
1	48.45	48.5
2	28.44	28.5
3	125.94	125.9
4	133.37	134.4
5	38.82	38.8
6	24.65	24.7
7	125.76	125.8
8	133.06	133.0
9	39.40	39.4
10	24.00	24.0
11	124.98	125.0
12	134.04	134.0
13	37.70	37.7
14	28.27	28.3
15	73.97	73.9
16	27.65	27.7
17	27.50	27.5
18	15.56	15.6
19	15.30	15.3
20	15.56	15.6

Table S7. ¹³C NMR spectroscopic data of (-)-(R)-nephthenol (7)

Position	from Sinularia gravis	from <i>Sinularia gibberosa</i> ⁵	from Sinularia gravis	from Sinularia gibberosa ⁵
	(600 MHz, CDCl ₃)	(500 MHz, CDCl ₃)	δ_{C} (150 MHz, CDCl ₃)	$δ_c$ (75 MHz, CDCl ₃)
	δ _H (<i>J</i> in Hz)	δ _H (J in Hz)		
1			148.45	148.5
2	5.98 d (10.9)	5.99 d (10.5)	118.32	118.4
3	5.75 br dd (10.5, 1.7)	5.76 d (10.5)	119.52	119.6
4			136.78	136.8
5a	2.22–2.28 m	2.10 m	20.22	20 /
5b	2.13–2.19 m	2.10 111	30.35	50.4
6	2.22–2.28 m	2.22 m	25.96	25.0
7	5.10 br t (6.4)	5.11 br dd (5.5, 5.5)	126.90	127.0
8			133.64	133.7
9a	2.22–2.28 m	2.26 m	26.45	26 E
9b	2.04–2.09 m	2.09 m	50.45	50.5
10a	1.82–1.89 m	1.86 dddd (13.5, 13.5, 7.5, 3.5)	24.12	24.2
10b	1.45–1.52 m	1.50 dddd (13.5, 13.5, 6.0, 3.5)	24.12	24.2
11	3.18 t (6.4)	3.19 dd (7.0, 7.0)	58.60	58.7
12			59.98	60.0
13a	1.97 dd (15.4, 4.5)	1.98 dd (10.5, 5.0)	12 15	10.0
13b	2.10 dd (15.4, 7.5)	2.11 dd (10.5, 7.0)	42.15	42.2
14	4.72 br t (6.0)	4.73 dd (7.0, 5.0)	65.76	65.8
15	2.66 sept (6.8)	2.67 sept (6.5)	27.63	27.7
16	1.06 d (6.8)	1.07 d (6.5)	24.22	24.3
17	1.08 d (6.8)	1.09 d (6.5)	23.79	23.9
18	1.73 d (0.8)	1.74 s	17.26	17.3
19	1.58 d (0.8)	1.59 s	15.02	15.1
20	1.29 s	1.30 s	19.44	19.5
ОН	2.21 br s			

Table S8. ¹H and ¹³C NMR spectroscopic data of 11,12-epoxysarcophytol A (8)

Position	¹³ C NMR				
	9	10	10		
	from S. gravis	from S. decaryi ⁶	from <i>Nephthea</i> sp. ⁷		
	δ_{c} (150 MHz, CDCl ₃)	δ _c (22.6 MHz)	δ_{c} (150 MHz, CDCl ₃)		
1	39.97	40.0	39.9		
2	28.93	29.0	28.8		
3	70.40	70.4	70.3		
4	76.79	77.0	76.8		
5	38.06	38.2	37.9		
6	23.76	23.8	23.6		
7	127.70	127.9	127.7		
8	132.59	133.0	132.1		
9	39.30	36.5	39.2		
10	25.27	25.3	25.1		
11	128.08	128.6	128.0		
12	133.02	132.6	132.6		
13	36.42	39.4	36.3		
14	25.19	25.3	25.2		
15	75.26	75.2	75.1		
16	29.61	22.3	29.5		
17	22.25	29.7	22.2		
18	24.22	24.3	24.2		
19	14.82	15.2	14.8		
20	15.20	14.8	15.0		
mp [° C]	94.0–94.5	126-128.5	oil		
[α] _D (Τ [° <mark>C</mark>])	+14.0 (20, <i>c</i> 0.1, MeOH)	+69 (24, <i>c</i> 1.3, CHCl ₃)	+27.2 (20 <i>, c</i> 0.01)		

