Synthesis of 8-Heteroaryl Nitroxoline Analogues via One-Pot Sequential Pd-Catalyzed Coupling Reactions

Supplementary Information

Helena Brodnik,^a Franc Požgan,^a and Bogdan Štefane^{a*}

^aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana,

Slovenia

E-mail:bogdan.stefane@fkkt.uni-lj.si

Table 1. C-H activation of furan with 8-bromoquinoline (5 equivalents of furan were used).

Entry	Pd-catalyst(mol-%)	Ligand (mol-%) [additive]	Base	Solvent	т (°С)	Reaction time (h)	Conversion (%) ^a	4a:5a
1	Pd(OAc) ₂ (0.5)	PPh₃ (1.0)	KOAc (2 eq)	DMAc	150	24	0	-
2	Pd(OAc) ₂ (0.5)	-	KOAc (2 eq)	DMAc	150	24	0	-
3	Pd₂(dba)₃ (0.5)	-	KOAc (2 eq)	DMAc	150	24	0	-
4	PdCl ₂ (0.5)	PPh₃ (1.0)	KOAc (2 eq)	DMAc	150	24	0	-
5	Pd(acac) ₂ (0.5)	PPh₃ (1.0)	KOAc (2 eq)	DMAc	150	24	23	1:1
6	Pd(TFA)₂ (0.5)	PPh₃ (1.0)	KOAc (2 eq)	DMAc	150	24	0	-
7	Pd(PPh ₃) ₄ (0.5)	-	KOAc (2 eq)	DMAc	150	24	28	1:2
8	Catalyst A (0.5)	-	KOAc (2 eq)	DMAc	150	24	41	1:1.5
9	PdCl ₂ (dippp) (0.5)	PivOH (5.0)	K ₂ CO ₃ (2 eq)	DMAc	150	24	33	2:1
10	PdCl ₂ (dippp) (0.5)	-	K ₃ PO ₄ (2 eq)	DMAc	150	24	29	1:1
11	PdCl ₂ (dippp) (0.5)	-	KAcO(2 eq)	DMAc	150	24	23	1:1
12	Pd(OAc) ₂ (1.0)	Dppe (1.0)	KOAc (2 eq)	DMAc	150	24	29	1:2
13	Pd(OAc)₂ (5.0)	SPhos (10)	K₃PO₄ (2 eq)	NMP	150	48	100	1:2.4
14	Pd(OAc) ₂ (5.0)	SPhos (10)	K ₃ PO ₄ (2 eq)	NMP	120	48	61	2:1
15	Pd(OAc) ₂ (5.0)	SPhos (10)	K ₃ PO ₄ (2 eq)	Dioxane/H ₂ O 4/1 (v/v)	150	48	29	1:1
16	Pd(OAc)₂ (5.0)	SPhos (10) [Bu₄NBr (2 eq)]	K ₃ PO ₄ (2 eq)	NMP	150	24	61	1:1
17	Pd(OAc) ₂ (5.0)	SPhos (10) [Bu₄NBr (2 eq)]	K ₃ PO ₄ (2 eq)	NMP	150	48	88	1:1
18	Pd(OAc) ₂ (5.0)	PivOH (30)	K ₂ CO ₃ (2 eq)	DMAc	120	24	52	3:1
19	Catalyst A (5.0)	PivOH (30)	K ₂ CO ₃ (2 eq)	DMAc	150	24	96	1:4.5
20	Pd(OAc) ₂ (5.0)	(t-Bu)₃P (10)	K ₂ CO ₃ (2 eq)	Dioxane/H₂O 4/1 (v/v)	150	24	33	0:1

^aConversion was determined by ¹H NMR spectroscopy.

Table 2. C-H activation of 3a, 3b, and 3d-3f with 8-bromoquinoline (5 equivalents of 3a, 3b, and 3d-3f were used).

Heteroarene 3	Conversion-% ^a (ratio 4:5)			
furan (3a)	100 (1:2.4)			
thiophene (3b)	89 (3.3:1)			
1-methyl-1 <i>H</i> -pyrrole (3d)	82 (1:2)			
benzo[b]furan (3e)	73 (1:2.7)			
benzo[b]thiophene (3f)	100 (2:1)			

^aConversion was determined by ¹H NMR spectroscopy.

 Table 3. Coupling of 1 with (furan-3-yl)boronic acid under different reaction conditions.

Entry	Catalyst	Ligand	Solvent	Conversion (%) ^a
1	$Pd_2(dba)_3$	/	Toluene	50
2	PdCl ₂	PPh ₃	Toluene	33
3	Pd(acac) ₂	PPh₃	Toluene	83
4	Pd(TFA) ₂	PPh ₃	Toluene	100
5	Pd(C), 10%	/	Toluene	0
6	Pd(OAc) ₂	PPh ₃	Toluene	53
7	Pd(PPh ₃) ₄	/	Toluene	45
8	Pd(OAc) ₂	PPh ₃	1,4-Dioxane	77
9	Pd(OAc) ₂	PPh ₃	N-methyl-2-pyrrolidone	23
10	Pd(OAc) ₂	PPh ₃	2-Propanol	100
11	Pd(OAc) ₂	PPh ₃	Water	75
12	Pd(OAc) ₂	PPh ₃	1,4-Dioxane/water 4:1 (v/v)	95
13	Pd(TFA) ₂	PPh ₃	1,4-Dioxane	100
14	Pd(TFA) ₂	PPh ₃	N-methyl-2-pyrrolidone	11
15	Pd(TFA) ₂	PPh ₃	2-Propanol	100
16	Pd(TFA) ₂	PPh ₃	Water	63
17	Pd(TFA) ₂	PPh₃	1,4-Dioxane/water 4:1 (v/v)	80

^aConversion was determined by ¹H NMR spectroscopy.

