Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Synthesis of new dicinnamoyl 4-deoxy quinic acid and methyl ester derivatives and evaluation of the toxicity against the pea aphid *Acyrthosiphon pisum*

Xiubin Li, ^{*a*} Lucie Grand, ^{*a*} Thomas Pouleriguen, ^{*a*} Yves Queneau, ^{*a*} Pedro da Silva, ^{*b*} Yvan Rahbe, ^{*b*} Jean-Luc Poëssel, ^{*c*} Sylvie Moebs-Sanchez, ^{*a*}*

^a Université Lyon 1, INSA Lyon, ICBMS UMR 5246 CNRS, CPE-Lyon, Equipe Chimie Organique et Bioorganique, Bâtiment Jules Verne, 20 Avenue Albert Einstein, F-69621 Villeurbanne Cedex, France Tel : +33-(0)4 72 43 80 98 Fax : +33-(0)4 72 43 88 96

^b INSA Lyon, INRA UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bâtiment Louis Pasteur, 20 Avenue Albert Einstein, F-69621 Villeurbanne Cedex, France Tel : +33-(0)4 72 43 61 51, Fax : +33 (0)4 72 43 85 34.

^c INRA Avignon, UR 1052, GAFL, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, 67 allée des Chênes, CS 60094, 84143 Montfavet Cedex – France. Tel : +33-(0)4 32 72 26 78, Fax : +33 (0)4 32 72 27 02.

sylvie.moebs@insa-lyon.fr

General

Reagents and solvents were supplied by Aldrich, Acros, Lancaster, Alfa Aesar, Fluka or TCI and purchased at the highest commercial quality to be used without further purification. NMR spectra were recorded on a Bruker 300 (¹H: 300 MHz; ¹³C: 75 MHz), Bruker 400 (¹H: 400 MHz; ¹³C: 100 MHz), or Bruker 500 (¹H: 500 MHz; ¹³C: 125 MHz) spectrometers, at 295-298K, using CDCl₃ and CD₃OD as solvents. The chemical shifts (δ ppm) are referenced to the solvent residual peak and coupling constants (Hz) are reported in the standard fashion. The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintuplet, sext. = sextuplet, hept. = heptuplet, m = multiplet, br = broad. Electrospray ionization (ESI) mass spectrometry (MS) experiments were performed on a Thermo Finnigan LCQ Advantage mass. High-resolution mass spectra (HRMS) were recorded on a Finnigan Mat 95xL mass spectrometer using electrospray. Analytical thin-layer chromatography was carried out on silica gel Merck 60 D254 (0.25 mm). Flash chromatography was performed on Merck Si 60 silica gel (40–63 µm). Infra-red (IR) spectra were recorded with a IRAffinity-1 Shimadzu spectrometer using Attenuated Total Reflectance (ATRMiracle), and the wavenumbers are expressed in cm^{-1} . Optical rotations were measured on a Perkin Elmer 241 or Jasco P1010 polarimeter with a 10 cm cell (concentration c expressed as g/100 mL). Melting points were measured using Büchi apparatus B-540. Preparative HPLC was performed on Agilent equipment with a column Phenomenex C18: Jupiter® 5µm; 300 Å, LC Column 250 x 4.6mm, flow 1ml/min; Mobile phase 0 - 2min: 80% H_2O UHQ + TFA (A) / 20% CH₃CN + TFA (B); 22min: 40 % A / 60% B; 30min: 100% B; 33min: 80% A/ 20% B. Samples were dissolved in MeOH (6mL) and 10µg were injected per sample.

All data for chlorogenic acids or related derivatives presented in this paper use the recommended IUPAC numbering system.¹ The assignment of NMR signals has been made according to the numbering shown in the general structure in the figure below. As much as possible an unambiguous designation of the corresponding atoms of the lateral chains has been preferred to a numbering using numerous «'» character or secondary indexation.

List of contents

Procedures for the synthesis of compounds 6, 9, 10, 4, 12	S 3
¹ H and ¹³ C NMR spectra	S13
H(CD ₃ OD) spectra of $4a$ and $4d$ after 6h, 24h, 48h and 60h at 296.5K	S57
HPLC analysis and UV spectra for compounds 10a, 10c, 10d, 10e, 4a, 4c, 4d, 12	S58
Mortality curves from survival analysis of tested compounds 4a to 12	S66

¹ IUPAC Nomenclature of cyclitols. *Biochem. J.* 1976, **153**, 23-31.

Methyl (38,58)-1,3,5-trihydroxycyclohexanecarboxylate or methyl 4-deoxy quinate 6

Methyl (1S,3R,4S,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylate Q1²

Methyl (1S,3R,4S,5R)-1,4-dihydroxy-3,5-tert-butyldimethylsilyloxyclohexanecarboxylate Q2³

Methyl (1S,3R,4S,5R)-1-hydroxy-4-[(1H-imidazol-1-ylcarbothioyl)oxy]-3,5-tertbutyldimethylsilyloxy cyclohexanecarboxylate Q3⁴

Q1, Q2, Q3 were prepared according reported procedures.

The disilylated compound **5**⁵ (106.7 mg, 0.25 mmol) was stirred in MeOH (2mL) with Amberlyst[®]A15 (H⁺ form) at room temperature for 24h. After filtration and evaporation, the crude product was purified by flash chromatography (pentane/ethyl acetate 50/50 then ethyl acetate/methanol 90/10) to provide **6** (colorless oil then white solid on standing, 42.7 mg, 89%).**[a]**²⁵ - 3.7 (*c* 1.06, CH₃OH); IR(ATR) 3350, 2951, 2930, 2855, 1173, 1730, 1661, 1435, 1371, 1281, 1240, 1134, 1057, 1016 cm⁻¹; ¹H NMR (400 MHz, 296K, CD₃OD) δ (ppm) = 4.24-4.16 (m, 2H, H₃ and H₅), 3.73 (s, 3H, OMe), 2.08 (dd, 1H, ²J 13.8 Hz, ³J_{H₅/H₆} 3.3 Hz, H₆ or H₂), 2.00 (m, 2H, H₂ or H₆ and H₄), 1.88 (dd, 1H, ²J 12.8 Hz, ³J 9.1 Hz, H₂ or H₆), 1.77 (dd, 1H, ²J 13.8 Hz, ³J 4.8 Hz, H₆ or H₂), 1.60 (ddd, 1H, ²J 12.7 Hz, ³J_{H_{4a}/H_{5a ou 3a} 9.2 Hz, ³J_{H_{4a}/H_{3e ou H5e} 3.0 Hz, H_{4a}); ¹³C NMR (CD₃OD, 295K, 100MHz) δ (ppm) 176.1 (COOMe), 76.8 (C₁), 67.8 (C₅ or C₃), 64.0 (C₃ or C₅), 52.8 (OMe), 43.8 (C₂ or C₆), 42.0 (C₄), 40.3 (C₆ or C₂).}}

² M. Frank and R. Miethchen, Carbohydr. Res. 1998, 313, 49-53

³ L. Sanchez-Abella, S. Fernandez, N. Armesto, M. Ferrero and V. Gotor, J. Org. Chem. 2006, 71, 5396-5399.