Position	¹ H NMR		
	9	10	10
	from <i>Sinularia gravis</i>	from Sarcophyton decaryi 6	from <i>Nephthea</i> sp. ⁷
	δ_{H} (600 MHz, CDCl ₃)	δ _н (270 MHz)	$δ_H$ (600 MHz, CDCl ₃)
1	1.58 tt (11.6, 1.9)	1.60 ddt (11.5, 3.0, 2.0)	
2α	1.23–1.32 m	1.28 dt (12.3, 11.5)	
2β	1.72 ddd (12.5, 5.4, 2.0)	1.72 ddd (12.3, 5.7, 2.0)	
3	4.20 dt (11.7, 5.9)	4.20 dd (12.3, 5.7)	4.20 dd (11.7, 5.6)
4	-	-	-
5a	1.81 ddd (14.5, 11.2, 3.3)	1.80 ddd (14.4, 10.5, 3.0)	
5b	1.53 ddd (14.4, 6.0, 3.3)	1.50 ddd (14.4, 10.0, 3.8)	
6a	2.62 dddd (15.2, 11.4, 9.9, 3.6)	2.62 dddd (15.7, 10.0, 10.5, 3.8)	2.62 br
6b	1.88 dddd (15.4, 7.6, 3.9, 1.9)	2.25 dddd (15.7, 10.0, 3.8, 3.0)	1.88 s
7	5.24 br d (9.4)	5.26 br dd (3.8, 10.0)	
8	-	-	-
9a	2.22–2.29 m	1.95 m	2.20 br
9b	2.16 ddd (14.0, 11.7, 3.8)		2.17 s
10a	2.48 dtd (15.0, 11.4, 3.6)	2.49 ddt (15.7, 11.4, 3.8)	
10b	1.99–2.03 m	2.20 m	
11	4.88 br d (11.6)	4.89 br dd (11.4, 4.0)	
12	Ι	Ι	-
13a+13b	2.03 br dd (8.9, 3.7)	2.03 dd (8.0, 3.8)	
14a	1.28–1.34 m	1.30 ddt (12.3, 8.0, 3.0)	
14b	0.89 ddt (13.3, 11.6, 3.6)	0.89 ddt (12.3, 11.5, 3.8)	
15	-	-	_
16	1.10 s		
17	1.12 s		
18	1.15 s		
19	1.56 s		
20	1.55 s		
OH	1.27 (br s)		

Table S10. Comparison of the 1 H NMR data of isodecaryiol (9) and decaryiol (10)

Fig. S1. ¹H NMR (600 MHz, CDCl₃) spectrum of vanderlandin (1).

Fig. S2. ¹³C NMR (150 MHz, CDCl₃) spectrum of vanderlandin (1).

Fig. S3. Details of the ¹³C NMR (150 MHz, CDCl₃) spectrum of vanderlandin (1).

Fig. S4. COSY spectrum of vanderlandin (1).

Fig. S5. Details of the COSY spectrum of vanderlandin (1).

Fig. S6. HSQC spectrum of vanderlandin (1).

Fig. S7. Details of the HSQC spectrum of vanderlandin (1).

Fig. S8. HMBC spectrum of vanderlandin (1).

Fig. S9. Details of the HMBC spectrum of vanderlandin (1).

Fig. S10. Details of the HMBC spectrum of vanderlandin (1).

¹⁵,,, HO

Fig. S11. NOESY spectrum of vanderlandin (1).

Fig. S12. Details of the NOESY spectrum of vanderlandin (1).

Fig. S13. ¹H NMR (600 MHz, CDCl₃) of gravilin (**3**).

Fig. S14. ¹³C NMR (150 MHz, CDCl₃) spectrum of gravilin (**3**).

Fig. S15. Details of the 13 C NMR (150 MHz, CDCl₃) spectrum of gravilin (3).

