Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Borondifluoride complexes of hemicurcuminoids as bio-inspired push-pull dyes for bioimaging

Eunsun Kim, Abdellah Felouat, Elena Zaborova, Jean-Charles Ribierre, Jeong Weon Wu,

Sébastien Senatore, Cédric Matthews, Pierre-François Lenne, Carole Baffert, Artak

Karapetyan, Michel Giorgi, Denis Jacquemin, Miguel Ponce-Vargas, Boris Le Guennic,

Frédéric Fages, Anthony D'Aléo*

E-mail: daleo@cinam.univ-mrs.fr

Supporting information

methoxyphenyl)-7-methylocta-1,4-dien-3-one)	
Figure NMR2. ¹³ C NMR spectrum of Lig(1-iPr) ((1E,4Z)-5-hydroxy-1-(4-p5	
methoxyphenyl)-7-methylocta-1,4-dien-3-one)	
Figure NMR3. ¹ H NMR spectrum of Lig(2-iPr) ((1E,4Z)-5-hydroxy-7-methyl-1- p6	
(4-(methylthio)phenyl)octa-1,4-dien-3-one)	
Figure NMR4. ¹³ C NMR spectrum of Lig(2-iPr) ((1E,4Z)-5-hydroxy-7-methyl-1- p6	
(4-(methylthio)phenyl)octa-1,4-dien-3-one)	
Figure NMR5. ¹ H NMR spectrum of Lig(2-Ph) ((1Z,4E)-1-hydroxy-5-(4- p7	
(methylthio)phenyl)-1-phenylpenta-1,4-dien-3-one)	
Figure NMR6. ¹³ C NMR spectrum of Lig(2-Ph) ((1Z,4E)-1-hydroxy-5-(4- p7	
(methylthio)phenyl)-1-phenylpenta-1,4-dien-3-one)	
Figure NMR7. ¹ H NMR spectrum of Lig(2-CF3) ((1E,4Z)-6,6,6-trifluoro-5- p8	
hydroxy-1-(4-(methylthio)phenyl)hexa-1,4-dien-3-one)	
Figure NMR8. ¹³ C NMR spectrum of Lig(2-CF₃) ((1E,4Z)-6,6,6-trifluoro-5- p8	
hydroxy-1-(4-(methylthio)phenyl)hexa-1,4-dien-3-one)	
Figure NMR9. ¹ H NMR spectrum of Lig(3-iPr) ((1E,4Z)-5-hydroxy-1-(6- p9	
methoxynaphthalen-2-yl)-7-methylocta-1,4-dien-3-one)	
Figure NMR10. ¹³ C NMR spectrum of Lig(3-iPr) ((1E,4Z)-5-hydroxy-1-(6- p9	
methoxynaphthalen-2-yl)-7-methylocta-1,4-dien-3-one)	
Figure NMR11. ¹ H NMR spectrum of Lig(3-Ph) ((1Z,4E)-1-hydroxy-5-(6- p10)	0
methoxynaphthalen-2-yl)-1-phenylpenta-1,4-dien-3-one)	
Figure NMR12. ¹³ C NMR spectrum of Lig(3-Ph) ((1Z,4E)-1-hydroxy-5-(6- p10)	0
methoxynaphthalen-2-yl)-1-phenylpenta-1,4-dien-3-one)	
Figure NMR13. ¹ H NMR spectrum of Lig(3-CF₃) ((1E,4Z)-6,6,6-trifluoro-5- p1	1
hydroxy-1-(6-methoxynaphthalen-2-yl)hexa-1,4-dien-3-one)	
Figure NMR14. ¹³ C NMR spectrum of Lig(3-CF₃) ((1E,4Z)-6,6,6-trifluoro-5- p1	1
hydroxy-1-(6-methoxynaphthalen-2-yl)hexa-1,4-dien-3-one)	
Figure NMR15. ¹ H NMR spectrum of Lig(4-iPr) ((1E,4Z)-1-(9-ethyl-9H-	2
carbazol-3-yl)-5-hydroxy-7-methylocta-1,4-dien-3-one)	
Figure NMR16. ¹³ C NMR spectrum of Lig(4-iPr) ((1E,4Z)-1-(9-ethyl-9H-carbazol- p12	2
3-yl)-5-hydroxy-7-methylocta-1,4-dien-3-one)	
Figure NMR17. ¹ H NMR spectrum of Lig(4-Ph) ((1Z,4E)-1-hydroxy-5-(9-methyl-p1.	3
9H-carbazol-3-yl)-1-phenylpenta-1,4-dien-3-one)	
Figure NMR18. ¹³ C NMR spectrum of Lig(4-Ph) ((1Z,4E)-1-hydroxy-5-(9-p1)	3
methyl-9H-carbazol-3-yl)-1-phenylpenta-1,4-dien-3-one)	
Figure NMR19. ¹ H NMR spectrum of $Lig(4-CF_3)$ ((1E,4Z)-1-(9-ethyl-9H-	4
carbazol-3-yl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)	
Figure NMR20. ¹³ C NMR spectrum of Lig(4-CF₃) ((1E,4Z)-1-(9-ethyl-9H-	4
carbazol-3-yl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)	
Figure NMR21. ¹ H NMR spectrum of Lig(5-iPr) ((1E,4Z)-5-hydroxy-7-methyl-1- p1:	5
(pyren-1-yl)octa-1,4-dien-3-one)	
Figure NMR22. ¹³ C NMR spectrum of Lig(5-iPr) ((1E.4Z)-5-hydroxy-7-methyl-	5
1-(pyren-1-yl)octa-1,4-dien-3-one)	