Figure 1. X-ray crystal structure of compound 4I'.

Synthesis of Pd catalyst A^{1,2}

A mixture of Pd(OAc)₂ (84 mg, 0.375 mmol) and 2-amino-biphenyl (63 mg, 0.375 mmol) in toluene (anhydrous, 2 mL) was heated at 60 °C for 1 h, at which the initial red color of the reaction mixture faded and a grey precipitate had formed. The mixture was allowed to cool to r.t., at which the solvent was removed via cannula. The remaining solid was washed with toluene (anhydrous, 2 x 2 mL) and further suspended in acetone (anhydrous, 2 mL). After the addition of lithium chloride (48 mg, 1.125 mmol) the reaction mixture was stirred at room temperature for 24 h to give a dark orange homogenous solution. SPhos (162 mg, 0.394 mmol) was added portionwise over 5 min to which white precipitate had formed. The mixture was stirred for an additional 24 h after which 90 % of the solvent was removed under reduced pressure and the remaining solid was suspended in methyl tert-butyl ether (MTBE, 3 mL) and acetone (anhydrous, 0.3 mL). The product was collected by suction filtration, washed with water (3 x 3 mL) and dried under vacuum. White solid (205 mg, 76 %); mp = 181-183 °C; R_f (dichloromethane/methanol = 10/1) 0.28. FT-IR (ATR, neat): 3396, 3316, 2912, 2844, 1489, 1246, 1109, 1035, 1001, 780, 758, 723 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.47–7.45 (m, 1H), 7.40–7.31 (m, 2H), 7.22–7.17 (m, 5H), 7.06-7.05 (m, 2H), 6.94-6.91 (m, 1H), 6.70-6.59 (m, 4H), 4.79-4.61 (m, 2H), 3.76-3.66 (m, 6H), 2.04-0.80 (m, 20H). 13 C NMR (125 MHz, CDCl₃): δ 157.9, 151.5, 140.0, 139.6, 138.5, 138.2, 136.2, 135.3, 133.3, 133.2, 129.5, 128.9, 127.8 (2C), 127.6, 126.5, 126.4, 125.6, 125.1 (2C), 125.0, 124.5, 120.2, 118.9, 104.1, 103.5, 55.3 (2C), 37.0, 35.2, 31.4, 30.9, 28.6, 27.7, 27.6, 27.2 (2C), 26.2. ³¹P NMR (202 MHz, CDCl₃): δ 53.2. HRMS (ESI⁺): m/z calcd for C₃₈H₄₅NO₂PPd (M - HCl)⁺: 680.2238; found: 680.2236.

Compound 2

¹H NMR

Compound 4a

¹H NMR

Compound 4b

¹H NMR

Compound 4c

¹H NMR

Compound 4d

¹H NMR

Compound 4e

¹H NMR

Compound 4f

¹H NMR

Compound 4g

¹H NMR

Compound **4h** ¹H NMR

H276a.1.fid H276a

Compound 4i

¹H NMR

Compound 4j

¹H NMR

Compound 4k

¹H NMR

Compound 4I

¹H NMR

Compound 4m

¹H NMR

Compound 4n

¹H NMR

Compound 40

¹H NMR

Compound 4p

¹H NMR

Compound 4q

¹H NMR

Compound 4r

¹H NMR

Compound 4I'

¹H NMR

Compound 7a

¹H NMR

Compound 7b

¹H NMR

Compound **7c**

¹H NMR

Compound 7d

¹H NMR

Compound 7e

¹H NMR

Compound 7f

¹H NMR

Compound 7g

¹H NMR

Compound 7h

¹H NMR

Compound 7ca

¹H NMR

Compound 7ea

¹H NMR

Compound 7i

¹H NMR

Compound 7j

¹H NMR

Compound 7k

¹H NMR

Compound 7I

¹H NMR

Compound 7m

¹H NMR

Compound 7n

¹H NMR

Compound 70

¹H NMR

Compound 7p

¹H NMR

Compound 7q

¹H NMR

Compound 7s

¹H NMR

Compound 7t

¹H NMR

Compound 7qa

¹H NMR

Compound 7ra

¹H NMR

Compound 7u

¹H NMR

Compound 8

¹H NMR

Compound 9

¹H NMR

Pd catalyst A

¹H NMR

³¹P NMR

¹ T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073.
 ² J. Albert, J. Granell, J. Zafrilla, M. Font-Barida, X. Solans, J. Organometallic Chem. 2005, 690, 422.