Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Enantioselective Organocatalytic Michael Addition of Isorhodanines

to α , β -Unsaturated Aldehydes

Supporting Information

Contents:

1.	Preparation of substrates	S2	
2.	X-ray structure of compound 3a		S5
3.	NMR Spectra		S7
4.	HPLC Profiles		S43

Preparation of substrates

To a solution of thiazolidine-2,4-dione (0.61 g, 5.2 mmol, 1.0 equiv) in dry toluene (12.0 mL) was added Lawesson's reagent (2.2 g, 5.2 mmol, 1.0 equiv). The reaction mixture was refluxed for 2 h and cooled to room temperature. The solid was filtered off and crystallized from acetone to afford isorhodanine (0.64 g, 98% yield) as a yellow crystal. ¹H NMR (600 MHz, DMSO-*d*₆, TMS): δ = 13.58 (s, 1H), 4.67 (s, 2H); MS (ESI) m/z: 134.24 [M+H]⁺.

To a solution of isorhodanine (0.60 g, 4.5 mmol, 1.0 equiv) in DMF (10.0 mL) was added NaH (0.19 g, 4.9 mmol, 1.1 equiv) and the mixture was stirred for 0.5 h at 0 °C. Then, iodomethane (0.75 g, 4.5 mmol, 1.0 equiv) was added and the reaction mixture was stirred for 1 h. Water (30.0 mL) was added to the reaction mixture and extracted by ethyl acetate (15.0 mL \times 3). The organic layer was dried over Na₂SO₄, and concentrated to give the crude product, which was further purified by column chromatography to yield the desired substrate **2a**. The synthetic method for substrates **2b-k** was similar to the synthesis of substrate **2a**. For substrate **2l**, 2 equivalent of iodomethane was used.

4-(Methylthio)thiazol-2(3*H***)-one (2a).** ¹H NMR (600 MHz, DMSO-*d*₆, TMS): $\delta = 11.63$ (s, 1H), 6.26 (s, 1H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS): $\delta = 174.47$, 126.31, 103.30, 17.08; HRMS (ESI) calcd for C₄H₆NO₂S₂ [M+H]⁺ = 148.2186, found 147.9435.

4-(Ethylthio)thiazol-2(3*H***)-one (2b).** ¹H NMR (600 MHz, DMSO-*d*₆, TMS): $\delta = 11.60$ (s, 1H), 6.46-6.47 (m, 1H), 2.85 (dd, J = 7.0, 14.6 Hz, 2H), 1.19 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆, TMS): $\delta = 172.69$, 124.85, 105.00, 27.64, 14.75; HRMS (ESI) calcd for C₅H₈NOS₂ [M+H]⁺ = 162.2452, found 162.2563.

4-((Naphthalen-2-ylmethyl)thio)thiazol-2(3H)-one (2c). ¹H NMR (600 MHz, CDCl₃, TMS): $\delta = 9.67$ (s, 1H), 7.82-7.84 (m, 2H), 7.78-7.80 (m, 1H), 7.62 (s, 1H), 7.48-7.50 (m, 2H), 7.40 (dd, J = 1.8, 8.4 Hz, 1H), 6.03 (s, 1H), 4.13 (s, 2H); ¹³C NMR (150 MHz, DMSO- d_6 , TMS) $\delta = 133.52$, 132.74, 132.19, 128.17,

127.25, 127.21, 126.10, 108.81, 39.72, 29.20; HRMS (ESI) calcd for $C_{14}H_{12}NOS_2[M+H]^+ = 274.0282$, found 274.0364.

4-((3-Fluorobenzyl)thio)thiazol-2(3*H***)-one (2d).** ¹H NMR (600 MHz,CDCl₃, TMS): $\delta = 10.34$ (s, 1H), 7.23-7.30 (m, 1H), 6.30-7.00 (m, 3H), 6.08 (s, 1H), 3.97 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, TMS): $\delta = 174.87$, 164.48, 161.21, 139.22, 139.12, 130.23, 130.12, 24.56, 124.52, 123.86, 115.91, 115.62, 114.83, 114.55, 109.22, 39.11, 39.08; HRMS (ESI) calcd for C₁₀H₇FNOS₂ [M-H]⁻ = 241.3050, found 241.2135.

