Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Formation of DPM Ethers Using O-Diphenylmethyl Trichloroacetimidate Under Thermal Conditions

Kyle T. Howard, Brian C. Duffy, Matthew R. Linaburg and John D. Chisholm*

Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse,

New York 13244

jdchisho@syr.edu

Contents

Table of Contents	S 1
General Information	S2
Experimental Procedures and Indexed Spectra	S3-S7
¹ H and ¹³ C NMR Spectra	S8-S30
Chiral HPLC Traces	S31-S34
References	S 35

General Information. All anhydrous reactions were run under a positive pressure of argon or nitrogen. All syringes, needles, and reaction flasks required for anhydrous reactions were dried in an oven and cooled under an N_2 atmosphere or in a desiccator. DCM and THF were dried by passage through an alumina column by the method of Grubbs.¹ Triethylamine was distilled from CaH₂. All other reagents and solvents were purchased from commercial sources and used without further purification.

Analysis and Purification. Analytical thin layer chromatography (TLC) was performed on precoated glass backed plates (silica gel 60 F_{254} ; 0.25 mm thickness). The TLC plates were visualized by UV illumination and by staining. Solvents for chromatography are listed as volume:volume ratios. Flash column chromatography was carried out on silica gel (40-63 µm). Melting points were recorded using an electrothermal melting point apparatus and are uncorrected. Elemental analyses were performed on an elemental analyzer with a thermal conductivity detector and 2 meter GC column maintained at 50 °C.

Identity. Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded at 300 or 400 MHz and 75 or 100 MHz respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. Coupling constants are reported in hertz (Hz). The spectra were recorded in solutions of deuterated chloroform (CDCl₃), with residual chloroform (δ 7.26 ppm for ¹H NMR, δ 77.23 ppm for ¹³C NMR) or tetramethylsilane (δ 0.00 for ¹H NMR, δ 0.00 for ¹³C NMR) as the internal reference. Data are reported as follows: (s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; sep = septet; dd = doublet of doublets; dt = doublet of triplets; td = triplet of doublets; tt = triplet of triplets; qd = quartet of doublets; dt = doublet of doublet of doublets; br s = broad singlet). Where applicable, the number of protons attached to the corresponding carbon atom was determined by DEPT 135 NMR. Infrared (IR) spectra were obtained as thin films on NaCl plates by dissolving the compound in CH₂Cl₂ followed by evaporation or as KBr pellets.

General Procedure for the Formation of DPM Ethers from Alcohols under Thermal Conditions:

Alcohol was placed in a 25 mL flame dried round bottom flask and dissolved in anhydrous toluene to a concentration of 0.25 M. The trichloroacetimidate (1.2 equiv) was added and the reaction warmed to reflux. After 18 hours, the reaction was cooled to room temperature and concentrated under reduced pressure. The residue was pre-adsorbed on silica gel and purified by silica gel column chromatography. In some cases the residue was dissolved in ethyl acetate, washed with 2M aq. NaOH (3x), dried (Na₂SO₄) and concentrated (this workup removes the trichloroacetamide byproduct and was used in cases where the trichloroacetamide was difficult to separate chromatographically).

$$Ph$$

 $()_{16}$ Ph
 Ph

Octadecyloxydiphenylmethane (8). White solid (0.273 g, 85%). mp = 47-48 °C; TLC $R_f = 0.80$ (10% ethyl acetate/hexanes); IR (thin film from CH₂Cl₂) 3027, 2923, 2852, 1493, 1453, 1097 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.21-7.37 (m, 10H), 5.33 (s, 1H), 3.44 (t, J = 6.6 Hz, 2H), 1.60-1.67 (m, 2H), 1.26 (m, 30H), 0.88 (t, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 142.9, 128.5, 127.5, 127.2, 83.8, 69.4, 32.2, 30.1, 29.94, 29.91, 29.87, 29.85, 29.7, 29.6, 26.5, 22.9, 14.3 (several signals in the aliphatic region were not resolved). Anal calcd for C₃₁H₄₈O: C, 85.26; H, 11.08. Found: C, 85.18; H, 11.13.