Fig. S16. COSY spectrum of gravilin (3).

Fig. S17. Details of the COSY spectrum of gravilin (3).

Fig. S18. HSQC spectrum of gravilin (3).

Fig. S19. Details of the HSQC spectrum of gravilin (3).

Fig. S20. HMBC spectrum of gravilin (3).

Fig. S21. Details of the HMBC spectrum of gravilin (3).

Fig. S22. Details of the HMBC spectrum of gravilin (3).

Fig. S23. NOESY spectrum of gravilin (3).

Fig. S24. Details of the NOESY spectrum of gravilin (3).

Fig. S25. ¹H NMR (600 MHz, CDCl₃) spectrum of monoalkylmonoacylglycerol **4**.

Fig. S26. ¹³C NMR (150 MHz, CDCl₃) spectrum of monoalkylmonoacylglycerol **4**.

Fig. S27. COSY spectrum of monoalkylmonoacylglycerol **4**.

Fig. S28. Details of the COSY spectrum of monoalkylmonoacylglycerol **4**.

Fig. S29. Details of the COSY spectrum of monoalkylmonoacylglycerol 4.

Fig. S30. HSQC spectrum of monoalkylmonoacylglycerol 4.

Fig. S31. Details of the HSQC spectrum of monoalkylmonoacylglycerol **4**.

4

Fig. S32. Details of the HSQC spectrum of monoalkylmonoacylglycerol 4.

Fig. S33. HMBC spectrum of monoalkylmonoacylglycerol **4**.

4

Fig. S34. Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.

Fig. S35. Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.

Fig. S36. Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.

Fig. S37. Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.

4

Fig. S38. Details of the HMBC spectrum of monoalkylmonoacylglycerol 4.

Fig. S39. NOESY spectrum of monoalkylmonoacylglycerol 4.

Fig. S40. Details of the NOESY spectrum of monoalkylmonoacylglycerol 4.

Fig. S41. Details of the NOESY spectrum of monoalkylmonoacylglycerol 4.

Fig. S42. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **5**.

Fig. S43. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 5.

Fig. S44. Details of the ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **5**.

Fig. S45. COSY spectrum of compound 5.

Fig. S46. Details of the COSY spectrum of compound 5.

Fig. S47. Details of the COSY spectrum of compound 5.

Fig. S48. HSQC spectrum of compound 5.

Fig. S49. Details of the HSQC spectrum of compound 5.

Fig. S50. HMBC spectrum of compound 5.

Fig. S51. Details of the HMBC spectrum of compound 5.

Fig. S52. Details of the HMBC spectrum of compound 5.

Fig. S53. Details of the HMBC spectrum of compound **5**.

Fig. S54. NOESY spectrum of compound **5**.

Fig. S55. Details of the NOESY spectrum of compound 5.

Fig. S56. Details of the NOESY spectrum of compound 5.

Fig. S57. ¹H NMR (600 MHz, CDCl₃) spectrum of isodecaryiol (9).

Fig. S58. ¹³C NMR (150 MHz, CDCl₃) spectrum of isodecaryiol (9).

Fig. S59. Details of the ¹³C NMR (150 MHz, CDCl₃) spectrum of isodecaryiol (9).

S74

Fig. S61. Details of the COSY spectrum of isodecaryiol (9).

Fig. S62. HSQC spectrum of isodecaryiol (9).

ppm

20

- 40

- 60

- 80

-100

- 120

ppm

1.0

10

.

-

-

Fig. S63. Details of the HSQC spectrum of isodecaryiol (9).

Fig. S65. Details of the HMBC spectrum of isodecaryiol (9).

Fig. S66. Details of the HMBC spectrum of isodecaryiol (9).

Fig. S67. Details of the HMBC spectrum of isodecaryiol (9).

Fig. S68. NOESY spectrum of isodecaryiol (9).

Fig. S69. Details of the NOESY spectrum of isodecaryiol (9).

Fig. S70. Details of the NOESY spectrum of isodecaryiol (9).

Fig. S71. X-ray crystal structure of isodecaryiol (9): Fragment of the crystal packing showing the 12 symmetry-independent molecules A–L.