FigureNMR23. ¹ H NMR spectrum of Lig(5-Ph) ((1Z,4E)-1-hydroxy-1-phenyl-5-	p16
(pyren-1-yl)penta-1,4-dien-3-one)	
Figure NMR24. ¹³ C NMR spectrum of Lig(5-Ph) ((1Z,4E)-1-hydroxy-1-phenyl-5-	p16
(pyren-1-yl)penta-1,4-dien-3-one)	
Figure NMR25. ¹ H NMR spectrum of Lig(5-CF ₃) ((1E,4Z)-6,6,6-trifluoro-5-	p17
hydroxy-1-(pyren-1-yl)hexa-1,4-dien-3-one)	
Figure NMR26. ¹³ C NMR spectrum of Lig(5-CF ₃) ((1E,4Z)-6,6,6-trifluoro-5-	p17
hydroxy-1-(pyren-1-yl)hexa-1,4-dien-3-one)	
Figure NMR27. ¹ H NMR spectrum of Lig(6-iPr) ((1E,4Z)-1-(4-	p18
(dimethylamino)phenyl)-5-hydroxy-7-methylocta-1,4-dien-3-one)	
Figure NMR28. ¹³ C NMR spectrum of Lig(6-iPr) ((1E,4Z)-1-(4-	p18
(dimethylamino)phenyl)-5-hydroxy-7-methylocta-1,4-dien-3-one)	
Figure NMR29. ¹ H NMR spectrum of Lig(6-CF ₃) ((1E,4Z)-1-(4-	p19
(dimethylamino)phenyl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)	
Figure NMR30. ¹³ C NMR spectrum of Lig(6-CF ₃) ((1E,4Z)-1-(4-	p19
(dimethylamino)phenyl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)	
Figure NMR31. ¹ H NMR spectrum of 1-iPr ((E)-2,2-difluoro-4-isobutyl-6-(4-	p20
methoxystyryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR32. ¹³ C NMR spectrum of 1-iPr ((E)-2,2-difluoro-4-isobutyl-6-(4-	p20
methoxystyryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR33. ¹ H NMR spectrum of 1-CF ₃ ((E)-2,2-difluoro-6-(4-	p21
methoxystyryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR34. ¹³ C NMR spectrum of 1-CF ₃ ((E)-2,2-difluoro-6-(4-	p21
methoxystyryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR35. ¹ H NMR spectrum of 2-iPr ((E)-2,2-difluoro-4-isobutyl-6-(4-	p22
(methylthio)styryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR36. ¹³ C NMR spectrum of 2-iPr ((E)-2,2-difluoro-4-isobutyl-6-(4-	p22
(methylthio)styryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR37. ¹ H NMR spectrum of 2-Ph ((E)-2,2-difluoro-6-(4-	p23
(methylthio)styryl)-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR38. ¹ H NMR spectrum of 2-CF ₃ ((E)-2,2-difluoro-6-(4-	p23
(methylthio)styryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR39. ¹³ C NMR spectrum of $2-CF_3((E)-2,2-difluoro-6-(4-$	p24
(methylthio)styryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR40. ¹ H NMR spectrum of 3-iPr ((E)-2,2-difluoro-4-isobutyl-6-(2-(6-	p24
methoxynaphthalen-2-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR41. ¹³ C NMR spectrum of 3-iPr ((E)-2,2-difluoro-4-isobutyl-6-(2-(6-	p25
methoxynaphthalen-2-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR42. ¹ H NMR spectrum of 3-Ph ((E)-2,2-difluoro-6-(2-(6-	p25
methoxynaphthalen-2-yl)vinyl)-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR43. ¹ H NMR spectrum of 3-CF ₃ ((E)-2,2-difluoro-6-(2-(6-	p26
methoxynaphthalen-2-yl)vinyl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-	
2-uide)	