⁴ D. Oves, M. Diaz, S. Fernandez, M. Ferrero and V. Gotor, Synth. Commun., 2001, **31**, 2335.

⁵ K. L. Perlman, R. E. Swenson, H. E. Paaren, H. K. Schnoes and H. F. Deluca, *Tetrahedron Lett.*, 1991, **32**, 7663.

MS-ESI m/z $[M+Na]^+$ 213.1; HRMS-ESI m/z $[M+Na]^+$ calcd for $C_8H_{14}NaO_5$ 213.0733; found 213.0733.

General procedure for the synthesis of homodiesters of deoxy methyl quinate 9

Procedure A :

To a solution of triol **6** in DMF / pyridine (v/v 3/2, c = 0.4M) under nitrogen was added the protected cinnamoyl chloride (3 equiv.) The mixture was stirred at 45°C until completion, in general after 1h. Methanol was added and after 15min under stirring, the resulting mixture was concentrated, diluted with EtOAc, washed with 1M HCl then with a saturated NaHCO₃ solution then with brine. The organic layer was dried over Na₂SO₄, concentrated and purified by flash chromatography on silica using the appropriate eluent.

Procedure B :

To a solution of triol **6** in DMF / pyridine (v/v 3/2, c = 0.4M) under nitrogen was added the protected cinnamoyl chloride (3 equiv.) The mixture was stirred at 0°C until completion, in general after 4h. Methanol was added and after 15min under stirring, the resulting mixture was concentrated, diluted with EtOAc, washed with 1M HCl then with a saturated NaHCO₃ solution then with brine. The organic layer was dried over Na₂SO₄, concentrated and purified by flash chromatography on silica using the appropriate eluent.

Procedure C :

To a solution of triol **6** in dichloromethane / pyridine (v/v 5/1, c = 0.1M) under nitrogen was added the protected cinnamoyl chloride (3 equiv.) and DMAP (20 mol%). The mixture was stirred at -18°C to room temperature until completion, in general after 4h. Methanol was added and after 15min under stirring, the resulting mixture was concentrated, diluted with EtOAc, washed with 1M HCl then with a saturated NaHCO₃ solution then with brine. The organic layer was dried over Na₂SO₄, concentrated and purified by flash chromatography on silica using the appropriate eluent.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-diacetoxyphenyl)-1-oxo-2-propen-1yl]oxy]cyclohexanecarboxylate 9a

Synthesized according to the general procedure B using diacetylated caffeoyl chloride⁶ and methyl 4deoxy quinate **6** (105 mg, 0.553 mmol). **9a** was obtained as a white solid (348 mg, yield: 92%) after purification by flash chromatography on silica using DCM/Et₂O 12/1 to 6/1.

 $[\alpha]_{D}^{25} = -46.9 \text{ (c } 1.215, \text{ CH}_{2}\text{Cl}_{2}\text{) ; m.p.} = 92.8-94.1^{\circ}\text{C} \text{ (CH}_{2}\text{Cl}_{2}\text{) ; IR}(\text{ATR}) 2943, 2832, 1775, 1742, 1713, 1639, 1504, 1449, 1427, 1371, 1321, 1242, 1205, 1180, 1147, 1132, 1111, 1022 \text{ cm}^{-1}\text{; }^{1}\text{H NMR} \text{ (CDCl}_{3}, 298\text{K}, 500\text{MHz}) \delta \text{ (ppm)} = 7.63 \text{ and } 7.58 \text{ (2d, } 2\text{H}, {}^{3}J \text{ 15.9 Hz}, \text{C}\underline{\text{H}}=\text{CHCO}\text{)}, 7.39 \text{ and } 7.38 \text{ (2dd, } 2\text{H}, J_{\text{ortho}} 8.4\text{Hz}, J_{\text{meta}} 1.9 \text{ Hz}, 2x\text{H}_{6}\text{)}, 7.35 \text{ and } 7.34 \text{ (2d, } 2\text{H}, J_{\text{meta}} 1.9 \text{ Hz}, 2x\text{H}_{2}\text{)}, 7.20 \text{ (d, } 2\text{H}, J_{\text{ortho}} 8.4 \text{ Hz}, 2x\text{H}_{5}\text{)}, 6.40 \text{ and } 6.32 \text{ (2d, } 2\text{H}, {}^{3}J \text{ 15.9 Hz}, \text{CH}=\text{CHCO}\text{)}, 5.51 \text{ (ddd, } 1\text{H}, {}^{2}J \text{ 13.8 Hz}, {}^{3}J 9.8 \text{ Hz}, 3J 9.8 \text{ Hz},$

⁶ M. Sefkow, Eur. J. Org. Chem. 2001, 1137-1141.

