Supporting Information for

Antimalarial diterpenoid dimers of a new carbon skeleton from Aphanamixis grandifolia

Hua Zhang, ${ }^{\text {a, } \ddagger \text { Jia Liu, }}{ }^{\text {a, },{ }^{\ddagger}}$ Li-She Gan, ${ }^{\text {b }}$ Seema Dalal, ${ }^{\text {c }}$ Maria B. Cassera, ${ }^{\text {c }}$ and Jian-Min Yue ${ }^{\text {a,* }}$
${ }^{a}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, P. R. China
${ }^{b}$ Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
${ }^{c}$ Department of Biochemistry and the Virginia Tech Center for Drug Discovery, MC 0308, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
${ }^{\ddagger}$ Equal contribution
*Corresponding author. E-mail: jmyue@simm.ac.cn

1. Experimental Section (p5 to p11)

Figure S1. Experimental ECD spectra of compounds 4 and 5.
Scheme S1. Oxidative degradation of compounds 4/5.
Scheme S2. Synthesis of (S)- (6) and (R)- (7) forms of 6-(hydroxymethyl)-4-methyl-5,6-dihydro$2 \mathrm{H}-\mathrm{pyran}-2$-one.

Figure S2. Chiral HPLC analysis of $\mathbf{4 r} / 5 \mathrm{r}$ from $4 / 5$ and synthetic samples ($6 \& 7$)

ECD Calculations

Figure S3. Calculated ECD spectra of $\mathbf{2}$ and $\mathbf{3}$ versus their experimental ECD spectra.
Figure S4. Calculated ECD spectra of 4a and 5a versus their experimental ECD spectra.

2. Tabulated NMR data (p12 to p13)

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compounds 4 and 5 in $\mathrm{CD}_{3} \mathrm{OD}$.
Table S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compounds $\mathbf{4 a}, \mathbf{4} \mathbf{b}, \mathbf{5 a}$, and $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

3. NMR spectra for all new Natural and synthetic compounds ($\mathbf{p} 14$ to $\mathbf{p} 75$)

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S8. HSQC spectrum for aphadilactone E (1) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S9. HMBC spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S10. ROESY spectrum for aphadilactone E (1) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S11. ESI(+)MS spectrum for aphadilactone E (1).
Figure S12. HRESI(+)MS spectrum for aphadilactone E (1).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S15. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S16. HSQC spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S17. HMBC spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S18. ROESY spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S19. ESI(+)MS spectrum for aphadilactone F (2).
Figure S20. HRESI(+)MS spectrum for aphadilactone F (2).

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S23. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S24. HSQC spectrum for aphadilactone G (3) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S25. HMBC spectrum for aphadilactone G (3) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S26. ROESY spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S27. ESI(+)MS spectrum for aphadilactone G (3).
Figure S28. HRESI(+)MS spectrum for aphadilactone G (3).

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S31. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S32. HSQC spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S33. HMBC spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S34. ROESY spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S35. ESI(+)MS spectrum for aphanamene H (4).
Figure S36. ESI(-)MS spectrum for aphanamene H (4).
Figure S37. HRESI(+)MS spectrum for aphanamene H (4).

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S40. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S41. HSQC spectrum for aphanamene I (5) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S42. HMBC spectrum for aphanamene I (5) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S43. ROESY spectrum for aphanamene I (5) in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S44. ESI(+)MS spectrum for aphanamene I (5).
Figure S45. ESI(-)MS spectrum for aphanamene I (5).
Figure S46. HRESI(+)MS spectrum for aphanamene I (5).

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S49. HSQC spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S50. HMBC spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S51. ESI(+)MS spectrum for $\mathbf{4 a}$.
Figure S52. HRESI(+)MS spectrum for 4a.

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{4 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{4 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S55. NOESY spectrum for $\mathbf{4 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S56. ESI(+)MS spectrum for $\mathbf{4 b}$.
Figure S57. HRESI(+)MS spectrum for $\mathbf{4 b}$.

Figure S58. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S59. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S60. HSQC spectrum for 5 a in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S61. HMBC spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S62. ESI(+)MS spectrum for $\mathbf{5 a}$.
Figure S63. HRESI(+)MS spectrum for 5a.

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S65. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure S66. NOESY spectrum for $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
Figure $\mathbf{S 6 7}$. ESI(+)MS spectrum for $\mathbf{5 b}$.
Figure S68. HRESI(+)MS spectrum for $\mathbf{5 b}$.