Benzyloxydiphenylmethane (11).² Clear oil (0.238 g, 94%). TLC $R_f = 0.92$ (25% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.42 (m, 15H), 5.46 (s, 1H), 4.56 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 138.6, 128.6, 128.6, 127.9, 127.72, 127.65, 127.3, 82.7, 70.7.

(4-Methoxybenzyloxy)diphenylmethane (12).³ Clear oil (0.314 g, 71%). TLC $R_f = 0.50$ (10% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.41 (m, 12H), 6.91 (d, J = 8.7 Hz, 2H), 5.45 (s, 1H), 4.50 (s, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 142.4, 130.6, 129.5, 128.5, 127.6, 127.3, 113.9, 82.2, 70.3, 55.4.

(((4-Nitrobenzyl)oxy)methylene)dibenzene (13). Off-white solid (0.460 g, 88%). mp = 62-64 °C (DCM); TLC R_f = 0.59 (40% DCM/60% hexanes); IR (thin film from CH₂Cl₂) 3062, 3028, 2922, 2857, 1493, 1347, 1288 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, J = 8.7 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.25-7.40 (m, 10H), 5.46 (s, 1H), 4.62 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 147.4, 146.1, 141.6, 128.6, 127.8, 127.7, 127.0, 123.6, 83.5, 69.5. Anal calcd for C₂₀H₁₇NO₃: C, 77.22; H, 5.37; N, 3.49. Found: C, 77.20; H, 5.31; N, 3.44.

Cinnamyloxydiphenylmethane (14).⁴ White solid (0.395 g, 88%). mp = 55-57 °C; TLC R_f = 0.58 (25% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.23-7.42 (m, 15H), 6.63 (d, *J* = 15.9 Hz, 1H), 6.32-6.41 (m, 1H), 5.51 (s, 1H), 4.20 (dd, *J* = 6.0, 1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.3, 136.9, 132.3, 128.6, 128.5, 127.7, 127.5, 127.1, 126.6, 126.3, 82.8, 69.4.

Diphenyl(prop-2-ynyloxy)methane (15).⁵ Yellow oil (0.384 g, 97%). TLC $R_f = 0.86$ (10% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.40 (m, 10H), 5.68 (s, 1H), 4.17 (d, J = 2.4 Hz, 2H), 2.46 (t, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 128.6, 127.9, 127.5, 81.8, 79.9, 74.8, 56.0.

((Cyclohexyloxy)methylene)dibenzene (16).⁶ Clear oil (0.494 g, 93%). TLC $R_f = 0.68$ (10% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.40 (m, 10H), 5.58 (s, 1H), 3.35-3.44 (m, 1H), 1.93 (dd, J = 9.0, 6.0 Hz, 2H), 1.76-1.82 (m, 2H), 1.41-1.58 (m, 3H), 1.26 (q, J = 8.3 Hz, 3H); ¹³C NMR (75MHz, CDCl₃) δ 143.3, 128.4, 127.31, 127.26, 80.1, 75.1, 32.5, 26.0, 24.2.

((1-Phenylethoxy)methylene)dibenzene (17).⁷ Clear oil (0.434 g, 92%). TLC $R_f = 0.85$ (10% acetone/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.41 (m, 15H), 5.31 (s, 1H), 4.51 (q, J = 6.6 Hz, 1H), 1.53 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.9, 143.0, 142.2, 128.7, 128.4, 128.3, 127.73, 127.70, 127.67, 127.3, 127.1, 126.7, 80.2, 75.1, 24.5.

((tert-Pentyloxy)methylene)dibenzene (18).⁸ Clear oil (0.489 g, 85%). TLC $R_f = 0.92$ (10% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 6.9 Hz, 4H), 7.33 (t, J = 7.2 Hz, 4H), 7.20-7.26 (m, 2H), 5.60 (s, 1H), 1.62 (q, J = 7.5 Hz, 2H), 1.17 (s, 6H), 0.91 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 128.3, 127.0, 126.9, 76.9, 75.6, 34.8, 26.1, 8.9.

