Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Construction of enantioenriched polysubstituted hexahydropyridazines via a sequential multicatalytic process merging palladium catalysis and aminocatalysis

Anne-Sophie Marques, Maxime Giardinetti, Jérôme Marrot, Vincent Coeffard,* Xavier Moreau,* and Christine Greck

Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45, Avenue des Etats-unis, 78035, Versailles Cedex, France.

Table of contents

1. General Remarks	S2
2. Screening results of the multicatalytic process	S3
3. Experimental procedure and Characterization data	S4
4. ¹ H and ¹³ C NMR Spectra	S15
5. HPLC Traces	S29

General Remarks

¹H NMR (200 or 300 MHz) and ¹³C (50 or 75 MHz) spectra were recorded with Brüker Avance 200, or 300 MHz spectrometers using tetramethylsilane as an internal standard. Chemical shifts (δ) are given in parts per million and coupling constants are given as absolute values expressed in Hertz.

Infrared spectra were recorded with a Nicolet iS10 Infrared FT ATR spectrometer. Optical rotation values were measured at room temperature with a Perkin-Elmer 241 polarimeter.

Electrospray ionization (ESI) mass spectra were collected using a Q-TOF instrument supplied by WATERS. Samples (solubilized in ACN at 1mg/mL and then diluted by 1000) were introduced into the MS *via* an UPLC system whilst a Leucine Enkephalin solution was co-injected *via* a micro pump.

Thin-layer chromatography (TLC) was carried out on aluminium sheets precoated with silica gel 60 F_{254} (Merck). Column chromatography separations were performed using Merck Kieselgel 60 (0.040-0.060 mm).

HPLC analyses were performed with a JASCO machine equipped with a UV/Vis detector at 30°C employing chiral AD column. HPLC grade heptane and isopropyl alcohol were used as the eluting solvents. HPLC traces were compared to racemic samples prepared by using benzylamine as the catalyst.

Tetrahydrofuran and dichloromethane were dried prior to use by distillation from standard drying agents.

Screening results

Two-step procedure

Sequential multicatalysis

Cat (Palladium catalyst)			Pd(PPh ₃) ₄ Cat I		Pd(OAC) ₂ (<i>R</i>)-BINAP Cat II	Pd(OA (<i>S</i>)-BIN Cat I	C) ₂ IAP II
Entr	y [C] _{Step 1}	[C] _{Step 2}	cat.	х	У	yield	d.r.
1	1 M	0,08 M	Cat I	1.2	5	57%	3/1
2	1 M	0,08 M	Cat I	1.4	5	67%	3/1
3	0,8 M	0,07 M	Cat I	1.4	5	55%	2.8/1
4	0,8 M	0,07 M	Cat I	1.4	10	69%	2.3/1
5	1 M	0,08 M	Cat II	1.4	5	66%	2.5/1
6	1 M	0,08 M	Cat III	1.4	5	70%	2.5/1

Experimental Procedure

Procedure for the synthesis of (1)

Aldehyde 1 was synthetized according to the three-step sequence depicted below.

General procedure for the synthesis of compounds 4

To a suspension NaH (60% in oil, 3.17 mmol, 1.2 equiv.) in DMF (7 mL) was added a solution of benzyl cyanide derivatives 3^1 (2.64 mmol, 1 equiv.) in DMF (7 mL) at 0°C. The solution was stirred for 1h a solution of 5-iodopentan-1,2-diene² (3.17mmol, 1.2 equiv.) in DMF (5 mL) was added at this temperature. The reaction mixture was stirred at 0°C for 0.5h and an additional 0.5h at room temperature. The reaction mixture was quenched by addition of a saturated aqueous NH₄Cl solution and the mixture was extracted with EtOAc. The organic layers were combined, washed twice with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ Et₂O, 95/5) to afford the aldehyde **1a** (160 mg, 33%) or aldehyde **1b** (153mg, 27%)

¹ O. Yabe, H. Mizufune and T. Ikemoto, *Synlett*, 2009, **8**, 1291-1294.