Figure S1. Experimental ECD spectra of 4 (black) and 5 (blue).

Scheme S1. Oxidative degradation of compounds $4 / 5$ [Reaction conditions: a) $40 \mathrm{~mol} \%$ $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 40$ eq. $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, 120$ eq. $\mathrm{K} 3 \mathrm{Fe}(\mathrm{CN})_{6}, 120$ eq. $\mathrm{K}_{2} \mathrm{CO}_{3},{ }^{\mathrm{t}} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ (1:1), r.t.; b) $\left.\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{DCM}, 0^{\circ} \mathrm{C}\right]$.

Scheme S2. Synthesis of (S, 6) and (R, 7) forms of 6-(hydroxymethyl)-4-methyl-5,6-dihydro-2H-pyran-2-one [Reaction conditions: a) TBDPSiCl, imidazole, DMF; b) $\mathrm{CuI}, \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{MgBr}$, THF, -30 to $0{ }^{\circ} \mathrm{C}$; c) $\mathrm{CH}_{2} \mathrm{CHCOCl}, \mathrm{Et} 3$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; d) Grubbs' catalyst II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}$; e) $\left.\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}\right]$.

Figure S2. Chiral HPLC analysis of $\mathbf{4 r} / 5 \mathbf{r}$ from $4 / 5$ and authentic synthetic samples ($6 \& 7$)

1.1 ECD Calculations

1.1.1 Calculated ECD spectra for compounds 2 and 3. In order to further determine the structures of compounds 2 and 3, their theoretical ECD spectra were calculated by TDDFT computational chemistry method and compared with the corresponding experimental ones. Firstly, in order to avoid the inaccurate large amounts of lowest energy conformers caused by the flexible chains, ECD spectra of three structural fragments from 2 and 3 (Part1SS, Part1RR, and Part2S, Figure S3(a)) were calculated separately. Linear combination of ECD spectra of Part1SS and two Part2S gave an ECD curve matching the experimental one of 2, with first negative, second positive, and third negative Cotton effects. Similarly, the calculated ECD curve of Part1RR plus two Part2S could simulate the experimental data of $\mathbf{3}$. The above studies allowed us to differentiate the absolute configurations of 2 and 3 as ($5 S, 11 S, 11^{\prime} S, 5^{\prime} S$) and ($5 S, 11 R, 11^{\prime} R, 5^{\prime} S$), respectively.

Figure S3. (a) B3LYP/6-311++G(2d,2p)//B3LYP/6-31+G(d) calculated ECD spectra for three structural fragments of 2 and 3; (b) Experimental ECD spectra (220-400 nm) of 2 (black solid line) and 3 (black dashed line), and linear combination of (Part1SS $+2 *$ Part2S) (red solid line) and (Part1RR+2*Part2S) (red dashed line).

In general, conformational analyses were carried out via Monte Carlo searching using molecular mechanism with MMFF94 force field in the SPARTAN 08 software package. ${ }^{1}$ The results showed three lowest energy conformers for Part1SS and only one for Part2S with relative energy below 2.0 $\mathrm{kcal} / \mathrm{mol}$. Subsequently, the conformers were re-optimized using DFT at the B3LYP/6-31+G(d) level in gas phase by the GAUSSIAN 09 program. ${ }^{2}$ The B3LYP/ $6-31+G(d)$ harmonic vibrational frequencies were also calculated to confirm their stability. The energies, oscillator strengths, and rotational strengths (velocity) of the first 60 electronic excitations were calculated using the TDDFT methodology at the B3LYP/6-311++G(2d,2p) level in vacuum. The ECD spectra were simulated by the overlapping Gaussian function (half the bandwidth at 1/e peak height, $\sigma=0.3 \mathrm{eV}$), ${ }^{3}$ and the first seven electronic excitations for Part1SS and the first two electronic excitations for Part2S were adopted. To get the final spectra, the simulated spectra of the lowest energy conformers for each structure were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy $(\Delta \mathrm{G})$. Theoretical ECD spectrum of Part $1 R R$ was obtained by directly inversing that of the
corresponding enantiomer Part1SS.
1.1.2. Calculated ECD spectra for compounds 4a and 5a. Theoretical ECD spectra of compounds 4a and 5a were also calculated using procedures same as those for $\mathbf{2}$ and $\mathbf{3}$. In brief, conformational analyses of $5 \mathbf{a}$ showed 10 lowest energy conformers with relative energy below $2.0 \mathrm{kcal} / \mathrm{mol}$. The ECD spectra were simulated by the overlapping Gaussian function ($\sigma=0.3 \mathrm{eV}$), ${ }^{3}$ and the velocity rotatory strengths of the first four electronic excitations were adopted. In order to get the final ECD spectrum of 2a, the simulated spectra of the 10 lowest energy conformers were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy (ΔG). The theoretical ECD spectrum of $\mathbf{4 a}$ was depicted by directly reversing that of $\mathbf{5 a}$. The results showed that the ECD spectrum of $4 \mathbf{a}$ matched that of the enantiomer with $\left(11 R, 9^{\prime} S, 12^{\prime} R\right)$ configuration, and the ECD spectrum of 5 a matched that of the other enantiomer with ($11 S, 9^{\prime} R, 12^{\prime} S$) configuration. Therefore, the absolute configurations of aphanamene $\mathrm{H}(4)$ and $\mathrm{I}(5)$ were identified to be $\left(5 S, 11 R, 9^{\prime} R, 12^{\prime} R\right)$ and (5 S, 11 S, $9^{\prime} S, 12^{\prime} S$), respectively.