Figure NMR44. ¹ H NMR spectrum of 4-iPr ((E)-6-(2-(9-ethyl-9H-carbazol-3-	p26
yl)vinyl)-2,2-difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR45. ¹³ C NMR spectrum of 4-iPr ((E)-6-(2-(9-ethyl-9H-carbazol-3-	p27
yl)vinyl)-2,2-difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR46. ¹ H NMR spectrum of 4-Ph ((E)-2,2-difluoro-6-(2-(9-methyl-9H-	p27
carbazol-3-yl)vinyl)-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR47. ¹ H NMR spectrum of 4-CF ₃ ((E)-6-(2-(9-ethyl-9H-carbazol-3-	p28
yl)vinyl)-2,2-difluoro-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR48. ¹³ C NMR spectrum of 4-CF ₃ ((E)-6-(2-(9-ethyl-9H-carbazol-3-	p28
yl)vinyl)-2,2-difluoro-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR49. ¹ H NMR spectrum of 5-iPr ((E)-2,2-difluoro-4-isobutyl-6-(2-	p29
(pyren-1-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	-
Figure NMR50. ¹³ C NMR spectrum of 5-iPr ((E)-2,2-difluoro-4-isobutyl-6-(2-	p29
(pyren-1-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	-
Figure NMR51. ¹ H NMR spectrum of 5-Ph ((E)-2,2-difluoro-4-phenyl-6-(2-(pyren-	p30
1-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	-
Figure NMR52. ¹ H NMR spectrum of 5-CF ₃ ((E)-2,2-difluoro-6-(2-(pyren-1-	p30
yl)vinyl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	1
Figure NMR53. ¹ H NMR spectrum of 6-iPr ((E)-6-(4-(dimethylamino)styryl)-2,2-	p31
difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure NMR54. ¹³ C NMR spectrum of 6-iPr ((E)-6-(4-(dimethylamino)styryl)-2,2-	p31
difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)	-
Figure NMR55. ¹ H NMR spectrum of 6-CF ₃ ((E)-6-(4-(dimethylamino)styryl)-2,2-	p32
difluoro-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)	
Figure S1. The molecular structure (ORTEP) of compound Lig(4-CF ₃) with	p32
displacement ellipsoids drawn at the 50% probability level.	
Figure S2. The molecular structure (ORTEP) of compound 2-Ph with displacement	p33
ellipsoids drawn at the 50% probability level.	-
Figure S3. The molecular structure (ORTEP) of compound 3-CF ₃ with displacement	p33
ellipsoids drawn at the 50% probability level.	-
Figure S4. The molecular structure (ORTEP) of compound 5-iPr with displacement	p33
ellipsoids drawn at the 50% probability level.	
Figure S5. The molecular structure (ORTEP) of compound 5-CF ₃ with displacement	p34
ellipsoids drawn at the 50% probability level.	-
Figure S6. a/ UV/visible electronic absorption spectra and b/ fluorescence spectra of	p34
1-iPr, 2-iPr, 3-iPr, 4-iPr, 5-iPr and 6-iPr exciting in the lowest transition in energy	
in dichloromethane solution.	
Figure S7. a/ UV/visible electronic absorption spectra and b/ fluorescence spectra of	p35
1-CF ₃ , 2-CF ₃ , 3-CF ₃ , 4-CF ₃ , 5-CF ₃ and 6-CF ₃ exciting in the lowest transition in	
energy in dichloromethane solution.	
Figure S8. Lippert-Mataga slopes for a/ 4-iPr, 4-Ph and 4-CF ₃ ; b/ 1-Ph (), 2-Ph,	p35
3-Ph , 4-Ph , 5-Ph and 6-Ph .	
Figure S9. UV/visible absorption spectrum of particles in water and in DCM and	p35-
emission spectrum of particles in water and in DCM.	p36

Figure S10. a/ One-photon (λ^{exc} = 500nm; 525 < λ^{det} < 700nm); b/ Fluorescence p37 spectrum of **4-Ph** in dibutylether solution (—, black solid line) and fluorescence spectrum measured into cells (**=**, red squares).

Table S1. Selected crystal data for compounds of Lig(4-CF₃), 2-Ph, 3-CF₃, 5-iPr p38 and 5-CF₃.

Table S2. Half-life $(t_{1/2})$ and kinetic rates (k_{obs}) for solvolysis of the 2'- p39 hydroxychalcone boron difluoride complexes with $[BF_2] = 7.5 \times 10^{-6}$ M in presence of 5% ethanol in DCM or in pure ethanol

Table S3. Photophysical properties of compounds **4-iPr**, **4-Ph** and **4-CF**₃ in solvents p39 of different polarity at room temperature

Table S4. Photophysical properties of compounds **5-iPr**, **5-Ph** and **5-CF**₃ in solvents p40 of different polarity at room temperature

Table S5. Theoretical electronic absorption data obtained for hemi-curcuminoidesp40in DCM solution.

Table S6. Spectroscopic data and photophysical properties of all compounds onp41solid powder at room temperature.