Ph O Ph

1-(Benzhydryloxy)adamantane (19). Orange solid (0.383 g, 92%). mp = 64-66 °C; TLC $R_f = 0.71$ (10% ethyl acetate/hexanes); IR (thin film from CH₂Cl₂) 3025, 2905, 2850, 1492, 1451, 1354, 1082 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.39 (m, 10H), 5.80 (s, 1H), 2.14 (s, 3H), 1.83 (bs, 6H), 1.62 (bs, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 128.2, 127.2, 126.9, 74.4, 73.8, 43.0, 36.6, 30.8. Anal calcd for C₂₃H₂₆O: C, 86.75; H, 8.23. Found: C, 86.72; H, 8.18.

2-((Benzhydryloxy)methyl)-3-phenyloxirane (20).⁹ Clear oil (0.255 g, 65%) TLC $R_f = 0.50$ (10% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.44 (m, 15H), 5.53 (s, 1H), 3.86 (dd, J =

11.5, 3.1 Hz, 1H), 3.80 (d, J = 2.0 Hz, 1H) 3.66 (dd, J = 5.3, 11.5 Hz, 1H), 3.29-3.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.99, 141.94, 137.1, 128.7, 128.6, 128.4, 127.8, 127.77, 127.5, 127.3, 127.2, 125.9, 84.1, 68.9, 61.4, 56.1.

(2-(Benzhydryloxy)ethyl)trimethylsilane (21). Pale yellow oil (0.368 g, 79%). TLC $R_f = 0.56$ (15% DCM/5% triethylamine/ 80% hexanes); IR (thin film from CH₂Cl₂) 3087, 3063, 3029, 2953, 2892, 1452, 1317, 1249 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 6.3, 1.2 Hz, 4H), 7.30 (t, J = 6.6 Hz, 4H), 7.22-7.25 (m, 2H), 5.35 (s, 1H), 3.56 (t, J = 6.0 Hz, 2H), 1.03 (t, J = 6.0 Hz, 2H), 0.00 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 129.6, 128.5, 128.2, 84.6, 67.6, 19.7, 0.0; Anal calcd for C₁₈H₂₄OSi: C, 76.00; H, 8.50; Found: C, 75.77; H, 8.62.

2-(Benzhydryloxy)isoindoline-1,3-dione (22).¹⁰ Yellow solid (0.323 g, 80%). mp = 160-162 °C; TLC $R_f = 0.29$ (10% acetone/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.76 (m, 4H), 7.52-7.56 (m, 4H), 7.29-7.39 (m, 6H), 6.53 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 137.9, 134.4, 128.9, 128.8, 128.5, 128.4, 123.4, 89.7.

(S)-Benzyl 3-(benzhydryloxy)-2-(((benzyloxy)carbonyl)amino)propanoate (23). Clear oil (0.273 g, 91%). $[\alpha]_D^{21.6}$ -12.5 (*c* 1.26, CHCl₃); TLC R_f = 0.18 (10% ethyl acetate/hexanes); IR (thin film from CH₂Cl₂) 3434, 3341, 3062, 3030, 2949, 2876, 1722, 1498, 1339, 1197, 1067 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.07-7.30 (m, 20H), 5.63 (d, *J* = 12.0 Hz, 1H), 5.19 (s, 1H), 5.12 (d, *J* = 4.0 Hz, 2H), 5.04 (s, 2H), 4.49 (dt, *J* = 2.8 Hz, 1H), 3.84 (dd, *J* = 9.4, 2.8 Hz, 1H), 3.60 (dd, *J* = 9.4, 3.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 156.1, 141.6, 141.4, 136.4, 135.4, 128.7, 128.65, 128.6, 128.5, 128.4, 128.3, 128.2, 127.7, 127.0, 126.9, 84.2, 69.0, 67.4, 67.2, 54.8 . (note: two signals in the aromatic region were not resolved.) Anal calcd for C₃₁H₂₉NO₅: C, 75.13; H, 5.90; N, 2.83. Found: C, 74.94; H, 5.97; N, 3.00. Chiral HPLC analysis: Chiralcel OD (heptane/2-PrOH = 90/10, 1.0 mL/min, 254 nm, 25 °C): t_(S enantiomer) = 16.7 min, t_(R enantiomer) = 23.9 min.

