Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Triflate-Functionalized Calix[6]arenes as Versatile Building Blocks: Application to the Synthesis of an Inherently Chiral Zn(II) Complex

Sara Zahim,[†] Roy Lavendomme,^{†,§} Olivia Reinaud,[£] Michel Luhmer,[§] Gwilherm Evano^{†,} and Ivan Jabin^{†,}*

† Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D.
Roosevelt 50, CP160/06, B-1050 Brussels, Belgium

[§] Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium.

£ Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques (CNRS UMR 8601), Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.

ijabin@ulb.ac.be

General Informations.

All reactions using dry solvents were conducted under argon atmosphere employing standard techniques. All solvents were reagent grade. Tetrahydrofuran and dichloromethane were respectively freshly distilled from sodium/benzophenone and calcium hydride under argon. Toluene (99.9%, Extra Dry over Molecular Sieve, Stabilized, AcroSeal) was purchased from ACROS Organics. Reactions were magnetically stirred and monitored by thin layer chromatography using Merck-Kiesegel 60F254 plates or Macherey-Nagel Pre Coated TLC-sheets Alugram® Xtra Sil/UV254. Flash chromatography was performed with silica gel 60 (particle size 35-70 μ m) supplied by Merck. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. All organic layers were dried over Wa filters (hydrophobic phase separation papers, MN 616 WA (1/4)) supplied by Macherey-Nagel.

¹H NMR spectra were recorded at 300, 400 or 600 MHz. ¹³C NMR spectra were recorded at 75, 100 or 150 MHz. Traces of residual solvents were used as internal standard for ¹H (7.26 ppm for CHCl₃) and for ¹³C (77.16 ppm for CDCl₃). CDCl₃ was filtered through a short column of basic alumina to remove traces of DCl. Most of the ¹H NMR spectra signals were assigned on the basis of 2D NMR analyses (COSY, ROESY, HSQC, HMBC). Despite extensive signal averaging (thousands of scans), most ¹³C NMR spectra showed poor signalto-noise ratio because of the asymmetric functionalization pattern of the compounds and thus cannot be described (see Supplementary Information). Chemical shifts are quoted on the δ scale, coupling constants (J) are expressed in Hertz (Hz). Abbreviations: s for singlet; d for doublet; t for triplet; br for broad signal; m for massif. Melting points were recorded on a Stuart Scientific Analogue SMP11 or Büchi Melting Point B-545. IR analyses were performed with a FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. ESI-MS and HRMS analyses were performed using methanol as solvent. Low resolution mass spectra were recorded with an ESI-MS spectrometer equipped with an ion-trap. Highresolution mass-spectra were obtained on Quadrupole Time of Flight (QTOF) 6520 series from Agilent Technologies, used in 4 GHz mode (High resolution mode), source was an electrospray ionization source (ESI), Multimode source (used in APCI mode) or a (MALDI-TOF MS LD+).

Figure S1. ¹H spectra of a) $X_6H_4Tf_2$ 2 and b) $X_6H_3Tf_3$ 3 (300 MHz, CDCl₃, 25 °C).

Figure S2. ¹H NMR spectrum of **2** (600 MHz, $CDCl_3$, 80 °C). S = residual solvents.

Figure S5. ¹H-¹³C HMBC spectrum of **2** (8 Hz, 14.1 Tesla, CDCl₃, 80 °C).

Figure S6. ¹H NMR spectrum of **3** (600 MHz, CDCl₃:CD₃OD, 9:1, 5 °C). S = residual solvents.

The ¹³C NMR spectrum of **3** was obtained using a 5 mm J-Young valve NMR tube and about 45 mg of compound in 600 μ L of solvent (CDCl₃:CD₃OD; 9:1). It was recorded at 9.4 T (~100 MHz) and 25°C using the same parameters as indicated here above but 60000 scans (60 h of measurement). 57 signals are expected, among which 30 signals of quaternary carbon atoms and 3 quadruplets for the CF₃ groups. The spectrum of **3** also shows superimposed signals. In addition, several signals exhibit FWHH (Full Width at Half Height) values ranging between 10 and 20 Hz; in contrast, the FWHH is about 2 Hz for the peaks of CD₃OD (including line broadening of 1 Hz due to exponential apodization of the free induction decay).