² W. G. Dauben and G. Shapiro, J. Org. Chem., 1984, 49, 4252-4258.

General procedure for the synthesis of aldehydes 1

Compound **4** (0.7 mmol) was dissolved in DCM (4 mL). The solution was cooled down to -78°C and a solution of DIBAL (1M in cyclohexane, 0.84 mL, 0.84 mmol, 1.2 equiv.) was added dropwise. The reaction mixture was stirred at -78°C for 3h, quenched by addition of MeOH. The mixture was treated with an aqueous HCl solution (1N) and extracted with EtOAc. The organic layers were combined, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/Et₂O, 95/5) to afford the aldehyde **1a** (40 mg, 40%) or **1b** (60 mg, 40%).

2-phenylhepta-5,6-dienenitrile 4a

¹**H** NMR (300 MHz, CDCl₃) δ (ppm) = 7.44-7.29 (m, 5H), 5.13 (quint, *J* = 6.4 Hz, 1H), 4.76 (dt, *J* = 6.4 and 3.3 Hz, 2H), 3.88 (dd, *J* = 8.3 and 6.4 Hz, 1H), 2.23-1.92 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 208.7, 135.7, 129.1 (2C), 128.1, 127.3 (2C), 120.8, 88.2, 76.2, 36.4, 34.8, 25.2. IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 3031.4, 2929.7, 2859.1, 2239.8, 1954.6. HRMS (ESI) Calcd for C₁₃H₁₄N [M + H]⁺: 184.1126, Found: 184.1132.

2-(4chlorophenyl)-hepta-5,6-dienenitrile 4b

¹H NMR (300 MHz, CDCl₃) δ (ppm) = 7.44-7.29 (m, 5H), 5.13 (quint, J = 6.4 Hz, 1H), 4.76 (dt, J = 6.4 and 3.3 Hz, 2H), 3.88 (dd, J = 8.3 and 6.4 Hz, 1H), 2.23-1.92 (m, 4H).
¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 208.8, 134.3, 129.5 (2C), 128.8 (2C), 127.4, 120.4, 88.1, 76.4, 36.0, 34.8, 25.1.
IR (neat) υ□□ (cm⁻¹) = 2926.6, 2859.5, 2240.0, 1954.4.

2-phenylhepta-5,6-dienal 1a

¹H NMR (300 MHz, CDCl₃) δ (ppm) = 9.69 (d, J = 1.5 Hz, 1H), 7.40-7.28 (m, 3H), 7.21-7.18 (m, 2H), 5.08 (quint, J = 6.6 Hz, 1H), 4.70 (dt, J = 6.6 and 3 Hz, 1H), 4.69 (dd, J = 6.6 and 3 Hz, 1H), 3.62-3.57 (m, 1H), 2.25-2.16 (m, 1H), 2.03-1.79 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 208.8, 200.8, 136.2, 129.2 (2C), 129.1 (2C), 127.8, 89.2, 75.6, 58.4, 29.0, 25.5.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 3027.7, 2928.5, 2857.3, 2815.9, 2713.2, 1954.9, 1720.0. HRMS (ESI) Calcd for C₁₃H₁₄ONa [M + Na]⁺: 209.0942, Found: 209.0939.

2-(4-chlorophenyl)-hepta-5,6-dienal 1b

¹H NMR (300 MHz, CDCl₃) δ (ppm) = 9.67 (d, *J* = 1.6 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 5.07 (quint, *J* = 6.6 Hz, 1H), 4.70 (dt, *J* = 6.6 and 3.2 Hz, 1H), 3.59 (ddd, *J* = 7.8, 6.2 and 1.6 Hz, 1H), 2.25-2.14 (m, 1H), 2.04-1.75 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 208.8, 200.2, 134.7, 133.8, 130.4 (2C), 129.4 (2C), 89.0, 75.7, 58.7, 29.0, 25.4. IR (neat) $\cup \Box \Box$ (cm⁻¹) = 2923.5, 2857.0, 2815.8, 2714.5, 1955.1, 1721.0. HRMS (ESI) Calcd for C₁₃H₁₄OCl [M + H]⁺: 221.0733, Found: 221.0741.