4-((2-Methylbenzyl)thio)thiazol-2(3*H***)-one (2e).** ¹H NMR (600 MHz, DMSO-*d*₆, TMS): $\delta = 11.69$ (s, 1H), 7.14-7.18 (m, 2H), 7.08-7.13 (m, 2H), 6.29 (d, J = 1.7 Hz, 1H), 4.09 (s, 2H), 2.32 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆, TMS): $\delta = 172.58$, 136.94, 135.02, 130.82, 130.16, 128.11, 126.34, 124.53, 106.59, 36.44, 19.14; HRMS (ESI) calcd for C₁₁H₁₂NOS₂ [M+H]⁺ = 238.3411, found 238.4163.

4-((4-Methylbenzyl)thio)thiazol-2(3*H***)-one (2f).** ¹H NMR (300 MHz, DMSO-*d*₆, TMS): $\delta = 11.68$ (s, 1H), 7.11 (s, 4H), 6.27 (d, J = 1.8 Hz, 1H), 4.05 (s, 2H), 2.26 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆, TMS): $\delta = 172.62$, 136.93, 134.31, 129.50, 129.16, 124.63, 105.83, 37.54, 21.18; HRMS (ESI) calcd for C₁₁H₁₂NOS₂ [M+H]⁺ = 238.3411, found 238.6234.

4-((2-Nitrobenzyl)thio)thiazol-2(3*H***)-one (2g).** ¹H NMR (500 MHz, DMSO- d_6 , TMS): $\delta = 11.65$ (s, 1H), 8.04 (dd, J = 1.1, 8.1 Hz, 1H), 7.68 (td, J = 1.2, 7.5, 15.2 Hz, 1H), 7.55 (td, J = 1.3, 8.2, 15.5 Hz, 1H), 7.38 (dd, J = 1.2, 7.7 Hz, 1H), 6.27 (d, J = 1.6 Hz, 1H), 4.35 (s, 2H), ¹³C NMR (125 MHz, DMSO- d_6 , TMS) $\delta = 172.45$, 148.32, 134.16, 132.89, 132.63, 129.50, 125.65, 123.35, 108.64, 35.53; HRMS (ESI) calcd for C₁₀H₇N₂O₃S₂ [M-H]⁻ = 268.3121, found 268.1252.

4-((4-Nitrobenzyl)thio)thiazol-2(3*H***)-one (2h).** ¹H NMR (500 MHz, DMSO- d_6 , TMS): $\delta = 11.69$ (s, 1H), 8.19 (d, J = 9.1 Hz, 2H), 7.49 (d, J = 9.1 Hz, 2H), 6.30 (d, J = 0.9 Hz, 1H), 4.22 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6 ,

TMS): $\delta = 172.51$, 147.07, 145.90, 130.51, 124.09, 123.46, 107.53, 37.05; HRMS (ESI) calcd for C₁₀H₇N₂O₃S₂ [M-H]⁻ = 268.3121, found 268.3347.

4-(((2-Oxo-2,3-dihydrothiazol-4-yl)thio)methyl)benzonitrile (2i). ¹H NMR (300 MHz, DMSO-*d*₆, TMS): δ = 11.73 (s, 1H), 7.81 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 6.32 (d, *J* = 1.3 Hz, 1H), 4.18 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆, TMS): δ = 171.53, 143.66, 132.85, 130.21, 123.54, 110.42, 107.36, 37.32; HRMS (ESI) calcd for C₁₁H₉N₂OS₂ [M+H]⁻ = 249.3240, found 249.3312.

4-((4-(Tert-butyl)benzyl)thio)thiazol-2(3*H***)-one (2j). ¹H NMR (300 MHz, DMSO-***d***₆, TMS): \delta = 11.69 (s, 1H), 7.33 (d,** *J* **= 8.3 Hz, 2H), 7.17 (d,** *J* **= 8.3 Hz, 2H), 6.31 (d,** *J* **= 1.6 Hz, 1H), 4.10 (s, 2H), 1.24 (s, 9H); ¹³C NMR (75 MHz, DMSO-***d***₆, TMS): \delta = 172.63, 150.18, 134.24, 128.96, 125.71, 124.89, 105.28, 37.38, 34.69, 31.56; HRMS (ESI) calcd for C₁₄H₁₈NOS₂ [M+H]⁺ = 280.4209, found 280.3562.**

2-((2-Oxo-2,3-dihydrothiazol-4-yl)thio)acetonitrile (2k). ¹H NMR (600 MHz, DMSO-*d*₆, TMS): $\delta = 11.73$ (s, 1H), 6.80 (s, 1H), 4.06 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆, TMS): $\delta = 175.5$, 138.16, 125.39, 110.46, 41.33; HRMS (ESI) calcd for C₅H₃N₂OS₂ [M-H]⁻ = 171.2281, found 171.2131.