Figure S4. Calculated (red color) ECD spectra of 4a (solid line) and 5a (dashed line) versus their experimental (black color) ECD spectra.

Notes and references

[1]. Spartan 04; Wavefunction Inc.:Irvine, CA.
[2] Gaussian 09, Rev. C 01. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
[3] Stephens, P. J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 2010, 22, 229-233.

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds 4 and 5 in $\mathrm{CD}_{3} \mathrm{OD}$.

Position	4		5	
	$\delta_{\mathrm{H}}\left(\mathrm{mult}, J_{\mathrm{HH}}\right)$	δ_{C}	$\delta_{\mathrm{H}}\left(\mathrm{mult}, J_{\mathrm{HH}}\right)$	$\delta_{\text {C }}$
1		168.0		168.0
2	5.79 (br s)	116.5	5.79 (br s)	116.5
3		161.0		161.1
4	2.32 (dd, 18.1, 4.5)	35.8	2.34 (dd, 18.1, 4.7)	35.8
	2.40 (br dd, 18.1, 10.5)		2.40 (br dd, 18.1, 10.4)	
5	5.21 (ddd, 10.5, 8.5, 4.5)	75.9	5.20 (ddd, 10.4, 8.5, 4.7)	75.9
6	5.34 (br d, 8.5)	124.0	5.33 (br d, 8.5)	123.8
7		143.3		143.5
8	2.06 (br t, 7.2, 2H)	40.7	2.06 (br t, 7.3, 2H)	40.7
9	1.24 (m)	24.4	1.22 (m)	24.6
	1.38 (m)		1.41 (m)	
10	1.62 (ddd, 13.1, 13.1, 4.5)	32.4	1.65 (ddd, 13.3, 13.3, 4.7)	32.6
	1.77 (m)			
11		51.7		51.8
12		198.3		198.4
13	5.52 (s)	105.9	5.52 (s)	105.9
14		210.2		210.1
15		89.7		89.7
16	1.34 (s, 3H)	23.6	1.34 (s, 3H)	23.6
17	1.34 (s, 3H)	23.2	1.34 (s, 3H)	23.2
18	1.79 (m)	31.3	1.79 (m)	31.3
	1.89 (dd, 13.4, 11.0)		1.89 (dd, 13.2, 10.8)	
19	1.71 (d, 1.4, 3H)	16.7	1.71 (d, 1.3, 3H)	16.8
20	2.01 (br s, 3H)	23.0	2.01 (br s, 3H)	23.0
1^{\prime}		169.7		169.7
2^{\prime}	5.68 (br s)	117.6	5.68 (br s)	117.6
3^{\prime}		161.5		161.5
4^{\prime}	2.70 (m, 2H)	34.1	2.70 (m, 2H)	34.1
5^{\prime}	2.26 (br td, 7.5, 7.0, 2H)	27.7	2.25 (br td, 7.6, 6.9, 2H)	27.7
6^{\prime}	5.28 (br t, 7.0)	127.2	5.28 (br t, 6.9, 2H)	127.2
$7{ }^{\prime}$		134.5		134.5
8^{\prime}	2.01 (m)	46.9	2.01 (dd, 13.2, 8.9)	46.9
	2.16 (m)			
9^{\prime}	2.26 (m)	31.9	2.27 (m)	31.9
10^{\prime}	5.50 (br s)	131.1	5.51 (br s)	131.2
11^{\prime}		135.8		135.7
12^{\prime}		96.1		96.1
13^{\prime}	5.86 (d, 6.1)	128.1	5.84 (d, 6.1)	128.1
14^{\prime}	5.88 (d, 6.1)	137.7	5.88 (d, 6.1)	137.6
15^{\prime}		88.5		88.5
16^{\prime}	1.14 (s, 3H)	29.7	1.15 (s, 3H)	29.7
17^{\prime}	1.33 (s, 3H)	29.2	1.33 (s, 3H)	29.2
18'	1.68 (dd, 2.4, 1.3, 3H)	21.6	1.68 (dd, 2.5, 1.4, 3H)	21.5
19^{\prime}	1.67 (br s, 3H)	16.1	1.67 (br s, 3H)	16.0
20^{\prime}	1.92 (d, 1.4, 3H)	25.4	1.92 (d, 1.3, 3H)	25.4