Figure S7. ¹³C NMR spectrum of 3 (100 MHz, CDCl₃:CD₃OD, 9:1, 25 °C). S = residual solvents.

Figure S8. Regions of the dqfCOSY spectrum of **3** (600 MHz, CDCl₃:CD₃OD, 9:1, 5 °C). Left: low level cut-off showing ArH-ArH 4 J correlations. Right: high level cut-off showing ArCH₂Ar 2 J correlations.

Figure S9. Edited ¹H-¹³C HSQC spectrum of 3 (14.1 Tesla, CDCl₃:CD₃OD, 9:1, 5 °C).

Figure S10. ¹H-¹³C HMBC spectrum of **3** (8 Hz, 14.1 Tesla, CDCl₃:CD₃OD, 9:1, 5 °C).

5.0 4.5 (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 3.5

Figure S11. ¹H NMR spectrum of **4** (400 MHz, CDCl₃, 25 °C). S = residual solvents.

Figure S12. ¹³C NMR spectrum of 4 (100 MHz, CDCl₃, 25 °C). S = residual solvent.

Figure S13. Edited ¹H-¹³C HSQC spectrum of **4** (9.4 Tesla, CDCl₃, 25 °C).

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 (ppm)

Figure S14. ¹H NMR spectrum of 5 (300 MHz, CDCl₃, 25 °C). S = residual solvents.

Figure S15. ¹³C NMR spectrum of 5 (75 MHz, CDCl₃, 25 °C). S = residual solvents.

Figure S16. Edited ¹H-¹³C HSQC spectrum of **5** (7.0 Tesla, CDCl₃, 25 °C).

Figure S17. ¹H NMR spectrum of **6** (400 MHz, CDCl₃, 25 °C). S = residual solvent; G = grease.

Figure S18. ¹³C NMR spectrum of 6 (100 MHz, CDCl₃, 25 °C). S = residual solvent.

Figure S19. Edited ¹H-¹³C HSQC spectrum of 6 (9.4 Tesla, CDCl₃, 25 °C).

Figure S20. ¹H NMR spectrum of 7 (300 MHz, CDCl₃, 25 °C). S = residual solvent.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 (ppm)

Figure S21. ¹H NMR spectrum of **8** (600 MHz, $CDCl_3$, 25 °C). S = residual solvent.

Figure S22. ¹³C NMR spectrum of 8 (100 MHz, CDCl₃, 25 °C). S = residual solvent.

Figure S25. uqrCOS T spectrum of 8 (600 MHz, CDC1₃, 25 °C).

Figure S24. Edited ¹H-¹³C HSQC spectrum of 8 (14.1 Tesla, CDCl₃, 25 °C).

Figure S25. ¹H-¹³C HMBC spectrum of **8** (8 Hz, 14.1 Tesla, CDCl₃, 25 °C).

Figure S26. ¹H NMR spectrum of $[8.Zn](TfO)_2$ (600 MHz, CDCl₃, 25 °C). S = residual solvents; G = grease.

The ¹³C NMR spectrum of $[8.Zn](TfO)_2$ was obtained using a 5 mm Shigemi NMR microtube and about 11 mg of compound dissolved in 300 µL of solvent (CDCl₃). It was recorded at 14.1 T (~150 MHz) and 25°C using the following acquisition parameters: relaxation delay of 3 s, pulse flip angle of 30°, acquisition time of 0.6 s, spectral window of 270 ppm centered at about 110 ppm and 65000 scans (65 h of measurement). 79 signals are expected for $[8.Zn](TfO)_2$, among which 36 signals of quaternary carbon atoms and 1 quadruplet for the CF₃ group (TfO⁻). Only 70 signals were observed due to some overlapping signals.