3-Methyl-4-(methylthio)thiazol-2(3*H***)-one (2l).** ¹H NMR (600 MHz, CDCl₃, TMS): δ = 7.27 (s, 1H), 6.04 (s, 1H), 3.33 (s,3H), 2.36 (s, 3H); HRMS (ESI) calcd for C₅H₈NOS₂ [M+H]⁺ = 161.2452, found 161.3362.

X-ray structure of 3a

Table 1.Crystal data and structure refinement for 3a.

mo_21229a			
C19H19NO2S2			
357.47			
296(2) K			
0.71073 Å			
Orthorhombic, $P2(1)2(1)2(1)$			
a = 10.8460(13) Å alpha = 90 deg.			
b = 11.5153(15) Å beta = 90 deg.			
c = 14.8533(18) Å gamma = 90 deg.			
1855.1(4) Å ³			
4, 1.280 Mg/m^3			
0.297 mm ⁻¹			
752			
0.12 x 0.11 x 0.09 mm			
2.24 to 27.48 deg.			
-14<=h<=14, -14<=k<=14, -19<=l<=16			
13700 / 4244 [R(int) = 0.0388]			
99.6 %			
Semi-empirical from equivalents			
0.9737 and 0.9652			
Full-matrix least-squares on F ²			
4244 / 1 / 225			

Goodness-of-fit on F ²	0.750
Final R indices [I>2sigma(I)]	R1 = 0.0395, wR2 = 0.1071
R indices (all data)	R1 = 0.0775, wR2 = 0.1408
Absolute structure parameter	0.00(12)
Largest diff. peak and hole	0.185 and -0.149 e. Å $^{\text{-3}}$

NMR Spectra

Compound 3a

Compound **3b**

Compound 3c

Compound **3d**

Compound **3e**

Compound **3f**

S12

Compound **3g**

Compound **3h**

Compound 3i

Compound 3k

Compound 31

Compound 3m

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound 4e

Compound 4f

Compound 4g

Compound 4h

Compound 4i

Compound 4j

Compound 4k

Compound 2a

Compound 2b

Compound 2c

Compound 2d

S34

Compound 2e

Compound 2f

Compound 2g

S37

Compound 2h

Compound 2i

Compound 2j

Compound 2k

Compound 21

HPLC Chromatograms

Compound 3a

Compound 3b

Compound 3c

Compound 3d

Compound 3e

Compound 3f

[mAU]

*

[min] [mAU*s]

[min]

Compound 3g

Compound 3h

Compound 3i

Compound 3j

2 12.382 BB 0.5500 4059.66724 111.71126 14.3111

Compound 3k

Compound 31

Compound 3m

1	23.277	MM	1.0618	3520.06494	55.25493	37.1089
2	35.305	MM	1.6898	5965.70703	58.84169	62.8911

Compound 4a

Compound 4b

 $\begin{array}{c} \begin{array}{c} DAD 1 B, Sig=254, 16 Ref=360, 100 (WSCWSC000266.D) \\ \begin{array}{c} mAU \\ 300 \\ 250 \\ 200 \\ 150 \\ 150 \\ 100 \\ 60 \\ 0 \end{array} \\ \end{array}$

峰	保留时间 [min]	类型	峰宽 [min]	峰面积 (mAU*s)	峰高 [mAU]	峰面积
	49.645	BB	1.2104	2706.55225	26.30501	3.6266
	2 79.772	VB	2.4360	7.19234e4	345.30569	96.3734

Compound 4c

1	29.420	MM	1.4491	538.60901	6.19460	5.8903
2	43.243	MM	3.0394	8605.35742	47.18848	94.1097

Compound 4d

Compound 4e

1 17.119 MM 0.7973 123.05882 2.57247 1.2804 2 21.626 MM 1.8133 9487.87988 87.20606 98.7196

Compound 4f

Compound 4g

S62

58

Compound 4h

Compound 4i

1	33.824	MM	1.8518	371.37302	3.34247	8.7054
2	40.752	MM	2.9837	3894.64893	21.75503	91.2946

Compound 4j

	(min)		[min]	[mAU*s]	[mAU]	1
1	40.650	BV	1.0843	1833.70995	19.87615	8,7158
2	50.084	BB	1.5623	1.92052e4	144.52811	91.2842

Compound 4k