Table S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compounds $\mathbf{4 a}, \mathbf{4} \mathbf{b}, \mathbf{5 a}$, and $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Position	4a/5a		4b		5b	
	$\delta_{\mathrm{H}}($ mult, J in Hz$)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}($ mult, J in Hz$)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(\mathrm{mult}, J$ in Hz$)$	$\delta_{\text {C }}{ }^{\text {b }}$
1				168.1		168.0
2			5.79 (br s)	116.5	5.79 (br s)	116.5
3				161.2		161.1
4			2.37 (m)	35.8	2.34 (dd, 18.1, 4.5)	35.8
			2.42 (m)		2.43 (br dd, 18.1, 10.6)	
5			5.22 (m)	76.0	5.20 (m)	75.9
6			5.36 (br d, 8.6)	124.1	5.34 (br d, 8.5)	123.8
7		211.2		143.2		143.7
8	2.50 (m, 2H)	44.3	2.08 (br t, 7.2, 2H)	40.6	2.07 (br t, 7.2, 2H)	40.7
9	1.67 (m, 2H)	20.6	1.24 (m)	24.1	1.22 (m)	24.3
			$1.53(\mathrm{~m})$		1.57 (m)	
10	1.68 (m)	32.3	1.66 (m)	32.1	1.68 (m)	32.4
	1.76 (ddd, 13.2, 13.2, 3.8)		1.78 (ddd, 13.1, 13.1, 4.0)		1.78 (13.0, 13.0, 3.9)	
11		51.8		51.7		51.7
12		197.8		198.0		198.0
13	5.53 (s)	106.0	5.52 (s)	105.9	5.52 (s)	105.9
14		210.2		210.3		210.1
15		89.8		89.7		89.7
16	1.34 (s, 3H)	23.5	1.34 (s, 3H)	23.6	1.34 (s, 3H)	23.6
17	1.34 (s, 3H)	23.2	1.34 (s, 3H)	23.2	1.33 (s, 3H)	23.2
18	1.90 (dd, 13.4, 10.7)	30.9	1.88 (m)	30.9	1.88 (dd, 13.3, 9.9)	31.0
	$1.95 \text { (br dd, 13.4, 6.0) }$		1.93 (m)		1.94 (br dd, 13.3, 5.4)	
19	2.12 (s, 3H)	29.8	1.72 (d, 1.4, 3H)	16.7	1.74 (d, 1.3, 3H)	16.8
20			2.03 (br s, 3H)	23.0	2.02 (br s, 3H)	23.0
$7{ }^{\prime}$		210.5		210.3		210.3
8^{\prime}	2.57 (dd, 17.3, 7.9)	49.8	2.58 (m)	49.3	2.57 (dd, 18.8, 9.8)	49.4
	2.64 (dd, 17.3, 6.1)		2.65 (m)		2.66 (dd, 18.8, 5.3)	
9^{\prime}	2.73 (m)	29.8	2.62 (m)	29.7	2.65 (m)	29.8
10^{\prime}	5.47 (m)	130.3	5.46 (br s)	130.3	5.47 (br s)	130.4
11^{\prime}		136.4		136.5		136.5
12^{\prime}		95.7		95.8		95.8
13^{\prime}	5.85 (d, 6.1)	128.0	5.87 (d, 6.1)	128.0	5.85 (d, 6.1)	128.0
14^{\prime}	5.88 (d, 6.1)	137.8	5.89 (d, 6.1)	137.8	5.89 (d, 6.1)	137.8
15^{\prime}		88.5		88.5		88.5
16^{\prime}	1.13 (s, 3H)	29.7	1.13 (s, 3H)	29.7	1.13 (s, 3H)	29.7
17^{\prime}	1.31 (s, 3H)	29.2	1.32 (s, 3H)	29.2	1.32 (s, 3H)	29.2
18^{\prime}	1.67 (dd, 2.4, 1.4)	21.6	1.68 (br s, 3H)	21.6	1.68 (br s, 3H)	21.6
19^{\prime}	2.18 (s, 3H)	30.3	2.17 (s, 3H)	30.5	2.17 (s, 3H)	30.4