General procedure for the multicatalytic access to cyclic hydrazines 7-15

Aldehyde 1 (1.2 equiv) was dissolved in chloroform (1 M). Catalyst 5 (5 mol%), DtBAD (1 equiv) and TFA (15 mol%) were respectively added and the solution was stirred at room temperature for 16h. After purging with argon, cesium carbonate (1.4 equiv), Pd(PPh₃)₄ (5 mol%), acetonitrile (0.08 M) and iodoaryl compound (1.4 equiv) were respectively added. Reaction mixture was heated at 75°C for 24h then filtered on a pad of celite and washed with DCM. The organic layer was concentrated under reduced pressure. The residue was purified by column chromatography (DCM/ Et₂O, 98/2) to afford a mixture of diastereomers which were separated by a second column chromatography (petroleum ether/EtO₂, 85/15).

Enantiomeric excess was determined for the minor diastereomer of compound 7 (94%) or 15 (93%).

The ee values of the compounds 8-14 were assigned by analogy with 7 (minor diastereomer) as the formation of the quaternary stereocenter (organocatalytic electrophilic amination) was conducted under the same conditions than 7.

¹H NMR (300 MHz, (CD₃)₂SO, 80°C) δ = 10.03 (s, 1H), 7.42-7.25 (m, 8H), 7.21-7.19 (m, 2H), 5.93 (bs, 1H), 5.47-5.37 (m, 1H), 5.34 (bs, 1H), 1.96 (td, *J*= 13.8 and 2.4 Hz, 1H), 1.86-1.79 (m, 1H), 1.59 (bd, *J* = 13.8 Hz, 1H), 1.57 (bs, 1H), 1.47 (bs, 9H), 1.28 (bs, 9H).
¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) δ = 198.6, 155.6, 153.6, 149.0, 140.2, 138.2, 128.7 (2C), 128.5 (2C), 128.0, 127.6, 127.3 (2C), 125.9 (2C), 113.0, 82.5 (2C), 82.1, 72.8, 30.7, 28.2 (3C), 28.1 (3C), 21.3.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2971.0, 2933.0, 2869.7, 1705.3, 1366.5, 1158.2.

HRMS (ESI) Calcd for C₂₉H₃₆N₂O₅Na [M + Na]⁺: 515.2522, Found: 515.2526.

 $[\alpha]_{D}^{20} = +5.0 \ (c \ 1.0, \text{CHCl}_3).$

Compound 7 (minor diastereomer)

¹**H NMR (300 MHz, CHCl₃, r.t.,** mixture of rotamers) δ = 9.73 (s, 1H), 7.69-7.31 (m, 10H), 6.16-5.83 (m, 1H), 5.34-4.91 (m, 2H), 2.46-1.73 (m, 4H), 1.53-1.47 (m, 9H), 1.38-1.30 (m, 9H).

¹³C NMR (75 MHz, CHCl₃, r.t., mixture of rotamers) δ = 194.8, 155.1, 154.7, 147.8, 140.4, 138.0, 128.4 (2C), 128.0 (2C), 127.6 (2C), 127.3, 126.9 (2C), 126.7, 113.4, 82.9, 81.9, 81.6, 71.5, 28.9, 28.2 (3C), 28.0 (3C), 23.8.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.3, 2926.6, 1723.2, 1705.7, 1689.4, 1380.2, 1366.8, 1164.2. HRMS (ESI) Calcd for C₂₉H₃₆N₂O₅Na [M + Na]⁺: 515.2522, Found: 515.2526. [α]_D²⁰ = +10.0 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, (CD₃)₂SO, 80°C) $\delta = 10.02$ (s, 1H), 7.39-7.28 (m, 5H), 7.20-7.13 (m, 4H), 5.89 (bs, 1H), 5.43-5.34 (m, 1H), 5.30 (s, 1H), 2.29 (s, 3H), 1.95 (bt, J = 14.1 Hz, 1H), 1.88-1.78 (m, 1H), 1.59 (bd, J = 14.1 Hz, 1H), 1.50 (bs, 1H), 1.47 (bs, 9H), 1.28 (bs, 9H).

¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) δ = 198.6, 155.6, 153.3, 148.8, 138.4, 137.4, 137.3, 129.3 (2C), 128.5 (2C), 127.6, 127.1 (2C), 125.9 (2C), 112.2, 82.4 (2C), 82.1, 72.8, 30.8, 28.2 (3C), 28.1 (3C), 21.4, 21.0.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.3, 2933.0, 2869.7, 1709.6, 1367.7, 1161.9.

HRMS (ESI) Calcd for $C_{30}H_{38}N_2O_5Na [M + Na]^+$: 529.2678, Found: 529.2673.

 $[\alpha]_{D}^{20} = +26.0 \ (c \ 1.0, \text{CHCl}_3).$

Compound 9 (major diastereomer)

¹H NMR (300 MHz, (CD₃)₂SO, 80°C) $\delta = 10.02$ (s, 1H), 7.39-7.34 (m, 2H), 7.30-7.28 (m, 1H), 7.21-7.19 (m, 5H), 7.10-7.08 (m, 1H), 5.90 (bs, 1H), 5.44-5.35 (m, 1H), 5.32 (s, 1H), 2.31 (s, 3H), 1.95 (bt, J = 14.4 Hz, 1H), 1.86-1.79 (m, 1H), 1.59 (bd, J = 14.4 Hz, 1H), 1.50 (bs, 1H), 1.47 (bs, 9H), 1.27 (bs, 9H).

¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) δ = 198.6, 155.7, 153.5, 149.1, 140.2, 138.3, 137.9, 128.7, 128.6, 128.5 (2C), 127.8, 127.6, 125.9 (2C), 124.4, 112.7, 82.4 (2C), 82.1, 72.8, 30.8, 28.2 (3C), 28.1 (3C), 21.4 (2C).

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2971.0, 2924.8, 2865.4, 1707.1, 1367.4, 1161.0.

HRMS (ESI) Calcd for $C_{30}H_{38}N_2O_5Na [M + Na]^+$: 529.2678, Found: 529.2675.

 $[\alpha]_{D}^{20} = +20.0 \ (c \ 1.0, \ CHCl_3).$

Mixture of diastereomers (9/1)

¹H NMR (300 MHz, CDCl₃, r.t.) $\delta = 10.24$ -9.77 (m, 1H), 7.40-7.31 (m, 3H), 7.23-7.12 (m, 6H), 6.26-6.07 (m, 1H), 5.26-4.90 (m, 2H), 2.40-2.35 (m, 3H), 2.05-1.89 (m, 1H), 1.61-1.43 (m, 18H), 1.16 (bs, 3H).

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.3, 2926.7, 2869.7, 1707.0, 1366.7, 1156.7.

HRMS (ESI) Calcd for C₃₀H₃₈N₂O₅Na [M + Na]⁺: 529.2678, Found: 529.2679.

The product, obtained in low yield as a mixture of diastereomers (9/1) has not been characterized by ¹³C NMR.