Figure NMR1. ¹H NMR spectrum of **Lig(1-iPr)** ((1E,4Z)-5-hydroxy-1-(4-methoxyphenyl)-7-methylocta-1,4-dien-3-one)

Figure NMR2. ¹³C NMR spectrum of **Lig(1-iPr)** ((1E,4Z)-5-hydroxy-1-(4-methoxyphenyl)-7-methylocta-1,4-dien-3-one)

Figure NMR3. ¹H NMR spectrum of **Lig(2-iPr)** ((1E,4Z)-5-hydroxy-7-methyl-1-(4-(methylthio)phenyl)octa-1,4-dien-3-one)

Figure NMR4. ¹³C NMR spectrum of **Lig(2-iPr)** ((1E,4Z)-5-hydroxy-7-methyl-1-(4-(methylthio)phenyl)octa-1,4-dien-3-one)

Figure NMR5. ¹H NMR spectrum of **Lig(2-Ph)** ((1Z,4E)-1-hydroxy-5-(4-(methylthio)phenyl)-1-phenylpenta-1,4-dien-3-one)

Figure NMR6. ¹³C NMR spectrum of **Lig(2-Ph)** ((1Z,4E)-1-hydroxy-5-(4-(methylthio)phenyl)-1-phenylpenta-1,4-dien-3-one)

Figure NMR7. ¹H NMR spectrum of **Lig(2-CF3)** ((1E,4Z)-6,6,6-trifluoro-5-hydroxy-1-(4-(methylthio)phenyl)hexa-1,4-dien-3-one)

Figure NMR8. ¹³C NMR spectrum of **Lig(2-CF₃)** ((1E,4Z)-6,6,6-trifluoro-5-hydroxy-1-(4-(methylthio)phenyl)hexa-1,4-dien-3-one)

Figure NMR9. ¹H NMR spectrum of **Lig(3-iPr)** ((1E,4Z)-5-hydroxy-1-(6-methoxynaphthalen-2-yl)-7-methylocta-1,4-dien-3-one)

Figure NMR10. ¹³C NMR spectrum of **Lig(3-iPr)** ((1E,4Z)-5-hydroxy-1-(6-methoxynaphthalen-2-yl)-7-methylocta-1,4-dien-3-one)

Figure NMR11. ¹H NMR spectrum of **Lig(3-Ph)** ((1Z,4E)-1-hydroxy-5-(6-methoxynaphthalen-2-yl)-1-phenylpenta-1,4-dien-3-one)

Figure NMR12. ¹³C NMR spectrum of **Lig(3-Ph)** ((1Z,4E)-1-hydroxy-5-(6-methoxynaphthalen-2-yl)-1-phenylpenta-1,4-dien-3-one)

Figure NMR13. ¹H NMR spectrum of **Lig(3-CF₃)** ((1E,4Z)-6,6,6-trifluoro-5-hydroxy-1-(6-methoxynaphthalen-2-yl)hexa-1,4-dien-3-one)

Figure NMR14. ¹³C NMR spectrum of **Lig(3-CF₃)** ((1E,4Z)-6,6,6-trifluoro-5-hydroxy-1-(6-methoxynaphthalen-2-yl)hexa-1,4-dien-3-one)

Figure NMR15. ¹H NMR spectrum of **Lig(4-iPr)** ((1E,4Z)-1-(9-ethyl-9H-carbazol-3-yl)-5-hydroxy-7-methylocta-1,4-dien-3-one)

Figure NMR16. ¹³C NMR spectrum of **Lig(4-iPr)** ((1E,4Z)-1-(9-ethyl-9H-carbazol-3-yl)-5-hydroxy-7-methylocta-1,4-dien-3-one)

Figure NMR17. ¹H NMR spectrum of **Lig(4-Ph)** ((1Z,4E)-1-hydroxy-5-(9-methyl-9H-carbazol-3-yl)-1-phenylpenta-1,4-dien-3-one)

Figure NMR18. ¹³C NMR spectrum of **Lig(4-Ph)** ((1Z,4E)-1-hydroxy-5-(9-methyl-9H-carbazol-3-yl)-1-phenylpenta-1,4-dien-3-one)

Figure NMR19. ¹H NMR spectrum of **Lig(4-CF**₃) ((1E,4Z)-1-(9-ethyl-9H-carbazol-3-yl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)

Figure NMR20. ¹³C NMR spectrum of **Lig(4-CF₃)** ((1E,4Z)-1-(9-ethyl-9H-carbazol-3-yl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)

Figure NMR21. ¹H NMR spectrum of **Lig(5-iPr)** ((1E,4Z)-5-hydroxy-7-methyl-1-(pyren-1-yl)octa-1,4-dien-3-one)

Figure NMR22. ¹³C NMR spectrum of **Lig(5-iPr)** ((1E,4Z)-5-hydroxy-7-methyl-1-(pyren-1-yl)octa-1,4-dien-3-one)

FigureNMR23. ¹H NMR spectrum of **Lig(5-Ph)** ((1Z,4E)-1-hydroxy-1-phenyl-5-(pyren-1-yl)penta-1,4-dien-3-one)