Methyl 2,3,4-Tri-*O***-benzyl-6-***O***-diphenylmethyl-\alpha-D-glucopyranoside (24).¹¹ Clear colored oil (0.750 g, 73%). TLC R_f = 0.43 (15% ethyl acetate/85% hexanes); ¹H NMR (300 MHz, CDCl₃) \delta 7.55-7.18 (m, 25 H), 5.50 (s, 1H), 5.13 (d, J = 10.8 Hz, 1H), 4.98 (t, J = 11.1 Hz, 2H), 4.93 (d, J = 12.0 Hz, 1H), 4.82 (d, J = 11.7 Hz, 1H), 4.80 (d, J = 3.6 Hz, 1H), 4.68 (d, J = 11.1 Hz, 1H), 4.16 (t, J = 9.3 Hz, 1H), 3.89-3.99 (m, 1H), 3.77-3.84 (m, 3H), 3.72 (dd, J = 3.6, 9.6 Hz, 1H), 3.49 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) \delta 142.2, 142.1, 138.8, 138.3, 138.2, 128.5, 128.4, 128.36, 128.1, 127.9, 127.8, 127.7, 127.5, 127.4, 127.2, 126.9, 98.1, 84.1, 82.3, 80.1, 78.0, 75.9, 75.1, 73.4, 70.3, 67.9, 55.1.**

(3S,5S,8R,9S,10S,13R,14S,17R)-3-(Benzhydryloxy)-10,13-dimethyl-17-((R)-6-methylheptan-2vl)hexadecahydro-1H-cyclopenta[a]phenanthrene (25). White solid (0.374 g, 87%). $[\alpha]_D^{21.6}$ +12.4 (c 1.04, CHCl₃); mp = 127-129 °C; TLC $R_f = 0.74$ (10% ethyl acetate/hexanes); IR (thin film from CH₂Cl₂) 3027, 2930, 2865, 1493, 1452, 1381, 1062 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.34 (m, 10H), 5.54 (s, 1H), 3.28-3.38 (m, 1H), 0.63-1.92 (m, 46H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 128.4, 127.4, 127.3, 80.3, 76.5, 56.7, 56.5, 54.6, 45.0, 42.8, 40.3, 39.7, 37.2, 36.4, 36.0, 35.95, 35.7, 35.3, 32.3, 29.1, 28.7, 28.5, 28.2, 24.4, 24.0, 23.0, 22.8, 21.4, 18.9, 12.5, 12.3. Anal calcd for C₄₀H₅₈O: C, 86.58; H, 10.54. Found: C, 86.59; H, 10.68.

Ethyl 3-(benzhydryloxy)-3-phenylpropanoate (26). White solid (0.178 g, 96%). mp = 73-74 °C; TLC $R_f = 0.53$ (10% ethyl acetate/hexanes); IR (thin film from CH₂Cl₂) 3061, 3028, 2980, 1736, 1493, 1453, 1268, 1172, 1052 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.40 (m, 15H), 5.24 (s, 1H), 4.81 (ddd, J= 1.3, 4.9, 9.0 Hz, 1H), 4.00-4.23 (m, 2H), 2.96 (ddd, J = 1.4, 9.0, 14.7 Hz, 1H), 2.65 (ddd, J = 1.2, 4.9, 14.7 Hz, 1H), 1.21 (td, J = 1.1, 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 142.8, 141.3, 140.7, 128.8, 128.6, 128.3, 128.2, 128.0, 127.9, 127.24, 127.16 126.7, 80.11, 75.7, 60.6, 44.0, 14.3. Anal calcd for C₂₄H₂₄O₃: C, 79.97; H, 6.71. Found: C, 79.96; H, 6.88.

