Trichiconlides A and B: Two Novel Limonoids from the Fruits of *Trichilia connaroides*

Fa-Liang An, Jun Luo, Xiao-Bing Wang, Ming-Hua Yang, and Ling-Yi Kong*

State Key Laboratory of Natural Medicines, Department of Natural Medicinal

Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009,

People's Republic of China

Supporting Information

Table of Contents

1. Experimental section

- 1.1 General Experimental Procedures.
- 1.2 Plant Material.
- 1.3 Extraction and Isolation
- 1.4 Computational Section
- 1.5 NO Production Bioassay
- 1.6 Single Crystal X-ray Diffraction

2. NMR, IR, HRESIMS, and UV Spectra

- S1. ¹H NMR (500 MHz; MeOD- d_4) spectrum of **1**
- S2. ¹³C NMR (125 MHz; MeOD- d_4) spectrum of **1**
- S3. HSQC (MeOD- d_4) spectrum of 1
- S4. HMBC (MeOD- d_4) spectrum of 1
- S5. ROESY (MeOD- d_4) spectrum of 1
- S6. IR spectrum of 1
- S7. HRESIMS of 1
- S8. UV spectrum of 1
- S9. ¹H NMR (500 MHz; CDCl₃) spectrum of 2
- S10. ¹³C NMR (125 MHz; CDCl₃) spectrum of 2
- S11. HSQC (CDCl₃) spectrum of $\mathbf{2}$
- S12. HMBC (CDCl₃) spectrum of $\mathbf{2}$
- S13. ROESY (CDCl₃) spectrum of 2
- S14. IR spectrum of 2
- S15. HRESIMS of 2
- S16. UV spectrum of 2
- S17. ¹H NMR (500 MHz; CDCl₃) spectrum of **3**
- S18. ¹³C NMR (125 MHz; CDCl₃) spectrum of **3**
- S19. HSQC (CDCl₃) spectrum of $\mathbf{3}$
- S20. HMBC (CDCl₃) spectrum of **3**
- S21. ROESY (CDCl₃) spectrum of **3**
- S22. IR spectrum of **3**
- S23. HRESIMS of **3**
- S24. UV spectrum of 3
- S25. Scheme 2. Plausible Biogenetic Pathway for 2.
- S26. Calculated ECD and experimental ECD spectra of 1.
- S27. Calculated UV and experimental UV spectra spectrum of 1.
- S28. Energies of the conformers with Boltzmann distribution over 1%.
- S29. The conformers with Boltzmann distribution over 1% of 1.

1. EXPERIMENTAL SECTION

1.1 General Experimental Procedures. Optical rotations were measured on a JASCO P-1020 polarimeter at room temperature. IR spectra were recorded on a Bruker Tensor 27 spectrometer using KBr pellets. 1D-and 2D-NMR spectra were measured on a Bruker AVIII-500 NMR instrument (¹H: 500 MHz, ¹³C: 125 MHz) with TMS as an internal standard. HRESIMS was obtained on an Agilent 6529B Q-TOF mass instrument using electrospray ionization. All solvents used were of analytical grade (Jiangsu Hanbang Science and Technology. Co., Ltd.). Silica gel (200-300 mesh, Qingdao Haiyang Chemical Co., Ltd, China), MCI (Mitsubishi, Japan) and RP-C18 silica (40-63 μ m, FuJi, Japan) were used for column chromatography. Preparative HPLC was carried out using a Shimadzu LC-8A equipped with a Shim-pack RP-C18 column (20 × 200 mm, i.d.) with a flow rate of 10.0 mL/min, detected by a binary channel UV detector. Fractions obtained from CC were monitored by TLC with precoated silica gel GF254 (Qingdao Haiyang Chemical Co., Ltd, China) plates.

1.2 Plant Material. Air-dried fruits of *Trichilia connaroides* were collected from Xishuangbanna, Yunnan Province, People's Republic of China, in June 2014, and were identified by Professor Shun-Cheng Zhang, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, People's Republic of China. A voucher specimen (No. AA201308) was deposited in the Department of Natural Medicinal Chemistry, China Pharmaceutical University.

1.3 Extraction and isolation. The air-dried fruits (5.0 kg) were refluxed with 95% industrial ethanol ($3 \times 5L$). After removal of the solvent under reduced pressure, the

crude extract (500.0 g) was suspended in H₂O (1.5L) and partitioned with petroleum ether (3 × 1 L) and ethyl acetate (3 × 1 L), successively. The ethyl acetate extract (100.0 g) was subjected to a silica gel column, eluted with CH₂Cl₂ and MeOH (100:1, 50:1, 25:1, 10:1, 5:1, v/v) to give five fractions (A1-A5). Fraction A5 (10.5 g) was chromatographed over a MCI column, eluted with a gradient system of MeOH-H₂O (50:5, 75:25, 95:5, v/v) to give three fractions (A5A-A5C). The A5B fraction was chromatographed over a silica gel column and purified by semi-preparative-HPLC with MeOH-H₂O (45:55, v/v) as eluent, respectively, to get **1** (3 mg). Fraction A4 was chromatographed over a MCI to afford three fractions (A4A-A4C) with a gradient elution of MeOH-H₂O (50:5, 75:25, 95:5, v/v). The fraction A4B was chromatographed over an ODS (100 g) column, and purified be semi-preparative-HPLC with MeOH-H₂O (50:50, v/v) to obtain **2** (20 mg), and **3** (10mg).