Antimalaria Assay

Parasite culture. The chloroquine resistant strain (FCM29) of *P. falciparum* was provided by Mr. Michel Ratsimbason, Centre National d'Application de Recherche Pharmaceutique (CNARP), Antananarivo, Madagascar. The strain was maintained *in vitro* by using the Trager and Jensen's method reported earlier.^{8, 9} The culture media consisted of standard RPMI 1640 (Sigma, St. Louis, MO) supplemented with 10% heat-inactivated (56 °C, 1 h) human type O+ serum, 25 mM NaHCO₃, 2 mM glutamine, and 1 M HEPES (Sigma, St. Louis, MO). The culture was maintained in type AB+ human red blood cell suspensions collected from healthy local donors and prepared in citrate-phosphate-dextrose anticoagulant (Sigma, St. Louis, MO) at a hematocrit of 2%. The parasite density was maintained below 2% parasitemia under an atmosphere of a gas mixture containing CO₂ (5%), O₂ (5%), and N₂ (90%) and at 37 °C. For each experiment the sample of stock sorbitol-synchronized culture was further diluted in culture medium containing sufficient non-infected type AB+ human erythrocytes to yield a final hematocrit of 2% and a parasitemia of 1%.

Fluorimetric susceptibility test. The synchronized ring form cultures (hematocrit 2% and parasitemia 1%) were used to test serial dilutions of extracts in 96-well culture plates. Culture of *P. falciparum* was placed in a humidified, air-sealed container, flushed with the gas mixture described above, and incubated at 37 °C. Parasites were allowed to grow for a 48-hour incubation period, after which a 150 μ L aliquot of culture was transferred to a new 96-well flat bottom plate. Fifty microliters of the fluorochrome mixture, which consists of PicoGreen® (Molecular Probes, Inc., Eugene, OR), 10 mM Tris-HCl, 1 mM EDTA, pH 7.5 (TE buffer), and 2% Triton X-100 diluted with double-distilled water, was then added to liberate and label the parasitic DNA. The plates were then incubated for 5–30 minutes in the dark. The fluorescence signal, measured as relative fluorescence units (RFU) was quantified with a fluorescence microplate reader (FLx 800; Bio-Tek Instruments, Inc., Winooski, VT) at 485/20 nm excitation and 528/20 nm emission. Simultaneously, the RFU from positive (quinine: IC₅₀ = 3.5 µg/mL) and negative (solvent, MeOH) control samples were also performed.

References

- 1. L. Li, L. Sheng, C.-Y. Wang, Y.-B. Zhou, H. Huang, X.-B. Li, J. Li, E. Mollo, M. Gavagnin and Y.-W. Guo, *J. Nat. Prod.*, 2011, **74**, 2089-2094.
- 2. T.-C. Tsai, Y.-J. Wu, J.-H. Su, W.-T. Lin and Y.-S. Lin, *Mar. Drugs*, 2013, **11**, 114-123.
- 3. M.-C. Blanc, P. Bradesi and J. Casanova, *Magn. Reson. Chem.*, 2005, 43, 176-179.
- 4. K. H. Shaker, M. Müller, M. A. Ghani, H.-M. Dahse and K. Seifert, *Chem. Biodiversity*, 2010, **7**, 2007-2015.
- 5. A. F. Ahmed, Z.-H. Wen, J.-H. Su, Y.-T. Hsieh, Y.-C. Wu, W.-P. Hu and J.-H. Sheu, *J. Nat. Prod.*, 2008, **71**, 179-185.
- 6. S. Carmely, A. Groweiss and Y. Kashman, J. Org. Chem., 1981, 46, 4279-4284.
- 7. H. I. Januar, E. Chasanah, C. A. Motti, D. M. Tapiolas, C. H. Liptrot and A. D. Wright, *Mar. Drugs*, 2010, **8**, 2142-2152.
- 8. W. Trager and J. Jensen, *Science*, 1976, **193**, 673-675.
- 9. W. Trager and J. B. Jensen, J. Parasitol., 2005, 91, 484-486.