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum for aphadilactone $\mathrm{E}(1)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.

AP-12 COSY
CD3OD

Figure S8. HSQC spectrum for aphadilactone $\mathrm{E}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S9. HMBC spectrum for aphadilactone $\mathrm{E}(1)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S10. ROESY spectrum for aphadilactone $\mathrm{E}(1)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S11. ESI(+)MS spectrum for aphadilactone E (1).

Display Report

Analysis Info
Analysis Name
Method Copy of DSOPMS2P.M
Sample Name yjm-AP-12
Comment

Acquisition Date 03/17/11 10:10:56
Operator Instrument

Administrator esquire3000plus

Figure S12. HRESI(+)MS spectrum for aphadilactone E (1).

Elemental Composition Report

```
Single Mass Analysis
Tolerance = 3.0 PPM / DBE: min =-1.5, max =50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
```

Monoisotopic Mass, Even Electron Ions
285 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 5-80 & \mathrm{H}: 2-120 & \mathrm{O}: 0-20 & \mathrm{Na}: 0-1\end{array}$
AP-12 LCT PXE KE324 16-Oct-2014
AP-12_1016 41 (0.865) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (39:50) 1: TOF MSES+

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S15. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

AP-11-1 COSY CD3OD

Figure S16. HSQC spectrum for aphadilactone F (2) in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S17. HMBC spectrum for aphadilactone F (2) in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S18. ROESY spectrum for aphadilactone $\mathrm{F}(2)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

AP-11-1 ROESY

Figure S19. ESI(+)MS spectrum for aphadilactone F (2).

Display Report

Analysis Info

Analysis Name	011-1401.D	Acquisition Date07/11/11 19:34:32 Administrator	
Method	Copy of DSOPMS2P.M	Operator Onstrument	esquire3000plus
Sample Name	yjm-AP-11-1		
Comment	\square		

Figure S20. HRESI(+)MS spectrum for aphadilactone F (2).

Elemental Composition Report

Single Mass Analysis

Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
285 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used:			
C: 5-80	H: 2-120	O: 0-20	$\mathrm{Na}: 0-1$

AP-11-1 LCT PXE
AP-11-1_1016 52 (1.128) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (41:54)

Minimum:
Maximum:
Mass Calc. Mass
$683.3553 \quad 683.3560$
-1.5
$\begin{array}{lll}5.0 & 3.0 & 50.0\end{array}$
-0.7
PPM DBE
DBE i-FIT i-FIT (Norm) Formula
$14.5 \quad 23.9 \quad 0.0$
C40 H52 O8 Na

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S23. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

AP-11-2 COSY
CD3OD

Figure S24. HSQC spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S25. HMBC spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S26. ROESY spectrum for aphadilactone $\mathrm{G}(3)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

AP-11-2 ROESY
CD3OD

Figure S27. ESI(+)MS spectrum for aphadilactone G (3).

Display Report

Analysis Info	
Analysis Name	012-1501.D
Method	Copy of DSOPMS2P.M
Sample Name	yjm-AP-11-2
Comment	\square

Acquisition Date	07/11/11 19:50:49
Operator	Administrator
Instrument	esquire3000plus

Figure S28. $\operatorname{HRESI}(+) \mathrm{MS}$ spectrum for aphadilactone G (3).