Figure NMR24. ¹³C NMR spectrum of **Lig(5-Ph**) ((1Z,4E)-1-hydroxy-1-phenyl-5-(pyren-1-yl)penta-1,4-dien-3-one)

Figure NMR25. ¹H NMR spectrum of **Lig(5-CF₃)** ((1E,4Z)-6,6,6-trifluoro-5-hydroxy-1-(pyren-1-yl)hexa-1,4-dien-3-one)

Figure NMR26. ¹³C NMR spectrum of **Lig(5-CF₃)** ((1E,4Z)-6,6,6-trifluoro-5-hydroxy-1-(pyren-1-yl)hexa-1,4-dien-3-one)

Figure NMR27. ¹H NMR spectrum of **Lig(6-iPr)** ((1E,4Z)-1-(4-(dimethylamino)phenyl)-5-hydroxy-7-methylocta-1,4-dien-3-one)

Figure NMR28. ¹³C NMR spectrum of **Lig(6-iPr)** ((1E,4Z)-1-(4-(dimethylamino)phenyl)-5-hydroxy-7-methylocta-1,4-dien-3-one)

Figure NMR29. ¹H NMR spectrum of **Lig(6-CF**₃) ((1E,4Z)-1-(4-(dimethylamino)phenyl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)

Figure NMR30. ¹³C NMR spectrum of **Lig(6-CF₃)** ((1E,4Z)-1-(4-(dimethylamino)phenyl)-6,6,6-trifluoro-5-hydroxyhexa-1,4-dien-3-one)

Figure NMR31. ¹H NMR spectrum of **1-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(4-methoxystyryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR32. ¹³C NMR spectrum of **1-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(4-methoxystyryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR33. ¹H NMR spectrum of **1-CF**₃ ((E)-2,2-difluoro-6-(4-methoxystyryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR34. ¹³C NMR spectrum of **1-CF**₃((E)-2,2-difluoro-6-(4-methoxystyryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR35. ¹H NMR spectrum of **2-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(4-(methylthio)styryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR36. ¹³C NMR spectrum of **2-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(4-(methylthio)styryl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR37. ¹H NMR spectrum of **2-Ph** ((E)-2,2-difluoro-6-(4-(methylthio)styryl)-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR38. ¹H NMR spectrum of **2-CF**₃ ((E)-2,2-difluoro-6-(4-(methylthio)styryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR39. ¹³C NMR spectrum of **2-CF**₃ ((E)-2,2-difluoro-6-(4-(methylthio)styryl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR40. ¹H NMR spectrum of **3-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(2-(6-methoxynaphthalen-2-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR41. ¹³C NMR spectrum of **3-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(2-(6-methoxynaphthalen-2-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR42. ¹H NMR spectrum of **3-Ph** ((E)-2,2-difluoro-6-(2-(6-methoxynaphthalen-2-yl)vinyl)-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR43. ¹H NMR spectrum of **3-CF**₃ ((E)-2,2-difluoro-6-(2-(6-methoxynaphthalen-2-yl)vinyl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR44. ¹H NMR spectrum of **4-iPr** ((E)-6-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)-2,2-difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR45. ¹³C NMR spectrum of **4-iPr** ((E)-6-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)-2,2-difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR46. ¹H NMR spectrum of **4-Ph** ((E)-2,2-difluoro-6-(2-(9-methyl-9H-carbazol-3-yl)vinyl)-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR47. ¹H NMR spectrum of **4-CF**₃ ((E)-6-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)-2,2-difluoro-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR48. ¹³C NMR spectrum of **4-CF**₃((E)-6-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)-2,2-difluoro-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR49. ¹H NMR spectrum of **5-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(2-(pyren-1-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR50. ¹³C NMR spectrum of **5-iPr** ((E)-2,2-difluoro-4-isobutyl-6-(2-(pyren-1-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR51. ¹H NMR spectrum of **5-Ph** ((E)-2,2-difluoro-4-phenyl-6-(2-(pyren-1-yl)vinyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR52. ¹H NMR spectrum of **5-CF₃** ((E)-2,2-difluoro-6-(2-(pyren-1-yl)vinyl)-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR53. ¹H NMR spectrum of **6-iPr** ((E)-6-(4-(dimethylamino)styryl)-2,2-difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR54. ¹³C NMR spectrum of **6-iPr** ((E)-6-(4-(dimethylamino)styryl)-2,2-difluoro-4-isobutyl-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure NMR55. ¹H NMR spectrum of **6-CF**₃ ((E)-6-(4-(dimethylamino)styryl)-2,2-difluoro-4-(trifluoromethyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide)

Figure S1. The molecular structure (ORTEP) of compound Lig(4-CF₃) with displacement ellipsoids drawn at the 50% probability level.