Hz, ${}^{3}J$ 3.9 Hz, H_{3 ou 5ax}), 5.46 (ddd, 1H, ${}^{3}J$ 7.8 Hz, ${}^{3}J$ 3.9 Hz, H_{3e ou 5e}), 3.76 (s, 1H, OH₁), 3.74 (s, 3H, COOMe), 2.28, 2.271 and 2.268 (3s, 12H, OCOCH₃), 2.32 (m, 1H, H₄), 2.23-2.18 (m, 2H, H₂ and H₆), 2.08-2.00 (m, 2H, H₂ and H₆), 1.87 (ddd, 1H, ${}^{2}J$ 13.6 Hz, ${}^{3}J$ 10.3 Hz, ${}^{3}J$ 3.45 Hz, H_{4a}); ${}^{13}C$ NMR (CDCl₃, 298K, 125 MHz) δ (ppm) = 175.0, 168.1(2) and 168.0(2) (4xOCOCH₃), 165.8 and 165.5 (2xCOO), 143.59 and 143.57 (C_q), 143.3 and 143.2 (<u>C</u>H=CHCO) , 142.5 and 142.4 (C_q), 133.2 and 133.1(C_q), 126.5 and 126.4 (C₆·), 124.0 and 123.9 (C₅·), 122.9 and 122.8 (C₂·), 119.4 and 119.2 (CH=<u>C</u>HCO), 74.7 (C₁) , 68.9 (C₃ ou C₅), 66.9 (C₅ ou C₃), 53.1 (OMe), 39.7 (C₂ ou C₆), 36.7 (C₂ ou C₆), 35.0 (C₄), 20.7(2), 20.62 and 20.60 (4x OCO<u>C</u>H₃); HRMS-ESI m/z [M+Na]⁺ calcd for C₃₄H₃₄NaO₁₅ 705.1790; found 705.1780.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-di-(prop-2-en-1-yloxy)phenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 9b

Synthesized according to the general procedure A using diallylated caffeoyl chloride.⁷ and **6** (102 mg, 0.537 mmol) Purification by flash chromatography on silica using petroleum ether/EtOAc 50/50, providing the triester (51mg, 10%) and diester **9b** (214 mg, 59%) as white solids.

[a]²⁵_D - 140.8 (*c* 0.86, CH₂Cl₂); [a]²³_Dm.p. 89-91°C; IR(ATR) 2922, 2827, 1706, 1631, 1597, 1510,

1456, 1423, 1362, 1335, 1304, 1246, 1223, 1165, 1134, 1090, 1067 cm⁻¹; ¹H NMR (CDCl₃, 298K, 300MHz) δ (ppm) = 7.63 and 7.58 (2d, 2H, ³*J* 15.9 Hz, C<u>H</u>=CHCO), 7.08 (m, 4H, CH_{Ar}), 6.87 (m, 2H, CH_{Ar}), 6.31 and 6.23 (2d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 6.07 (m, 4H,CH₂=C<u>H</u>CH₂O), 5.60-5.50 (m, 2H, H₃ and H₅), 5.42-5.39 (m, 2H, C<u>H</u>₂anti=CHCH₂O), 5.30 (m, 4H, C<u>H</u>₂syn =CHCH₂O), 4.64 (m, 8H, CH₂=CHC<u>H</u>₂O), 2.32 (m, 1H, H₂ or H₄ or H₆), 2.24-2.02 (m, 4H, H₂ or H₄ or H₆), 1.86 (ddd, 1H, *J* 13.7 Hz, *J* 10.4 Hz, *J* 3.4 Hz, H₂ or H₄ or H₆); ¹³C NMR (CDCl₃, 296K, 75 MHz) δ (ppm) = 175.1 (COOMe), 166.5 and 166.3 (OCO), 150.8 (2xC_q), 148.7 (2xC_q), 145.4 and 145.1(<u>C</u>H=CHCO), 133.2 133.1, 133.05 and 133.01 (4xCH₂=<u>C</u>HCH₂O), 127.64, 127.57 (2xCq), 123.2 and 122.9 (2xCHAr), 118.15, 118.11, 118.1, 118.07 (4x<u>C</u>H₂=CHCH₂O), 115.88 and 115.84 (CH=<u>C</u>HCO), 113.50, 113.44, 112.7 and 112.5 (4xCH_{Ar}), 75.0 (C₁), 70.1, 70.0, and 69.8(2) (4xCH₂=CH<u>C</u>H₂O), 68.8 and 66.6 (C₃ and C₅), 53.2(OMe), 40.0, 36.9 and 35.2 (C₂, C₄ and C₆); HRMS-ESI m/z [M+Na]⁺ calcd for C₃₈H₄₂NaO₁₁ 697.2619; found 697.2615.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3-acetoxy,4-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 9c

Synthesized according to the general procedure C using acetylated feruloyl chloride and methyl 4deoxy quinate **6** (117 mg, 0.616 mmol). **9c** was obtained as a white solid (266 mg, yield: 69%) after purification by flash chromatography on silica using DCM/Et₂O 10/1.

 $[\alpha]_{D}^{25} = -74.5$ (c 1.05, CH₂Cl₂); $[\alpha]_{D}^{23}$ m.p. 90-92°C; IR(ATR) 1765, 1709, 1638, 1508, 1464, 1418,

1369, 1298, 1263, 1215, 1198, 1153, 1123, 1033, 1011 cm⁻¹; ¹H NMR (CDCl₃, 296K, 300MHz) δ (ppm) = 7.65 and 7.60 (2d, 2H, ³*J* 15.9 Hz, C<u>H</u>=CHCO), 7.12-7.02 (m, 6H, CH_{Ar}), 6.41 and 6.33 (2d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.55 and 5.49 (2m, ³*J* 9.3 Hz, ³*J* 3.3 Hz, H₅ and H₃), 3.85 and 3.84 (2s, 2x3H, 2xOMe), 3.76 (s, 3H, COOMe), 2.30(s, 6H, 2xOAc), 2.28 (m, 1H, H_{4e}), 2.22-2.18 and 2.11-

⁷ Jaiswal, R.; Dickman, M. H.; Kuhnert, N. Org. Biomol. Chem. 2012, 10, 5266-5277

2.04(m, 2x2H, 2xH₆ and 2xH₂), 1.88 (ddd, 1H, ²*J* 13.6 Hz, ³*J* 10.4 Hz, ³*J* 3.4 Hz, H₄); ¹³C NMR (CDCl₃, 295K, 100 MHz) δ (ppm) = 175.0 (COOMe), 168.8 (2xOCOCH₃), 166.1 and 165.8 (COO), 151.4 (2xC_q), 144.6 and 144.4 (CH=CHCO), 141.54 and 141.51 (C_q), 133.34 and 133.30 (C_q), 123.33 and 123.25(CHAr), 121.6 and 121.3 (CHAr), 118.3 and 118.2 (CH=CHCO), 111.3 and 111.1 (CH_{Ar}), 74.8 (C₁), 68.9 (C₃ or C₅), 66.8 (C₅ or C₃), 56.0(2xOMe), 53.1 (COO<u>Me</u>), 39.8 and 36.8 (C₆ and C₂), 35.1 (C₄), 20.7 (2xOCOCH₃); HRMS-ESI m/z [M+Na]⁺ calcd for C₃₂H₃₄NaO₁₃ 649 649.1892; found 649.1865.