(R)-Ethyl 2-(benzhydryloxy)propanoate (27).¹² Clear oil (0.434 g, 90%). $[\alpha]_D^{21.6}$ -103.8 (c 1.04, DCM): TLC R = 0.57 (10% othyl contate/hereney).¹LL DECE (200.) UL (2 DCM); TLC $R_f = 0.57$ (10% ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.41 (m, 10H), 5.57 (s, 1H), 4.16-4.28 (m, 2H), 4.08 (q, J = 6.0 Hz, 1H), 1.49 (d, J = 9.0 Hz, 3H), 1.30 (t, J = 9.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 142.1, 141.1, 128.7, 128.4, 128.0, 127.7, 127.6, 127.5, 82.8, 72.7, 61.0, 19.0, 14.4. Chiral HPLC analysis: Chiralcel OD (heptane/2-PrOH = 99/1, 1.0 mL/min, 254 nm, 25 °C): $t_{(R \text{ enantiomer})} = 5.3 \text{ min}, t_{(S \text{ enantiomer})} = 5.8 \text{ min}.$

(3S)-Benzyl 3-(benzhydryloxy)-2-(((benzyloxy)carbonyl)amino)butanoate (28). Clear oil (0.249 g, 84%). $[\alpha]_{D}^{21.6}$ -27.0 (c 0.94, CH₃Cl); TLC R_f = 0.25 (10% ethyl acetate/hexanes); IR (thin film from CH₂Cl₂) 3440, 3062, 3030, 2976, 1724, 1497, 1453, 1319, 1203 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.41 (m, 20H), 5.70 (d, J = 12.0 Hz, 1H), 5.39 (s, 1H), 5.20 (d, J = 12.0 Hz, 1H), 5.14-5.20 (m, 2H), 4.95 (d, J = 12.0 Hz, 1H), 4.44 (dd, J = 9.8, 1.9 Hz, 1H), 4.21 (ddd, J = 12.5, 6.2, 1.9 Hz, 1H), 1.27 (d, J = 4.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 157.0, 142.5, 141.5, 136.4, 135.3, 129.2, 128.7, 128.6, 128.5, 128.43, 128.38, 128.3, 128.0, 127.6, 127.5, 126.8, 125.5, 81.2, 72.7, 67.5, 67.4, 59.3, 16.8. Anal calcd for C₃₂H₃₁NO₅: C, 75.42; H, 6.13; N, 2.75. Found: C, 75.16; H, 5.86; N, 2.79.

((4-Methoxyphenoxy)methylene)dibenzene (29).¹³ Orange solid (0.424 g, 91%). mp = 84-85 °C; TLC $R_f = 0.42$ (10% acetone/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.43 (m, 10H), 6.88 (d, J = 9.1 Hz, 2H), 6.75 (d, J = 9.2 Hz, 2H), 6.11 (s, 1H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 152.4, 141.7, 128.7, 127.8, 127.1, 117.4, 114.7, 82.8, 55.7.

((4-Nitrophenoxy)methylene)dibenzene (30).¹⁴ Pale yellow colored solid (0.310 g, 61%). mp = 157-158 °C; TLC R_f = 0.36 (10% ethyl acetate/90% hexanes); ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 2H), 7.28-7.42 (m, 10H), 7.02 (d, *J* = 9.3 Hz, 2H), 6.31 (s, 1H); ¹³ C NMR (75 MHz, CDCl₃) δ 162.9, 141.6, 139.8, 128.8, 128.3, 126.7, 125.8, 115.9, 82.5.