Figure S27. ¹³C NMR spectrum of $[8.Zn](TfO)_2$ (150 MHz, CDCl₃, 25 °C). S = residual solvents; G = grease.

Figure S29. Edited ¹H-¹³C HSQC spectrum of [8.Zn](TfO)₂ (14.1 Tesla, CDCl₃, 25 °C).

Figure S30. ¹H-¹³C HMBC spectrum of [8.Zn](TfO)₂ (8 Hz, 14.1 Tesla, CDCl₃, 25 °C).

Figure S31. ROESY spectrum of [8.Zn](TfO)₂ (τ_m: 500 ms, 600 MHz, CDCl₃, 25 °C).

Figure S32. Region of the ROESY spectrum of $[8.Zn](TfO)_2$ (τ_m : 500 ms, 600 MHz, CDCl₃, 25°C). Boxed correlations show Overhauser effects between the aromatic ¹H of the self-included benzyl group and the ¹H of two Ar-*t*Bu groups.

Figure S33. DOSY (Dbppste_cc) spectra of a mixture of 8 and [8.Zn](TfO)₂ (600 MHz, CDCl₃, 25 °C).

Figure S34. ¹H spectra of a) **8**, b) **[8.Pb](ClO₄)**₂ and c) **[8.Hg](ClO₄)**₂ (300 MHz, CD₃CN:CDCl₃ 2:1, 25 °C). The complexes **[8.Pb](ClO₄)**₂ and **[8.Hg](ClO₄)**₂ were respectively obtained by the addition of 1 equivalent of Pb(ClO₄)₂ and Hg(ClO₄)₂ to the ligand **8** in a mixture of CD₃CN/CDCl₃ (2:1).

Tf ₂ O (equiv.)	Base	Solvent	$T(^{\circ}\mathrm{C})$	<i>t</i> (h)	$1:1^{+10\text{Tf}}:1^{+20\text{Tf}}$ (2): $1^{+30\text{Tf}}$ (3): $1^{+40\text{Tf}}:1^{+50\text{Tf}}$ ratio ^{<i>a</i>}	Yields $(\%)^b$ of 2 and 3
3	Pyridine (6 equiv.)	DCM	25	24	20:2:30:35:11:2	-
4	Pyridine (8 equiv.)	DCM	25	24	15:1:25:35:15:9	30^c and 24^d
5	Pyridine (8 equiv.)	DCM	25	48	3:2:40:38:17:0	_
5	Pyridine (10 equiv.)	DCM	25	24	0:0:0:0:95:5	-
3	K ₂ CO ₃ (4 equiv.)	DCM	25	2	65:20:15:0:0:0	-
3	K ₂ CO ₃ (3 equiv.)	DCM	25	24	55:40:5:0:0:0	-
3	K ₂ CO ₃ (3 equiv.)	MeCN	25	24	30:55:15:0:0:0	_
3	K ₂ CO ₃ (3 equiv.)	DCM	25	48	30:50:20:0:0:0	_
6	K ₂ CO ₃ (6 equiv.)	DCM	25	48	10:10:75:5:0:0	-
3	DMAP (5 equiv.)	Acetone	25	24	70:30:0:0:0:0	_
2.5	DMAP (2.5 equiv.)	DCM	40	5	0:0:90:10:0:0	71 ^c
5	Cs ₂ CO ₃ (3 equiv.)	DCM	25	24	0:5:45:40:10:0	_
2.5	Cs ₂ CO ₃ (4 equiv.)	DCM	25	3.5	5:5:50:40:0:0	31^c and 37^d

Table S35: Reaction conditions for the selective formation of $X_6H_4Tf_2$ 2 and $X_6H_3Tf_3$ 3 from calix[6]arene 1.

^{*a*} Determined by ESI-MS analysis of the reaction mixture.

^b Calculated after flash chromatography purification.

^c Yield for $X_6H_4Tf_2$ **2**.

^{*d*} Yield for $X_6H_3Tf_3$ **3**.