Methyl (38,58) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxyphenyl)-1-oxo-2-propen-1yl]oxy]cyclohexanecarboxylate 9d

Synthesized according to the general procedure A using acetylated *para*-coumaroyl chloride ⁸ and methyl 4-deoxy quinate **6** (58mg, 0.305 mmol). **9d** was obtained as a white solid (142 mg, yield: 82%) after purification by flash chromatography on silica using DCM/Et₂O 10/1. [α]²⁵ -79.4 (*c* 0.83,

CH₂Cl₂); m.p. 86-88°C; IR(ATR) 1765, 1736, 1709, 1638, 1601, 1506, 1418, 1369, 1312, 1265, 1202, 1163, 1140, 1086, 1063, 1011 cm⁻¹;¹H NMR (CDCl₃, 295K, 400MHz) δ (ppm) = 7.67 and 7.62 (2d, 2H, ³*J* 16.0 Hz, C<u>H</u>=CHCO), 7.52 and 7.50 (2d, 4H, *J*_{ortho} 8.5 Hz, H₂·), 7.10 (2d, 4H, *J*_{ortho} 8.5 Hz, H₃·), 6.41 and 6.33 (2d, 2H, ³*J* 16.0 Hz, CH=CHCO), 5.53 and 5.48 (2 m, 2H, ³*J* 4.0 Hz, H₃ and H₅), 3.74 (s, 3H, COOMe), 2.27 (s, 6H, OAc), 2.24 (m, 1H, H₄), 2.23-2.19 (m, 2H, H₂ and H₆), 2.11-2.06 (m, 2H, H₂ and H₆), 1.88 (ddd, 1H, ²*J* 13.0 Hz, ³*J* 10.2 Hz, ³*J* 3.5 Hz, H₄); ¹³C NMR (CDCl₃, 295K, 100 MHz) δ (ppm) = 174.9 (COOMe), 169.2 (2xOCOCH₃), 166.1 and 165.8 (COO), 152.2 and 152.1 (C_q), 144.1 and 144.0 (CH=CHCO), 132.1 and 132.0 (2xCH_{Ar}), 129.4 and 129.3 (2xCH_{Ar}), 122.2 and 122.1 (C_q), 118.3 and 118.1 (CH=CHCO), 74.7 (C₁), 68.8 and 66.8 (C₃ and C₅), 53.0 (OMe), 39.7 and 36.8 (C₂ and C₆) 35.0 (C₄) 21.1 (2xCH₃); HRMS-ESI m/z [M+Na]⁺ calcd for C₃₀H₃₀NaO₁₁ 589.1680; found 589.1655.

Methyl(3S,5S)1-hydroxy-3,5bis[[(2E)-3-(2-acetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 9e

Synthesized according to the general procedure A using acetylated *ortho*-coumaroyl chloride and methyl 4-deoxy quinate **6** (82 mg, 0.432 mmol). Purification by flash chromatography (DCM/Et₂O 10/1) afforded **9e** as a white solid (152 mg, yield: 62%)

[a]²⁵_D - 50.0 (*c* 1.12, CH₂Cl₂); m.p. 87-90°C; IR(ATR) 1763, 1711, 1638, 1483, 1454, 1437, 1371,

1315, 1265, 1198, 1179, 1140, 1094, 1063, 1009 cm⁻¹; ¹H NMR (CDCl₃, 296K, 300MHz) δ (ppm) = 7.81 and 7.73 (2d, 2H, *J* 16.1 Hz, C<u>H</u>=CHCO), 7.63 (dd, 2H, *J* 7.9 Hz, H ortho), 7.40 (dd, 2H, *J* 7.40 Hz, H meta OAc), 7.25 (dd, 2H, *J* 7.6 Hz, H para OAc), 7.11 (d, 3H, J 8.1 Hz, H orthoOAc), 6.46 and 6.40 (2d, 2H, *J* 16.1 Hz, CH=C<u>H</u>CO), 5.53 (m, 2H, H₃ and H₅), 3.75 (s, 3H, COOMe), 2.40 and 2.38 (2s, 2x3H, 2xOAc), 2.29-2.19 (m, 3H, H-2, H-4, H6), 2.13-2.02 (m, 2H, H-2, H-6), 1.90 (ddd, 1H, ²J 13.5 Hz, ³J 10.0 Hz, ³J 3.4 Hz, H-4); ¹³C NMR (CDCl₃, 295K, 100 MHz) δ (ppm) = 175.0 (COOMe), 169.45 and 169.40 (O<u>C</u>OCH₃), 165.8 and 165.6 (COO), 149.4(2xC_q), 138.56 and 138.50

⁸ R. F. Helm, J. Ralph and R. D. Hatfield, *Carbohydr. Res.*, 1992, **229**, 183-194.

(<u>CH</u>=CHCO), 131.34 and 131.30 (C₄·), 127.6 and 127.5 (C₆·), 127.1 and 127.0 (C_q), 126.44 and 126.41(C₅·), 123.26 and 123.20 (C₃·), 120.2 and 120.1 (CH=<u>C</u>HCO), 74.6 (C₁), 68.8 (C₃ or C₅), 67.0 (C₅ or C₃), 53.2 (COO<u>Me</u>), 39.7 and 36.9 (C₆ and C₂), 35.1 (C₄), 21.0 (2x OCO<u>C</u>H₃); HRMS-ESI m/z [M+Na]⁺ calcd for C₃₀H₃₀NaO₁₁ 589.1680; found 589.1669.

General procedure for the deprotection of aromatic acetates

Procedure D⁹ : To a solution of compound **9** (a, c, d or e) in ethanol/water (2/1, 0.12M) was added hydrazine acetate (NaOAc, 20 eq). After stirring at reflux for 1 h, the mixture was diluted with EtOAc, washed with brine then the organic layer was dried over MgSO₄, concentrated and purified by flash chromatography.

