Supporting Information

Marine AChE inhibitors isolated from *Geodia baretti*: Natural compounds and their synthetic analogs

Elisabeth K. Olsen,^a Espen Hansen,^b Lindon Moodie,^c Johan Isaksson,^d Kristina Sepčić,^e Marija Cergolj, ^{e,f} Johan Svenson^{g,*}, Jeanette H. Andersen^{b,*}

^aMabCent-SFI, University of Tromsø, Breivika, N-9037, Tromsø, Norway
^bMarbio, University of Tromsø, Breivika, N-9037, Tromsø, Norway
^cDepartment of Chemistry, University of Umeå, SE-901 87, Umeå, Sweden
^dDepartment of Chemistry, University of Tromsø, Breivika, N-9037 Tromsø, Norway
^eDepartment of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
^fDepartment of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
^gDepartment of Chemistry, Materials and Surfaces SP Technical Research Institute of Sweden, Box 857, SE-501 15 Borås, Sweden
*Authors to who correspondence should be addressed. Johan Svenson. Tel.: +46-706-855075; e-mail: Johan.svenson@sp.se; Jeanette H. Andersen. Tel.: +47- 776 49261: e-mail: Jeanette.h.andersen@uit.no

Contents

Figure S1. High-resolution MS spectrum of 1

Figure S2. High-resolution MS spectrum of 2.

Figure S3. High-resolution MS spectrum of 3.

Figure S4. High-resolution MS spectrum of 4.

Table S1 Experimental parameters for acquired NMR spectra

Figure S5. Correlation plots between neural network based predicted chemical shifts and experimental chemical shifts for **4**

Figure S6. ¹H-NMR spectrum of 4 in methanol- d_4 .

Figure S7. ¹³C-NMR spectrum of **4** in methanol- d_4 .

Figure S8. ¹H-¹H COSY spectrum of **4** in methanol- d_4 .

Figure S9. ¹H-¹H COSY spectrum of **4** in methanol- d_4 .

Figure S10. ROSEY spectrum of 4 in methanol- d_4 .

Figure S11. ROSEY spectrum of **4** in methanol- d_4 .

Figure S12. gHSQC spectrum of **4** in methanol- d_4 .

Figure S13. gHMBC spectrum of 4 in methanol- d_4 .

Figure S14. ¹H-NMR spectrum of **6a** in methanol- d_4 .

Figure S15. ¹³C-NMR spectrum of **6a** in acetone- d_6 .

Figure S16. ¹H-NMR spectrum of **6d** in methanol- d_4 .

Figure S17. ¹³C-NMR spectrum of **6d** in methanol- d_4 .

Figure S18. ¹H-NMR spectrum of **8c** in methanol- d_4 .

Figure S19. ¹³C-NMR spectrum of 8c in methanol- d_4 .

Figure S20. ¹H-NMR spectrum of **9a** in methanol- d_4 .

Figure S21. ¹³C-NMR spectrum of **9a** in methanol- d_4 .

Figure S22. ¹H-NMR spectrum of **9b** in methanol- d_4 .

Figure S23. ¹³C-NMR spectrum of **9b** in methanol- d_4 .

Figure S24. ¹H-NMR spectrum of **9c** in acetone- d_6 .

Figure S25. ¹³C-NMR spectrum of **9c** in methanol- d_4 .

Figure S26. ¹H-NMR spectrum of **9d** in methanol-*d*₄.

Figure S27. ¹³C-NMR spectrum of **9d** in methanol- d_4 .

Figure S1. High-resolution MS spectrum of 1.

Figure S2. High-resolution MS spectrum of 2.

Figure S3. High-resolution MS spectrum of 3.

Figure S4. High-resolution MS spectrum of 4.

Table S1 Experimental parameters for acquired NMR spectra in methanol- d_4 and methanol-

Experiment	Pulse	Parameters
	sequence	
1D ¹ H	Proton	sw: 16 ppm, complex points: 24k, nt: 64, d1: 10s
	wet1D	sw: 16 ppm, complex points: 24k, nt: 64, d1: 1.5s, wet
		suppression @ 22ms pulse width (wet)
	dpfgsewater	sw: 20 ppm, complex points: 36k, nt: 64, d1: 1s, water flipback
¹ H, ¹ H-	gDQCOSY	sw: 16 ppm, complex points: 4000x200, nt: 8, d1: 1s, wet,
DQFCOSY		homospoils, gradient selected
¹ H, ¹ H-ROESY	ROESYAD	sw: 14 ppm, complex points: 2000x128, nt: 8, d1: 1s, mix: 300ms
		@ 8188 Hz, wet, homospoils, adiabatic
¹ H, ¹³ C-HSQC	gc2hsqcse	sw: 16x220 ppm, complex points: 2000x200, nt: 32, ¹ J _{CH} : 146 Hz,
		ME, BIP, wet, homospoils, gradient selected
¹ H, ¹³ C-	gc2hmbc	sw: 16x240 ppm, complex points: 1440x256, nt: 32, $^{n}\!J_{CH}\!$: 8 and 3
HMBC		Hz, dual ¹ J _{CH} suppression: 165 and 130 Hz, BIP, wet, homospoils,
		gradient selected

*d*₃ at 25 ⁰C

Figure S5. Correlation plots between neural network based predicted chemical shifts and experimental chemical shifts for ¹³C, mean error: 2.3 ppm, and ¹H, mean error: 0.18 ppm.

Figure S6. ¹H-NMR spectrum of **4** in methanol- d_4 .

Figure S7. ¹³C-NMR spectrum of **4** in methanol- d_4 .

Figure S8. ¹H-¹H COSY spectrum of **4** in methanol- d_4 .

Figure S9. ¹H-¹H COSY spectrum of **4** in methanol- d_4 .

Figure S10. ROSEY spectrum of **4** in methanol- d_4 .

Figure S11. ROSEY spectrum of **4** in methanol- d_4 .

Figure S12. gHSQC spectrum of **4** in methanol- d_4 .

Figure S13. gHMBC spectrum of **4** in methanol- d_4 .

Figure S15. ¹³C-NMR spectrum of **6a** in acetone- d_6 .

Figure S16. ¹H-NMR spectrum of **6d** in methanol- d_4 .

Figure S17. ¹³C-NMR spectrum of **6d** in methanol- d_4 .

Figure S18. ¹H-NMR spectrum of **8c** in methanol- d_4 .

Figure S19. ¹³C-NMR spectrum of **8c** in methanol- d_4 .

Figure S20. ¹H-NMR spectrum of **9a** in methanol- d_4 .

Figure S21. ¹³C-NMR spectrum of **9a** in methanol- d_4 .

Figure S22. ¹H-NMR spectrum of **9b** in methanol- d_4 . The 1' and Me-peak overlaps.

Figure S23. ¹³C-NMR spectrum of **9b** in methanol- d_4 .

Figure S24. ¹H-NMR spectrum of **9c** in acetone- d_6 .

Figure S25. ¹³C-NMR spectrum of **9c** in methanol- d_4 .

Figure S26. ¹H-NMR spectrum of **9d** in methanol- d_4 . The singlet of 2 appears in the middle of the 6 doublet. The peaks of 1' and 2' are overlapping.

Figure S27. ¹³C-NMR spectrum of **9d** in methanol- d_4 .