Figure S2. The molecular structure (ORTEP) of compound **2-Ph** with displacement ellipsoids drawn at the 50% probability level.

Figure S3. The molecular structure (ORTEP) of compound **3-CF**₃ with displacement ellipsoids drawn at the 50% probability level.

Figure S4. The molecular structure (ORTEP) of compound **5-iPr** with displacement ellipsoids drawn at the 50% probability level.

Figure S5. The molecular structure (ORTEP) of compound 5-CF₃ with displacement ellipsoids drawn at the 50% probability level.

Figure S6. a/ UV/visible electronic absorption spectra and b/ fluorescence spectra of 1-iPr (—), 2-iPr (—), 3-iPr (—), 4-iPr (—), 5-iPr (—) and 6-iPr (—) exciting in the lowest transition in energy in dichloromethane solution.

Figure S7. a/ UV/visible electronic absorption spectra and b/ fluorescence spectra of $1-CF_3$ (--), $2-CF_3$ (--), $3-CF_3$ (--), $4-CF_3$ (--), $5-CF_3$ (--) and $6-CF_3$ (--) exciting in the lowest transition in energy in dichloromethane solution. Note than $6-CF_3$ is not emissive.

Figure S8. Lippert-Mataga slopes for a/ **4-iPr** (—), **4-Ph** (—) and **4-CF₃** (—); b/ **1-Ph** (—), **2- Ph** (—), **3-Ph** (—), **4-Ph** (—), **5-Ph** (—) and **6-Ph** (—).

Figure S9. UV/visible absorption spectra of particles in water (—) and in DCM (—) and emission spectra of particles in water (—) and in DCM (—). Note that no emission was recorded for the particles of **5-Ph**.

Figure S10. a/ One-photon (λ^{exc} = 500nm; 525 < λ^{det} < 700nm); b/ Fluorescence spectrum of **4- Ph** in dibutylether solution (—, black solid line) and fluorescence spectrum measured into cells (**a**, red squares).

	Lig(4-CF ₃)	2-Ph	3-CF ₃	5-iPr	5-CF ₃
Formula	$C_{20}H_{16}F_3NO_2$	$C_{18}H_{15}BF_2O_2S$	$C_{17}H_{12}BF_5O_3$	$C_{25}H_{21}BF_2O_2$	$4C_{22}H_{12}BF_5O_{2.}3CH_2Cl_2$
M / g	359.34	344.17	370.08	402.23	428.92
Size / mm ³	0.2x0.2x0.18	0.4x0.2x0.18	0.2x0.18x0.12	0.3x0.18x0.04	0.26x0.14x0.04
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	P21/c	C2/c	P21/c	C2/c
<i>a /</i> Å	7.2632(2)	8.0580(2)	22.4771(8)	11.5387(4)	21.523(1)
<i>b</i> / Å	14.5322(4)	11.8497(3)	12.8997(8)	9.8453(4)	13.3264(9)
<i>c</i> / Å	16.5698(6)	17.4330(5)	15.6366(8)	19.8519(9)	14.604(1)
β / deg	91.431(1)	104.565(1)	132.732(5)	117.760(1)	95.233(7)
$V/Å^3$	1748.4	1611.09	3330.24	1995.65(14)	41.7132
Ζ	4	4	8	4	8
λ(Mo/ <i>Kα</i>) / Å	0.71073	0.71073	0.71073	0.71073	0.71073
<i>T</i> / K	293(2)	293(2)	293(2)	293(2)	293(2)
$Dc / g.cm^{-}$	1.365	1.419	1.476	1.339	1.366
θrange / deg	1.86-29.02	3.106-29.013	3.18-26.37	2.246-29.022	2.333-28.589
	0 < h < 9	0 < h < 10	0 < h < 28	0 < h < 15	0 < h < 28
hkl ranges	0 < k < 19	-16 < k < 0	0 < k < 16	0 < k < 12	0 < k < 17
	-22 < l < 22	-23 < l < 22	-19 < <i>l</i> < 14	-24 < l < 23	-18 < l < 18
Variable	238	217	264	271	289
Refln measured	16427	15748	15681	19127	19024
Refln $I > 2\sigma(I)$	4436	4145	3394	5138	5015
$ \begin{array}{c} R1 I > 2\sigma \\ (I) \end{array} $	0.0676	0.0501	0.0612	0.0796	0.111
R1 all data	0.1311	0.0964	0.1608	0.2017	0.2664
$w R2 I > 2\sigma(I)$	0.1843	0.1161	0.1417	0.2015	0.2749
wR2 all data	0.2309	0.1385	0.1897	0.2477	0.3379
Δρ (+/-) / e. Å ⁻³	0.341 / -0.281	0.174 / -0.243	0.155 / -0.156	0.434 / -0.47	0.26 / -0.354

Table S1. Selected crystal data for compounds of Lig(4-CF₃), 2-Ph, 3-CF₃, 5-iPr and 5-CF₃.