Procedure E¹⁰: To a solution of compound **9** (a, c, d or e) in DMF (0.15M) was added hydrazine acetate (75equiv.). After stirring at room temperature for 1 h, the mixture was diluted with EtOAc, washed with brine then the organic layer was dried over MgSO₄, concentrated and purified by flash chromatography.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 10a

To a solution of **9a** (116mg, 0.170 mmol) in DMF (0.9 mL) was added hydrazine acetate (71 mg, 0.64 mmol). After stirring at room temperature for 1 h, the mixture was diluted with EtOAc (50 mL), washed with brine (30 mL x 3) then the organic layer was dried over MgSO₄, concentrated and purified by flash chromatography (CH₂Cl₂ / CH₃OH 40 / 1) to provide **10a** as a colorless oil (78 mg, 89%). [α]²⁵_D - 167.0 (*c* 0.64, CH₃OH); IR(ATR) 3323, 3304, 3285, 3275, 2949, 2835, 1680, 1630,

1599, 1516, 1443, 1373, 1256, 1159, 1140, 1119, 1067, 1016 cm⁻¹; ¹H NMR (CD₃OD, 298K, 500 MHz) : δ ppm = 7.58 and 7.52 (d, 2H, ³*J* 15.8 Hz, C<u>H</u>=CHCO), 7.06 (bs, 2H, Ar-H₂·), 6.95 (dt, 2H, $J_{ortho} = 8.1, J_{meta} 2.3$ Hz, Ar-H₆·), 6.80 (dd, 2H, $J_{ortho} 8.2$ Hz, $J_{meta} 2.7$ Hz, Ar-H₅·), 6.28 and 6.19 (d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.42 (m, 2H, H₃ and H₅), 3.70 (s, 3H, OMe), 2.46 (dd, 1H, ²*J* 13.4 Hz, ³*J* 3.5 Hz, H₂ or H₆), 2.39 (dd, 1H, ²*J* 13.6 Hz, ³*J* 6.9 Hz, H₂ or H₆), 2.06 (m, 1H, H₄), 1.97 (m, 2H, H₄ and H₂ or H₆), 1.86 (dd, 1H, ²*J* 13.4 Hz, ³*J* 7.7 Hz, H₂ or H₆); ¹³C NMR (CD₃OD, 298K, 125 MHz) δ (ppm) = 175.7 (COOMe), 168.5 (OCO), 168.0 (OCO), 149.6 (C_q), 149.5 (C_q), 147.2 and 147.0 (CH=CHCO), 146.8 (C_q), 146.7(C_q), 127.7 (C_q), 127.6 (C_q), 123.04 and 123.00 (C₆·), 116.53 and 116.50 (C₅·), 115.4 and 115.1 (OCOCH=<u>C</u>H), 115.09 and 115.00 (C₂·), 75.0 (C₁), 69.5 and 69.0 (C₃ and C₅), 53.0(OMe), 39.7, 39.3 and 35.9 (3xCH₂, C₂, C₆ and C₄); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₆H₂₆NaO₁₁ 537.1367; found 537.1351.

⁹ T. Narender, K. P. Reddy and G. Madhur, Synthetic Commun., 2009, **39**, 1949-1956.

¹⁰ Y. M. Zhu, M. Regner, F. C. Lu, H. Kim, A. Mohammadi, T. J. Pearson and J. Ralph, *RSC Adv.*, 2013, **3**, 21964.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)- 3-(4-hydroxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 10c

The general procedure E for the deprotection of aromatic acetates was performed with **9c** (65 mg, 0.104 mmol) in DMF (0.45 mL) and hydrazine acetate (43 mg, 0.47 mmol) providing after purification **10c** as a colorless oil (50 mg, 89%). $[\alpha]_D^{25}$ - 170.0 (*c* 0.93, CH₃OH); IR(ATR) 3516, 3057, 2957, 2941,

1701, 1631, 1593, 1512, 1462, 1454, 1429, 1377, 1263, 1207, 1157, 1138, 1032, 1009 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) : δ ppm = 7.63 and 7.57 (d, 2H, ³*J* 15.9 Hz, C<u>H</u>=CHCO), 7.12 (bs, 2H, Ar-H), 7.07 (dd, 2H, *J*_{ortho} 8,2 Hz, *J*_{meta} 2,7 Hz, Ar-H), 6.81 (dd, 2H, *J*_{ortho} 8,2 Hz, *J*_{meta} 2,2 Hz, Ar-H), 6.38 and 6.29 (d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.432 (m, 2H, H₃ and H₅), 3.88 (s, 6H, 2x OMe), 3.70 (s, 3H, COOMe), 2.45 (dd, 1H, ²*J* 13.6 Hz, ³*J* 4.1 Hz, H₂ or H₆), 2.38 (dd, 1H, ²*J* 13.6 Hz, ³*J* 7.2 Hz, H₂ or H₆), 2.14-1.97 (m, 3H, 2x H₄ and H₂ or H₆), 1.88 (dd, 1H, ²*J* 13.6 Hz, ³*J* 7.5 Hz, H₂ or H₆); ¹³C NMR (CD₃OD, 100 MHz) δ (ppm) = 175.7 ((COOMe), 168.4 and 168.0 (OCO), 150.7, 150.6, 149.4, 149.3 (C_{q Ar}), 147.1 and 147.0 (CH=CHCO), 127.7 and 127.5 (C_{q Ar}), 124.2 and 124.1 (CH_{Ar}), 116.5 and 116.4 (CH_{Ar}), 115.7 and 115.4 (OCOCH=CH), 111.6 (CH_{Ar}), 75.0 (C₁), 69.5 and 69.0 (C₅ or C₃), 56.4(2) (2xOCH₃), 53.0 (COO<u>Me</u>), 39.8 and 39.2 (C₂ or C₆), 35.9 (C₄); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₈H₃₀NaO₁₁ 65.1680; found 565.1662.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propen-1yl]oxy]cyclohexanecarboxylate 10d

The general procedure E for the deprotection of aromatic acetates was performed with **9d** (80 mg, 0.14 mmol) in DMF (0.6 mL) and hydrazine acetate (59 mg, 0.64 mmol) providing after purification (CH₂Cl₂ / CH₃OH 40 / 1) a colorless oil (62 mg, 91%). $[\alpha]_{D}^{25}$ - 174.7 (*c* 0.95, CH₃OH); IR(ATR)