1.4 Computational Section

The calculation of ECD have been extensively applied in the determination of the absolute configurations of natural chiral molecules. Systematic conformation analyses for compound **1** were performed via Confab using the MMFF94 force field calculation. Conformers with Boltzmann distribution over 1% were chosen as the beginning for ECD calculations. Ground-state geometries were optimized at B3LYP/6-311G** level by the Gaussian09 program package and vibrational analysis was done to confirm these minima. the Self-Consistent Reaction Field method (SCRF) with the C-Polarizable Continuum Model (CPCM) was further employed to perform the conformational analysis and ECD calculation in methanol solution at B3LYP/6-

311G** level. The theoretical ECD spectra was obtained based on the Boltzmann weighting of each conformers. Comparisons of the experimental and calculated spectra were done using SpecDis with UV shift (-18 nm) and a half-bandwidth of 0.3 eV. The absolute configurations of **1** were assigned as1S,3S,4R,5R,10S,13S,8E,14E,17R, and 30S, respectively.

1.5 NO production bioassay

The RAW264.7 cell line was purchased from the Chinese Academic of Sciences. The cells were cultured in DMEM containing 10% FBS with penicillin (100 U/mL) and streptomycin (100 U/mL) at 37 °C in a humidified atmosphere with 5% CO₂. The cells were allowed to grow in 96-well plates with 1×10^5 cells/ well to treat test compounds. After being incubated for 2 h, the cells were treated with 100 ng/mL of LPS for 18 h. Nitrite in culture media was measured to assess NO production using Griess reagent. The absorbance at 540nm was measured on a microplate reader. N-monomethyl-L-arginine was used as the positive control. Cytotoxicity was determined by the MTT method, after 48 h incubation with test compounds. All the experiments were performed in three independent replicates.

1.6 Single Crystal X-ray Diffraction

Crystal data of 1: $C_{27}H_{34}O_{10}$ (MeOH), Crystal Data for $C_{28}H_{38}O_{11}$ (M = 550.58 g/mol): orthorhombic, space group P212121 (no. 19), a = 10.03740(10) Å, b = 12.63980(10) Å, c = 21.0812(2) Å, V = 2674.59(4) Å³, Z = 4, T = 290(2) K, μ (CuK α) = 0.880 mm⁻¹, Dcalc = 1.367 g/cm³, 22499 reflections measured (8.388 $\leq 2\theta \leq 139.342$), 4923 unique ($R_{int} = 0.0210$, $R_{sigma} = 0.0138$) which were used in all calculations. The final R1 was 0.0393 [I > 2σ (I)] and wR2 was 0.1114 (all data). The Flack parameter is 0.06 (4). The crystallographic data for **2** was deposited in the Cambridge Crystallographic Data Centre (deposition number CCDC 1400291). Copies of these data be obtained free of charge the Internet can via at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK [fax (+44) 1223 336 003; email: deposit@ccdc.cam.ac.uk].

912 $\|$]| OF 1200 133 91~ 51-2 86 F20 g 88 مَا مَا 18 6 7.0 7.5 5.5 4.0 3.5 fl (ppn) 8.0 6.0 5.0 4.5 0.0 6,5 1.5 1.0 0.5 3.0 2.5

2. NMR, IR, HRESIMS, and UV Spectra

S1. ¹H NMR (500 MHz; MeOD-d₄) spectrum of 1

S2. ¹³C NMR (125 MHz; MeOD-d₄) spectrum of 1

S4. HMBC (MeOD- d_4) spectrum of **1**

S5. ROESY (MeOD-d₄) spectrum of 1

S6. IR spectrum of 1

Elemental Composition Calculator

Target m/z:	519.2014	Result type:	Positive ions	Species:	$[M+H]^+$	
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)				
Ion Formula		Calcalated m/z		PPM Error		
C30H31O8			519.2013 -0.11			

Agilent Technologies

S8. UV spectrum of 1

S10. ¹³C NMR (125 MHz; Acetone-*d*₆) spectrum of 2

S12. HMBC (Acetone- d_6) spectrum of **2**

S14. IR spectrum of 2

Elemental Composition Calculator

Target m/z:	541.2043	Result type:	Positive ions	Species:	[M+Na] ⁺	
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)				
Ion Formula		Calcalated m/z		PPM Error		
C27H34NaO10		541.2044		0.26		

Agilent Technologies

S15. HRESIMS of 2

S16. UV spectrum of 2

S17. ¹H NMR (500 MHz; CDCl₃) spectrum of **3**

S18. ¹³C NMR (125 MHz; CDCl₃) spectrum of **3**

S20. HMBC (CDCl₃) spectrum of **3**

S21. ROESY (CDCl₃) spectrum of **3**

S22. IR spectrum of **3**

Elemental Composition Calculator

Target m/z:	589.2403	Result type:	Positive ions	Species:	[M+Na] ⁺	
Elements:		C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)				
Ion Formula		Calcalated m/z		PPM Error		
C32H38NaO9			589.2408 0.8		5	

Agilent Technologies

S23. HRESIMS of 3

S24. UV spectrum of 3

S25. Scheme 2. Plausible Biogenetic Pathway for 2.

S26. Calculated ECD and experimental ECD spectra of 1.

S27. Calculated UV and experimental UV spectra of 1.

Method	Conf	Energy (A.U.)	Energy (kcal/mol)	Percent (%)
	1		275.82576	75.97
MINIFF94	2		276.46871	23.72
	1	-1763.382337	-1106539.114	45.74
B3LYP/6-311G**	2	-1763.382498	-1106539.215	54.26

S28. Energies of the conformers with Boltzmann distribution over 1%.

S29. The conformers with Boltzmann distribution over 1% of 1.