Compound 11 (major diastereomer)

¹**H** NMR (300 MHz, (CD₃)₂SO, 80°C) $\delta = 10.01$ (s, 1H), 7.39-7.28 (m, 5H), 7.21-7.19 (m, 2H), 6.91-6.88 (m, 2H), 5.86 (bs, 1H), 5.34 (bs, 1H), 5.27 (s, 1H), 3.76 (s, 3H), 1.96 (td, J = 14.1 and 2.7 Hz, 1H), 1.88-1.80 (m, 1H), 1.60 (bd, J = 14.1 Hz, 1H), 1.52 (bs, 1H), 1.47 (bs, 9H), 1.28 (bs, 9H).

¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) δ = 198.6, 159.6, 155.6, 153.5, 148.4, 138.3, 132.6, 128.4 (2C), 128.3, 127.5 (2C), 125.9 (2C), 114.4 (2C), 111.6, 82.4 (2C), 82.1, 72.9, 55.7, 30.8, 28.2 (3C), 28.1 (3C), 21.5.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.3, 2933.0, 2869.7, 1705.7, 1367.2, 1159.7. HRMS (ESI) Calcd for C₃₀H₃₈N₂O₆Na [M + Na]⁺: 545.2628, Found: 545.2628. [α]_D²⁰ = +16.0 (*c* 1.0, CHCl₃)

¹H NMR (300 MHz, (CD₃)₂SO, 80°C) $\delta = 10.02$ (s, 1H), 7.92 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.39-7.34 (m, 2H), 7.30-7.26 (m, 1H), 7.20-7.17 (m, 2H), 6.00 (bs, 1H), 5.47 (bs, 1H), 5.45-5.37 (m, 1H), 4.33 (q, J = 7.2 Hz, 2H), 2.02-1.83 (m, 2H), 1.61 (bd, J = 13.8 Hz, 1H), 1.50 (bs, 1H), 1.47 (bs, 9H), 1.33 (t, J = 7.2 Hz, 3H), 1.26 (bs, 9H).

¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) δ = 198.5, 166.0, 155.5, 153.5, 148.2, 144.9, 138.2, 129.9, 129.6 (2C), 128.5 (2C), 127.7, 127.6 (2C), 125.8 (2C), 114.8, 82.6 (2C), 82.2, 72.8, 61.0, 30.9, 28.1 (3C), 28.1 (3C), 21.2, 14.6.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.3, 2929.8, 2869.7, 1708.1, 1367.0, 1159.9. HRMS (ESI) Calcd for C₃₂H₄₀N₂O₇Na [M + Na]⁺ : 587.2733, Found: 587.2736. $[\alpha]_{D}^{20} = -11.0$ (c 1.0, CHCl₃)

Compound 13 (major diastereomer)

¹**H** NMR (300 MHz, (CD₃)₂SO, 80°C) $\delta = 10.02$ (s, 1H), 7.48-7.43 (m, 2H), 7.39-7.34 (m, 2H), 7.31-7.26 (m, 1H), 7.20-7.10 (m, 4H), 5.90 (bs, 1H), 5.43-5.31 (m, 2H), 1.96 (td, J = 14.1 and 2.7 Hz, 1H), 1.89-1.78 (m, 1H), 1.61 (bd, J = 14.1 Hz, 1H), 1.51-1.49 (m, 1H), 1.46 (bs, 9H), 1.27 (bs, 9H).

¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) $\delta = 198.6$, 162.3 (d, J = 243.8 Hz), 155.6, 153.4, 147.9, 138.3, 136.6, 129.3 (d, J = 8.3 Hz, 2C), 128.5, 127.6 (2C), 125.9 (2C), 115.5 (d, J = 21.8 Hz, 2C), 113.4, 82.5 (2C), 82.1, 72.8, 30.7, 28.1 (3C), 28.1 (3C), 21.2.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.3, 2933.0, 2879.2, 1705.6, 1367.5, 1157.9.

HRMS (ESI) Calcd for $C_{29}H_{35}N_2O_5FNa [M + Na]^+$: 533.2428, Found: 533.2431.