3325, 3308, 3279, 3267, 2947, 2832, 1688, 1632, 1603, 1587, 1514, 1441, 1371, 1325, 1307, 1254, 1202, 1165, 1144, 1103, 1065, 1018 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) : δ (ppm) = 7.65 and 7.59 (2d, 2H, ³*J* 15.9 Hz, 2x C<u>H</u>=CHCO), 7.47 (d, 4H, *J*_{ortho} 8.6 Hz, Ar-H), 6.81 (dd, 4H, *J*_{ortho} 8.6 Hz, *J*_{meta} 1.8 Hz Ar-H), 6.34 and 6.26 (d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.43 (m, 2H, H₃ and H₅), 3.69 (s, 3H, OMe), 2.46 (dd, 1H, ²*J* 13.4 Hz, ³*J* 4.1 Hz, H₂, H₄ or H₆), 2.40 (dd, 1H, ²*J* 13.7 Hz, ³*J* 7.0 Hz, H₂, H₄ or H₆), 1.87 (dd, 1H, ²*J* 13.4 Hz, ³*J* 7.6 Hz H₂, H₄ or H₆). ¹³C NMR (CD₃OD, 100 MHz) δ (ppm) = 175.7 (COOMe), 168.5(OCO), 168.0(OCO), 161.4 (C_q), 161.3 (C_q), 146.8 and 146.7 (2x<u>C</u>H=CHCO), 131.23 and 131.20 (2x2xCH), 127.2 and 127.0 (2xC_q), 116.9, 116.8 (2x2 CH), 115.5 and 115.1 (2x OCOCH=<u>C</u>H), 75.0 (C₁), 69.5, 69.0 (C₃ and C₅), 53.0 (OMe), 39.8, 39.3 and 35.9 (3xCH₂, C₂, C₆ and C₄). HRMS-ESI m/z [M+Na]⁺ calcd for C₂₆H₂₆NaO₉ 505.1469; found 505.1452.

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(2-hydroxyphenyl)-1-oxo-2-propen-1yl]oxy]cyclohexanecarboxylate 10e

The general procedure E for the deprotection of aromatic acetates was performed with **9e** (118 mg, 0.21 mmol) in DMF (0.9 mL) and hydrazine acetate (88 mg, 0.96 mmol) providing after purification (CH₂Cl₂ / CH₃OH 40 / 1) a colorless oil (89 mg, 89%). $[\alpha]_D^{25}$ - 104.3 (*c* 1.00, CH₃OH); IR(ATR)

3337, 3298, 3283, 3256, 2945, 2835, 1688, 1626, 1603, 1499, 1458, 1369, 1317, 1294, 1254, 1169, 1146, 1113, 1067, 1018 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) : δ ppm = contaminated with chloroform

at 7.90 ppm, 8.00 and 7.91 (2d, 2H, ${}^{3}J$ 16.1 Hz, C<u>H</u>=CHCO), 7.48 (pseudo t, 2H, J_{ortho} 8,2 Hz Ar-H), 7.21 (pseudot, 2H, J_{ortho} 7.4 Hz Ar-H), 6.84 (m, 4H, Ar-H), 6.63 and 6.58 (d, 2H, ${}^{3}J$ 16.1 Hz, CH=C<u>H</u>CO), 5.45 (m, 2H, H₃ and H₅), 3.72 (s, 3H, OMe), 2.49 (dd, 1H, ${}^{2}J$ 13.4 Hz, ${}^{3}J$ 3.6 Hz, H₂, H₄ or H₆), 2.43 (dd, 1H, ${}^{2}J$ 13.8 Hz, ${}^{3}J$ 6.8 Hz, H₂, H₄ or H₆), 2.15-2.09 (m, 1H, H₂, H₄ or H₆), 2.00-1.96 (m, 2H, H₂, H₄ or H₆), 1.86 (dd, 1H, ${}^{2}J$ 13.3 Hz, ${}^{3}J$ 7.9 Hz, H₂, H₄ or H₆). 13 C NMR (CD₃OD, 100 MHz) δ (ppm) = contaminated with chloroform at 79.4 ppm; 175.7 (COOMe), 168.8(OCO), 168.4(OCO), 158.5 and 158.3 (2xC_q), 142.9 and 142.5 (2x<u>C</u>H=CHCO), 132.7, 132.6, 130.6, 130.2 (4xCH_{Ar}), 122.6, 122.5 (2xC_q), 120.8 (2xCH_{Ar}), 118.6, 118.5 (2x OCOCH=<u>C</u>H), 117.0 (2xCH_{Ar}), 79.4, 75.0 (C₁), 69.5, 69.1 (C₃ and C₅), 53.0 (OMe), 39.8, 39.4 and 35.9 (3xCH₂, C₂, C₆ and C₄). HRMS-ESI m/z [M+Na]⁺ calcd for C₂₆H₂₆NaO₉ 505.1469; found 505.1448.

(3S,5S)1-hydroxy-3,5bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 4a

LiI (143 mg, 1.07 mmol) was added to a solution of 9a (146 mg, 0.214 mmol) in EtOAc (1.1 mL) then the mixture was heated under reflux overnight. After cooling down to room temperature, the mixture was diluted with EtOAc (30 mL), washed with 1M HCl (2x 10 mL) and extracted with EtOAc (3x30mL). The organic layer was dried over MgSO₄, concentrated to give the crude (3S,5S) 1hvdroxy-3.5 bis[[(2E)-3-(3,4-diacetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 11a (128 mg, crude yield: 90%), pure enough for characterization and used directly in the following step. IR(ATR) 3370, 2941, 2833, 1769, 1707, 1638, 1504, 1369, 1240, 1201, 1174, 1143, 1109, 1012 cm^{-1} ¹H NMR (CD₃OD, 298K, 400 MHz) : δ ppm = 7.67 and 7.62 (2d, 2H, *J* 16.0 Hz, C<u>H</u>=CHCO), 7.50 (m, 2H, H_{6'}), 7.49 (m, 2H, H_{2'}), 7.24 (d, 2H, J_{ortho} 8.2 Hz, H₅'), 6.52 and 6.46 (2d, 2H, J 16.0 Hz, CH=CHCO), 5.46 (m, 2H, H₃ and H₅), 2.44-2.19 (m, 14H) and 2.06-1.90 (m, 4H, 3xCH₂ and $4xOCOCH_3$); ¹³C NMR (CD₃OD, 298K, 100 MHz) δ (ppm) = 177.3 (COOH), 169.8 and 169.7 (4x OCOCH₃), 167.5 and 167.2 (2xOCO), 145.2 and 145.1 (2xC_a), 144.5 and 144.4 (2xCH=CHCO), 144.0 $(2xC_{a})$, 134.60 and 134.56 $(2xC_{a})$, 127.7 and 127.6 $(2xC_{6'})$, 125.13 and 125.11 $(2xC_{5'})$, 124.14 and 124.09 (C_{2'}), 120.45 and 120.13 (2x CH=CHCO), 75.0 (C₁), 70.2, 69.2 (C₃ and C₅), 39.9, 38.7, 35.9 (C₂, C₄, C₆), 20.5 (4XOCO<u>C</u>H₃). HRMS-ESI m/z [M+H]⁺ calcd for C₃₃H₃₃O₁₅ 669.1814; found 669.1801.