Methyl 3-(benzhydryloxy)thiophene-2-carboxylate (31). White solid, (0.280 g, 53%). mp = 105-106 °C; TLC R_f = 0.3 (10% ethyl acetate/90% hexanes); IR (thin film from CH₂Cl₂) 3061, 3028, 2948, 1711, 1538, 1228, 1062 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 4H), 7.35 (t, J = 7.2 Hz, 4H), 7.25–7.28 (m, 3H), 6.74 (d, J = 5.6 Hz, 1H), 6.27 (s, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 160.1, 141.2, 130.4, 128.9, 128.1, 126.7, 118.7, 111.6, 85.0, 51.8. Anal calcd for C₁₉H₁₆O₃S: C, 70.35; H, 4.97; Found: C, 70.26; H, 5.02.

2-(Benzhydryloxy)naphthalene (32).¹⁵ Brown oil (0.317 g, 74%) TLC $R_f = 0.32$ (10% ethyl acetate/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.47-7.51 (m, 1H), 7.33-7.43 (m, 11H), 7.17 (d, J = 8.8 Hz, 1H), 6.53 (s, 1H), 5.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 141.8, 133.6, 129.9, 129.8, 129.3, 129.2, 128.9, 127.4, 127.0, 123.4, 123.0, 120.4, 120.0, 48.7.

((Cyclohexyloxy)methylene)dibenzene

((1-Phenylethoxy)methylene)dibenzene

(tert-Pentyloxy) methylene) dibenzene

2-((Benzhydryloxy)methyl)-3-phenyloxirane

2-(Benzhydryloxy)isoindoline-1,3-dione

Ethyl 3-(benzhydryloxy)-3-phenylpropanoate

	(min)	. ,		(sec)	. ,
1	16.708	2992683	BB	49.0	50.1029
2	23.905	2980387	BB	68.2	49.8971
		5973070			100.0000

	(min)	(counts)	Couc	(sec)	(11104-70)
1	5.316	6329418	BV	12.6	49.3661
2	5.841	6491965	VB	13.7	50.6339
		12821383			100.0000

References:

- (1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.
- (2) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774.
- (3) Kalutharage, N.; Yi, C. S. Org. Lett. 2015, 17, 1778.
- (4) Zhang, W.; Haight, A. R.; Hsu, M. C. Tetrahedron Lett. 2002, 43, 6575.
- (5) Louvel, J.; Carvalho, J. F. S.; Yu, Z.; Soethoudt, M.; Lenselink, E. B.; Klaasse, E.; Brussee, J.; Ijzerman, A. P. J. Med. Chem. 2013, 56, 9427.
- (6) Bhaskar, G.; Solomon, M.; Babu, G.; Muralidharan, D.; Perumal, P. T. *Indian J. Chem., Sect. B* **2010**, *49B*, 795.
- (7) Sciebura, J.; Gawronski, J. *Tetrahedron: Asymmetry* **2013**, *24*, 683.
- (8) Buckley, A.; Chapman, N. B.; Dack, M. R. J.; Shorter, J.; Wall, H. M. J. Chem. Soc., B 1968, 631.
- (9) Vidal-Ferran, A.; Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 1997, 62, 4970.
- (10) Reddy, C. R.; Radhika, L.; Kumar, T. P.; Chandrasekhar, S. *Eur. J. Org. Chem.* **2011**, *2011*, 5967.
- (11) Ali, I. A. I.; El Ashry, E. S. H.; Schmidt, R. R. Eur. J. Org. Chem. 2003, 4121.
- (12) Steinbeck, M.; Frey, G. D.; Schoeller, W. W.; Herrmann, W. A. J. Organomet. Chem. 2011, 696, 3945.
- (13) Bordwell, F. G.; Harrelson, J. A., Jr. J. Org. Chem. 1989, 54, 4893.
- (14) Maslak, P.; Guthrie, R. D. J. Am. Chem. Soc. 1986, 108, 2628.
- (15) Barluenga, J.; Fananas, F. J.; Sanz, R.; Marcos, C.; Trabada, M. Org. Lett. 2002, 4, 1587.