Table S2. Half-life $(t_{1/2})$ and kinetic rates (k_{obs}) for solvolysis of the hemicurcuminoide borondifluoride complexes with $[BF_2] = 7.5 \times 10^{-6} \text{ M}$ in presence of 5% ethanol in DCM or in pure ethanol

	5%]	EtOH	100% EtOH			
	<i>t</i> _{1/2} / min	k_{obs} / s ⁻¹	<i>t</i> _{1/2} / min	k_{obs} / s ⁻¹		
1-iPr	_a	_ ^a	521.5	2.2 x 10 ⁻⁵		
2-iPr	_ ^a	_ ^a	350	3.3 x 10 ⁻⁵		
3-iPr	_ ^a	_ ^a	355	3.25 x 10 ⁻⁵		
4-iPr	_ ^a	_ ^a	927	1.25 x 10 ⁻⁵		
5-iPr	_ ^a	_ ^a	167	6.9 x 10 ⁻⁵		
6-iPr	_ ^a	_ ^a	3071	3.8 x 10 ⁻⁶		
1-Ph	_ ^a	_ ^a	1260	9.2 x 10 ⁻⁶		
2-Ph	_ ^a	_ ^a	567.5	2.0 x 10 ⁻⁵		
3-Ph	_ ^a	_ ^a	823.5	1.4 x 10 ⁻⁵		
4-Ph	_ ^a	_ ^a	1996	5.8 x 10 ⁻⁶		
5-Ph	_ ^a	_ ^a	518	2.2 x 10 ⁻⁵		
6-Ph	_ ^a	_ ^a	5700	2.0 x 10 ⁻⁶		
1-CF ₃	5.95	1.9 x 10 ⁻³	_b	_b		
2-CF ₃	2.35	4.9 x 10 ⁻³	_b	_b		
3-CF ₃	2.95	3.9 x 10 ⁻³	_b	_b		
4-CF ₃	22.65	5.1 x 10 ⁻⁴	_b	_ ^b		
5-CF ₃	1.95	5.9 x 10 ⁻³	_b	_b		
6-CF ₃	243.6	4.7 x 10 ⁻⁵	_b	_ ^b		

a- No solvolysis is observed; b- Solvolysis was too fast to be observed.

Table S3. Photophysical properties of compounds 4-iPr, 4-Ph and 4-CF₃ in solvents of different polarity at room temperature

	4-iPr				4-Ph			4-CF ₃				
Solvent	$arPhi_{ m f}$	$ au_{ m f}$	$k_{ m f}$	k _{nr}	$arPhi_{ m f}$	$ au_{ m f}$	$k_{ m f}$	$k_{ m nr}$	$arPhi_{ m f}$	$ au_{ m f}$	$k_{ m f}$	$k_{ m nr}$
CCl ₄	0.033	<0.6	-	-	0.161	0.93	1.7	9.0	0.235	2.00	1.2	3.8
Bu ₂ O	0.054	<0.6	-	-	0.352	1.83	1.9	3.5	0.378	3.24	1.2	1.9
Et_2O	0.090	0.70	1.3	13.0	0.536	2.42	2.2	1.9	0.342	2.87	1.2	2.3
DCM	0.331	2.40	1.4	2.8	0.570	3.08	1.9	1.4	0.009	0.12	0.8	82.6
Acetone	0.355	2.47	1.4	2.6	0.233	1.28	1.8	6.0	-	-	-	-
ACN	0.133	0.85	1.6	10.2	0.045	<0.6	-	-	-	-	-	-

Fluorescence quantum yields $\Phi_{\rm f}$, fluorescence lifetimes $\tau_{\rm f}$ (ns), radiative $k_{\rm f}$ (10⁸ s⁻¹) and nonradiative $k_{\rm nr} = (1 - \Phi_{\rm f})/\tau_{\rm f}$ (10⁸ s⁻¹) rate constants; Bu₂O: n-dibutyl ether, Et₂O: ethylic ether, DCM: dichloromethane, ACN: acetonitrile.

			1											
	5-iPr					5-Ph				5-CF ₃				
Solvent	$arPhi_{ m f}$	$ au_{ m f}$	$k_{ m f}$	$k_{ m nr}$	_	$arPsi_{ m f}$	$ au_{ m f}$	$k_{ m f}$	$k_{ m nr}$		$arPhi_{ m f}$	$ au_{ m f}$	$k_{ m f}$	<i>k</i> _{nr}
CCl ₄	0.058	0.61	1.0	15.4		0.210	1.40	1.5	5.8		0.326	2.80	1.2	2.4
Bu ₂ O	0.109	0.97	1.1	9.2		0.345	2.02	1.7	3.2		0.402	2,70	1.5	2.2
Et ₂ O	0.134	1.21	1.1	7.2		0.356	2.52	1.4	2.6		0.479	3,21	1.5	1.6
DCM	0.293	2.30	1.3	3.1		0.600	3.27	1.8	2.2		0.010	0.090	1.1	110
Acetone	0.351	2.85	1.2	2.3		0.460	3.11	1.5	1.7		-	-	-	-
ACN	0.281	2.30	1.2	3.1		0.199	1.32	1.5	6.1		-	-	-	-
Fluorescen	co quantu	m violde		orascano	a lif	otimos T	r(nc) rac	diativa	$k_{\rm c}$ (108	e-1) and nonr	adiativa k	_	