 $[\alpha]_{D}^{20} = +10.0 \ (c \ 1.0, \ CHCl_3).$

¹**H** NMR (**300** MHz, (CD₃)₂SO, **80**°C) δ = 10.01 (s, 1H), 8.18 (d, *J* = 8.7 Hz, 2H), 7.72 (d, *J* = 8.7 Hz, 2H), 7.40-7.35 (m, 2H), 7.32-7.27 (m, 1H), 7.20-7.17 (m, 2H), 6.05 (bs, 1H), 5.57 (s, 1H), 5.45 (bs, 1H), 2.03-1.87 (m, 2H), 1.63 (bd, *J* = 13.8 Hz, 1H), 1.50 (bs, 1H), 1.46 (bs, 9H), 1.25 (bs, 9H).

¹³C NMR (**75** MHz, (CD₃)₂SO, **80**°C) δ = 198.5, 155.6, 153.5, 147.6, 147.5, 147.0, 138.1, 128.7 (2C), 128.6 (2C), 127.7, 125.8 (2C), 123.8 (2C), 116.5, 82.8 (2C), 82.3, 72.8, 30.6, 28.1 (3C), 28.0 (3C), 21.1.

IR (neat) $\upsilon \Box \Box$ (cm⁻¹) = 2977.5, 2926.9, 2847.8, 1709.4, 1345.6, 1163.2. HRMS (ESI) Calcd for C₂₉H₃₅N₃O₇Na [M + Na]⁺ : 560.2373, Found: 560.2374.

 $[\alpha]_{D}^{20} = -10.0 \ (c \ 1.0, \ CHCl_{3})$

Compound 15 (major diastereomer)

¹H NMR (300 MHz, (CD₃)₂SO, 80°C) $\delta = 9.99$ (s, 1H), 7.43-7.28 (m, 7H), 7.22-7.19 (m, 2H), 5.88 (bs, 1H), 5.40 (m, 1H), 5.33 (s, 1H), 1.98-1.82 (m, 2H), 1.61 (bd, J = 14.1 Hz, 1H), 1.49 (bs, 1H), 1.47 (bs, 9H), 1.30 (bs, 9H). ¹³C NMR (75 MHz, (CD₃)₂SO, 80°C) $\delta = 198.0$, 148.5, 139.9, 136.8, 132.2, 128.4 (2C), 128.1 (2C), 127.7, 127.6 (2C), 127.0 (2C), 112.7, 82.3 (2C), 82.1, 72.2, 30.4, 27.9 (3C), 27.8 (3C), 21.1. (Two peaks corresponding to the C=O carbamates are missing) IR (neat) $\upsilon \Box \Box (cm^{-1}) = 2977.5$, 2926.9, 2847.8, 1709.4, 1345.6, 1163.2. HRMS (ESI) Calcd for C₂₉H₃₅N₂O₅ClNa [M + Na]⁺ : 549.2132, Found: 549.2133. $[\alpha]_{D}^{20} = +15.0$ (*c* 1.0, CHCl₃)

Racemic sample (chiral AD column, 30°C, heptane/2-propanol, 98/2, 1.0 mL/min)

Enantioenriched sample	e (chiral AD column	, 30°C, heptane/2-pro	opanol, 98/2, 1.0 mL/mi	n)

2 Unknown

1

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%
1	Unknown	1	7,353	1122325	71402	3,015	13,645
2	Unknown	1	16,725	36108403	451879	96,985	86,355

Racemic sample (chiral OD-H column, 30°C, heptane/2-propanol, 98/2, 1.0 mL/min)

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%
1	Unknown	1	9,488	15325319	510617	51,863	60,353
2	Unknown	1	41,232	14224123	335433	48,137	39,647

Enantioenriched sample (chiral OD-H column, 30°C, heptane/2-propanol, 98/2, 1.0 mL/min)

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%
1	Unknown	1	10,078	1452636	54022	3,510	5,347
2	Unknown	1	41,062	39930886	956277	96,490	94,653