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
285 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 5-80 & \mathrm{H}: 2-120 & \mathrm{O}: 0-20 & \mathrm{Na}: 0-1\end{array}$
AP-11-2 LCT PXE KE324 16-Oct-2014
AP-11-2_1016 44 (0.953) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (33:48)

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S31. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S32. HSQC spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(midd) if

Figure S33. HMBC spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(udd) if

Figure S34. ROESY spectrum for aphanamene $\mathrm{H}(4)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S35. ESI(+)MS spectrum for aphanamene H (4).

Display Report

Analysis Info	
Analysis Name	006-0901.D
Method	Copy of DSOPMS2P.M
Sample Name	yjm-AP-58-1
Comment	DA

Acquisition Parameter					
Ion Source Type	ESI	Ion Polarity	Positive	Alternating Ion Polarity	off
Mass Range Mode	Std/Normal	Scan Begin	$100 \mathrm{~m} / \mathrm{z}$	Scan End	$1750 \mathrm{~m} / \mathrm{z}$
Capillary Exit	158.5 Volt	Skim 1	40.0 Volt	Trap Drive	85.4
Accumulation Time	15000 鍴	Averages	3 Spectra	Auto MS/MS	on

Figure S36. ESI(-)MS spectrum for aphanamene H (4).

Display Report

Analysis Info

Analysis Name	006-2001.D
Method	Copy of DSOPMS2N.M
Sample Name	yjm-AP-58-1

Acquisition Date	04/27/12 20:51:42
Operator	Administrator
Instrument	esquire3000plus

Comment DA

Figure S37. HRESI(+)MS spectrum for aphanamene H (4).

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S40. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S41. HSQC spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(udd) if

Figure S42. HMBC spectrum for aphanamene $\mathrm{I}(5)$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(midd) If

Figure S43. ROESY spectrum for aphanamene I (5) in $\mathrm{CD}_{3} \mathrm{OD}$.

AP-58-2 ROESY CD3OD 20120503

Figure S44. ESI(+)MS spectrum for aphanamene I (5).

Display Report

Analysis Info	
Analysis Name	007-1001.D
Method	Copy of DSOPMS2P.M
Sample Name	yjm-AP-58-2
Comment	DA

Acquisition Date 04/27/12 18:08:31
Operator Administrator Instrument esquire3000plus

Acquisition Parameter					
Ion Source Type	ESI	Ion Polarity	Positive	Alternating lon Polarity	off
Mass Range Mode	Std/Normal	Scan Begin	$100 \mathrm{~m} / \mathrm{z}$	Scan End	$1750 \mathrm{~m} / \mathrm{z}$
Capillary Exit	158.5 Voit	Skim 1	40.0 Volt	Trap Drive	85.4
Accumulation Time	15000 鍴	Averages	3 Spectra	Auto MS/MS	on

Figure S45. ESI(-)MS spectrum for aphanamene I (5).

Display Report
Analysis Info

Analysis Name	007-2101.D	Acquisition Date	04/27/12 21:08:00
Method	Copy of DSOPMS2N.M	Operator	Administrator
Sample Name	yjm-AP-58-2	Instrument	esquire3000plus
Comment	DA		

Figure S46. HRESI(+)MS spectrum for aphanamene I (5).

Elemental Composition Report

Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
173 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llll}\mathrm{C}: 10-80 & \mathrm{H}: 1-110 & \mathrm{O}: 0-30 & \mathrm{Na}: 1-1\end{array}$

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S49. HSQC spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(madd) if

Figure S50. HMBC spectrum for $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(madd) if

Figure S51. ESI(+)MS spectrum for 4a.

Display Report

Analysis Info
Analysis Name 041-3401.D
Method Copy of DSOPMS2P.M
Sample Name yjm-0608a
Comment

Figure S52. HRESI(+)MS spectrum for 4a.

Elemental Composition Report

Single Mass Analysis

Tolerance $=3.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
179 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 10-60 & \text { H: 1-110 } & \mathrm{O}: 0-30 & \mathrm{Na}: 0-1\end{array}$

Minimum:
Maximum:

Calc. Mass PDa DBE i-FIT i-FIT (Norm) Formula
$\begin{array}{lllllllllllllllll}451.2466 & 451.2460 & 0.6 & 1.3 & 8.5 & 27.9 & 0.0 & \mathrm{C} 26 & \mathrm{H} 36 & 05 & \mathrm{Na}\end{array}$

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{4 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{4 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S55. NOESY spectrum for $\mathbf{4 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S56. ESI(+)MS spectrum for 4b.