Table S4. Photophysical properties of compounds 5-iPr, 5-Ph and 5-CF₃ in solvents of different polarity at room temperature

Fluorescence quantum yields $\Phi_{\rm f}$, fluorescence lifetimes $\tau_{\rm f}$ (ns), radiative $k_{\rm f}$ (10⁸ s⁻¹) and nonradiative $k_{\rm nr} = (1 - \Phi_{\rm f})/\tau_{\rm f}$ (10⁸ s⁻¹) rate constants; Bu₂O: n-dibutyl ether, Et₂O: ethylic ether, DCM: dichloromethane, ACN: acetonitrile.

Table S5. Theoretical electronic absorption data obtained for hemi-curcuminoids in DCM solution.

		$\lambda_{ m m}$	ax	f	Assignment (%)			
		(nm)	(cm^{-1})	J				
	Ι	440	22 727	1.422	HOMO→LUMO	(98.49)		
1-Ph	II	281	35 587	0.190	HOMO→LUMO+1	(94.84)		
	III	338	29 586	0.116	HOMO-1→LUMO	(95.96)		
	Ι	395	25 316	1.328	HOMO→LUMO	(99.53)		
1-iPr	II	300	33 333	0.066	HOMO-1→LUMO	(91.13)		
	III	241	41 494	0.065	HOMO-4→LUMO	(89.06)		
	Ι	432	23 148	1.114	HOMO→LUMO	(100)		
1-CF ₃	Π	304	32 895	0.162	HOMO-2→LUMO	(92.79)		
	III	208	48 077	0.105	HOMO-1→LUMO+1	(84.96)		
	Ι	479	20 877	1.453	HOMO→LUMO	(100)		
2-iPr	Π	312	32 051	0.279	HOMO-1→LUMO	(75.15)		
	III	280	35 714	0.029	HOMO-2→LUMO	(83.97)		
	Ι	443	22 573	0.977	HOMO→LUMO	(98.76)		
A 10	Π	357	28 011	0.576	HOMO-1→LUMO	(93.66)		
3-iPr		III 241	41 494	0.435	HOMO-1→LUMO+1	(50.80)		
	111				HOMO→LUMO+2	(25.58)		
	Ι	441	22 676	1.071	HOMO→LUMO	(99.04)		
∕_iPr	п	332	30 120	0 567	HOMO-2→LUMO	(76.89)		
4-11 1	11	552	30 120	0.507	HOMO→LUMO+1	(16.72)		
	III	255	39 216	0.290	HOMO→LUMO+2	(73.40)		
	Ι	506	19 763	0.887	HOMO→LUMO	(99.10)		
5-iPr	п	327	30 581	0.467	HOMO→LUMO+1	(43.36)		
		521	50 501	0.407	HOMO-2→LUMO	(37.15)		
	III	374	26 738	0.270	HOMO-1→LUMO	(84.84)		

6-iPr -	Ι	419	23 866	1.190	HOMO→LUMO	(99.30)
	II	316	31 646	0.251	HOMO-1→LUMO	(95.78)
	III	252	39 526	0.061	HOMO→LUMO+1	(67.57)
		235			HOMO→LUMO+2	(22.77)

Table S6. Spectroscopic data and photophysical properties of all compounds in their particles form at room temperature.

	Particles in water								
Compound	λ^{absa}/nm	$\lambda^{em \ a} / nm$	ϕ^{em} (solid) ^{a,b}	FWHM					
			-	/ cm ⁻¹					
1-Ph	427	583	0.015	4159					
1-iPr	403	492	0.005	3452					
1-CF ₃	-	-	-	-					
2-Ph	433	648	0.02	3185					
2-iPr	415	532	0.01	3838					
2-CF ₃	-	-	-	-					
3-Ph	438	663	0.04	3470					
3-iPr	413	580	0.04	3814					
3-CF ₃	-	-	-	-					
4-Ph	477	685	0.04	2953					
4-iPr	449	636	0.07	2663					
4-CF ₃	-	-	-	-					
5-Ph	506	_c	_ ^c	_ ^c					
5-iPr	472	708	0.015	3307					
5-CF ₃	-	-	-	-					
6-Ph	-	_c	_c	_ ^c					
6-iPr	-	_c	_ ^c	_ ^c					
6-CF3	-	-	-	-					

a: determined on particles, b: determined using an integration sphere, c: no emission was observed.