To a solution of (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-diacetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid **11a** (208 mg) in acetone (4.08 mL) was added 3M HCl aqueous solution (2.0mL) and the mixture was refluxed for 5h. After completion, the reaction mixture was cooled down to room temperature, diluted with EtOAc (30 mL) and washed with brine (20 mL). The organic layer was concentrated to give the crude quantitatively as a pale solid **4a** (190 mg).

[α]²⁵_D - 42.7 (*c* 0.82, CH₃OH); ¹H NMR (CD₃OD, 400 MHz, 295K) : IR(ATR) 3345, 3210, 1687,

1603, 1523, 1445, 1362, 1279, 1182, 1138, 1119 cm⁻¹; δ (ppm) = 7.65 and 7.60 (2d, 2H, *J* 16.0 Hz, C<u>H</u>=CHCO), 7.45 (m, 4H, ArH), 6.81 (m, 4H, ArH), 6.34 and 6.27 (2d, 2H, *J* 16.0 Hz, CH=C<u>H</u>CO), 5.45 (m, 2H, H₃ and H₅), 2.41 (dd, 1H, ²*J* 14.0 Hz, ³*J* 3.8 Hz, H₂, H₄ or H₆), 2.32 (dd, 1H, ²*J* 13.3 Hz, ³*J* 8.2 Hz, H₂, H₄ or H₆), 2.06 (m, 3H, H₂, H₄ or H₆), 1.93 (dd, 1H, ²*J* 13.8 Hz, ³*J* 6.5 Hz, H₂, H₄ or H₆); ¹³C NMR (CD₃OD, 100 MHz, 297K) δ (ppm) = 177.4 (COOH), 171.0 (2xC_q), 168.5 and 168.3 (2xOCO), 161.12 and 161.07 (2xCq), 146.7 and 146.7 (2x<u>C</u>H=CHCO), 131.2, 131.1 (2xCH_{Ar}), 127.1

(2xC_q), 116.8 (4xCHAr), 115.5, 115.1 (2x CH=<u>C</u>HCO), 75.1 (C₁), 69.9, 68.7 (C₃ and C₅), 39.9, 38.6, 35.9 (C₂, C₄, C₆).

(3S,5S)1-hydroxy-3,5bis[[(2E)-3-(4-hydroxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 4c

LiI (152 mg, 1.135 mmol) was added to a solution of 9c (142 mg, 0.2274 mmol) in EtOAc (5.0 mL) then the mixture was heated under reflux 24h. After cooling down to room temperature, the mixture was diluted with EtOAc (25 mL), washed with 3M HCl (5 mL) and extracted with EtOAc (3x30mL). The organic layer was dried over MgSO₄, concentrated to give the crude (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid **11c** (quantitative crude yield), pure enough for characterization and used directly in the following step.

[a]²⁵_D - 97.5 (*c* 0.96, CH₃OH); IR(ATR) 3466, 2941, 2833, 1763, 1705, 1599, 1508, 1464, 1454, 1418,

1369, 1256, 1215, 1177, 1152, 1063, 1020 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) : δ (ppm) = 7.66 and 7.61 (2d, 2H, ³*J* 15.9 Hz, C<u>H</u>=CHCO), 7.13-7.03 (2m, 6H, Ar-H), 6.41 and 6.34 (2d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.50 (m, 2H, H₃ and H₅), 3.87 and 3.85 (2s, 2x3H, 2xOMe), 2.33-1.83 (m, 12H, H₂, H₄, H₆ and 2xOCOCH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) = 176.7 (COOH), 169.04 and 169.02 (2xO<u>C</u>OCH₃), 166.1 and 166.0 (2xCOO), 151.53 and 151.50 (2xC_q), 145.3, 144.8 (2x<u>C</u>H=CHCO), 141.7, 141.6 (2xC_q), 133.3, 133.2 (2xC_q), 123.4 (2xCH_{Ar}), 121.8, 121.4 (2x CH=<u>C</u>HCO), 118.1, 117.9 (2xCH_{Ar}), 111.4, 111.3(2xCH_{Ar}), 75.2(C₁), 69.4, 66.5 (C₃ and C₅), 56.1, 56.0 (2xOMe), 39.3, 36.5, 34.9 (C₂, C₄, C₆), 20.8 (2xOCO<u>C</u>H₃); HRMS-ESI m/z [M+Na]⁺ calcd for C₃₁H₃₂NaO₁₃ 635.1735; found 635.1706.

To a solution of (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid **11c** (176 mg) in acetone (3.0 mL) was added 3M HCl aqueous solution (1.5 mL) and the mixture was refluxed for 4h. After completion, the reaction mixture was cooled down to room temperature, diluted with EtOAc (30 mL) and washed with brine (20 mL). The organic layer was concentrated then dissolved in MeOH/H₂O (30/40 mL) and washed with pentane (2x 15mL). After concentration, the crude was obtained as a pale solid **4c** (150mg).