Display Report
Analysis Info

Analysis Name	$006-0801 . \mathrm{D}$
Method	Copy of DSOPMS2P.M
Sample Name	yjm-0614b
Comment	21

Acquisition Parameter

Figure S57. HRESI(+)MS spectrum for $\mathbf{4 b}$.

Elemental Composition Report

Single Mass Analysis

Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
268 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used
$\begin{array}{llll}\text { C: } 6-60 & \text { H: 2-110 } & \text { O: 0-30 } & \mathrm{Na}: 0-1\end{array}$
0614b LCT PXE KE324 14-Sep-2012

0614b_20120914 14 (0.283) AM2 (Ar, 10000.0,0.00,1.00); ABS; Cm (5:23) $\quad 1: \begin{aligned} & \text { 10:51:02 } \\ & \text { 1: TOF MS ES+ }\end{aligned}$

Minimum:

Maximum:

Mass	Calc. Mass	mDa	PPM	DBE
559.3040	559.3036	0.4	0.7	11.5

i-FIT (Norm) Formula
$0.0 \mathrm{C} 33 \mathrm{H} 44 \mathrm{O} \quad \mathrm{Na}$

Figure S58. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S59. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S60. HSQC spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(mdd) If

Figure S61. HMBC spectrum for $\mathbf{5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
(wdd) If

Figure S62. ESI(+)MS spectrum for 5a.

Display Report

Analysis Info	
Analysis Name	021-1001.D
Method	Copy of DSOPMS2P.M
Sample Name	yjm-0618a
Comment	v

Acquisition Parameter					
Ion Source Type	ESI	Ion Polarity	Positive	Alternating Ion Polarity	off
Mass Range Mode	Std/Normal	Scan Begin	$100 \mathrm{~m} / \mathrm{z}$	Scan End	1750 m/2
Capillary Exit	158.5 Volt	Skim 1	40.0 Volt	Trap Drive	85.4
Accumulation Time	15000 銑	Averages	3 Spectra	Auto MS/MS	on

Figure S63. HRESI(+)MS spectrum for 5a.

Elemental Composition Report

Single Mass Analysis

Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
185 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 6-60 } & \text { H: 2-110 } & \text { O: } 0-30 & \mathrm{Na}: 0-1\end{array}$
LJ LCT PXE KE324 19-Jul-2012
0618a_2012071928 (0.600) AM2 (Ar,12500.0,0.00,0.70); ABS; Cm (21:44) 1: TOF MS ES+
100
880.5068

492.2716																				
451.2455				493.2778		5813658			669.4103683 .3605				727.3672		799.4420			8575199		
400	425	450	475	500	525	550	575	600	625	650	675	700	725	750	775	800	825	850	87	m / z
Minimum									-1.											
Maximum					3.0		3.0		50.											
Mass		Calc.	Mass		mDa		PPM		DBE		i-F		i	FIT	(Nor	F	rmul			
451.245		451.2	460		-0.5		-1.1		8.5		16.						H	6	5	

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S65. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S66. NOESY spectrum for $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S67. ESI(+)MS spectrum for $\mathbf{5 b}$.

Display Report

Analysis Info	
Analysis Name	$007-0901 . \mathrm{D}$
Method	Copy of DSOPMS2P.M
Sample Name	yjm-0618b
Comment	21

Acquisition Parameter					
lon Source Type	ESI	Ion Polarity	Positive	Alternating lon Polarity	off
Mass Range Mode	Std/Normal	Scan Begin	$100 \mathrm{~m} / \mathrm{z}$	Scan End	$1750 \mathrm{~m} / \mathrm{z}$
Capillary Exit	158.5 Volt	Skim 1	40.0 Volt	Trap Drive	85.4
Accumulation Time	15000 鐸	Averages	3 Spectra	Auto MS/MS	on

Figure S68. HRESI(+)MS spectrum for $\mathbf{5 b}$.

Elemental Composition Report

Single Mass Analysis

Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
268 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\mathrm{C}: ~ 6-60 & \mathrm{H}: 2-110 & \mathrm{O}: 0-30 & \mathrm{Na}: 0-1\end{array}$
0618b LCT PXE KE324
0618b_20120914 28 (0.583) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (6:29)

Minimum: Maximum:		-1.5							
		3.0	2.0	50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
559.3035	559.3036	-0.1	-0.2	11.5	75.6	0.0	C33 H44	06	Na