[a]²⁵_D - 94.4 (*c* 0.67, CH₃OH); IR(ATR) 3356, 3277, 1684, 1632, 1605, 1514, 1443, 1327, 1261, 1204,

1171, 1138, 1007 cm⁻¹; ¹H NMR (CD₃OD, 300 MHz, 297K) : δ (ppm) 7.65 and 7.60 (2d, 2H, *J* 15.9 Hz, C<u>H</u>=CHCO), 7.17 (m, 2H, ArH), 7.07 (m, 2H, ArH), 6.83 (d, 2H, *J*_{ortho} 8.1 Hz, ArH), 6.39 and 6.32 (2d, 2H, *J* 15.9 Hz, CH=C<u>H</u>CO), 5.47 (m, 2H, H₃ and H₅), 3.89 (s, 6H, 2xOMe), 2.42 (dd, 1H, ²*J* 13.9 Hz, ³*J* 4.0 Hz, H₂, H₄ or H₆), 2.34 (dd, 1H, ²*J* 13.4 Hz, ³*J* 8.2 Hz, H₂, H₄ or H₆), 2.00 (m, 4H, H₂, H₄ or H₆); ¹³C NMR (CD₃OD, 75 MHz, 297K) δ (ppm) = 177.4 (COOH), 170.9 (2xC_q), 168.5 and 168.2 (2xOCO), 150.44, 150.38 (2xC_q), 146.9 and 146.8 (2x<u>C</u>H=CHCO), 127.74 and 127.68 (2xC_q), 124.1, 124.0, 123.9, 116.4, 115.8, 115.5 (6x CH_{Ar}), 111.7 and 111.6 (2x CH=<u>C</u>HCO), 75.1 (C₁), 69.9, 68.7 (C₃ and C₅), 56.43 and 56.41 (2xOMe), 40.0, 38.7, 36.0 (C₂, C₄, C₆).

(3S,5S) 1-hydroxy-3,5 yl]oxy]cyclohexanecarboxylic acid 4d

LiI (125 mg, 0.934 mmol) was added to a solution of **9d** (105 mg, 0.186 mmol) in EtOAc (4.0 mL) then the mixture was heated under reflux 24h. After cooling down to room temperature, the mixture was diluted with EtOAc (25 mL), washed with 3M HCl (5 mL) and extracted with EtOAc (3x30mL). The organic layer was dried over MgSO₄, concentrated to give the crude (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid **11d** (quantitative crude yield), pure enough for characterization and used directly in the following step. [α]²⁵ - 111.9 (C

1.03, CH₃OH); IR(ATR) 3447, 3059, 2961, 1765, 1707, 1601, 1585, 1506, 1418, 1369, 1312, 1265, 1202, 1163, 1136, 1057, 1009 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) : δ ppm = 7.68 and 7.62 (2d, 2H, ³*J* 15.9 Hz, C<u>H</u>=CHCO), 7.52 (dd, 4H, *J*_{ortho} 8,6 Hz, *J*_{ortho} 6.8 Hz, Ar-H), 7.11 (dd, 4H, *J*_{ortho} 8,6 Hz, *J*_{meta} 2.0 Hz, Ar-H), 6.41 and 6.34 (2d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.49 (m, 2H, H₃ and H₅), 2.36-2.02 and 1.86 (2m, 11 and 1H, H₂, H₄, H₆ and 2xOCOCH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) = 177.0 (COOH), 169.41 and 169.39 (2xO<u>C</u>OCH₃), 166.2, 166.1 (2xCOO), 152.4, 152.3 (2xC_q), 144.9, 144.4 (2x<u>C</u>H=CHCO), 132.04, 132.0 (2xC_q), 129.6, 129.5 (4xCH_{Ar}), 122.3 (4xCH_{Ar}), 118.0, 117.9 (2x CH=<u>C</u>HCO), 75.2 (C₁), 69.4, 66.6 (C₃ and C₅), 39.3, 36.5, 34.9 (C₂, C₄ and C₆), 21.3 (2x OCOCH₃); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₉H₂₈NaO₁₁ 575.1524; found 575.1503.

To a solution of (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid **11d** (196 mg) in acetone (4.0 mL) was added 3M HCl aqueous solution (2.0 mL) and the mixture was refluxed for 5h. After completion, the reaction mixture was cooled down to room temperature, diluted with EtOAc (30 mL) and washed with brine (20 mL). The organic layer was concentrated, dissolved in MeOH/H₂O (20/50 mL) and washed with pentane (2x 15mL). After concentration, the crude quantitatively as a pale solid **4d** (165 mg).

[a]²⁵_D - 72.6 (*c* 0.71, CH₃OH); IR (ATR) 3406, 2976, 2947, 1692, 1593, 1514, 1456, 1429, 1375, 1269,

1209, 1177, 1161, 1138, 1032 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz, 295K) δ (ppm) = 7.59 and 7.54 (2d, 2H, *J* 16.0 Hz, C<u>H</u>=CHCO), 7.08 (m, 4H, ArH), 6.97-6.92 (m,4H, ArH), 6.81 (m, 2H, ArH), 6.29 and 6.23 (2d, 2H, *J* 16.0 Hz, CH=C<u>H</u>CO), 5.44 (m, 2H, H₃ and H₅), 2.40 (dd, 1H, ²*J* 13.9 Hz, ³*J* 4.3 Hz, H₂, H₄ or H₆), 2.32 (dd, 1H, ²*J* 13.4 Hz, ³*J* 8.2 Hz, H₂, H₄ or H₆), 1.96 (m, 4H, H₂, H₄ or H₆); ¹³C NMR (CD₃OD, 100 MHz, 297K) δ (ppm) = 177.4 (COOH), 171.0 (2xC_q), 168.6 and 168.5 (2xOCO), 149.4, 149.3 (2xC_q), 147.1 and 146.9 (2x<u>C</u>H=CHCO), 127.74 and 127.68 (2xC_q), 123.1, 123.0, 116.5, 116.4 (x2), 115.4, .115.2, 115.11, 115.09, 115.0 (8x CH_{Ar} +2x CH=<u>C</u>HCO), 75.0 (C₁), 69.9, 68.7 (C₃ and C₅), 39.9, 38.6, 35.9 (C₂, C₄, C₆).

Synthesis of (3R,3aR,6S,6aR)-hexahydrofuro[3,2-b]furan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate $(12)^{11}$

¹¹ To the best of our knowledge, the only reported syntheses of this family of compounds (dicinnamate and di (pcoumarate) isosorbide) used DCC/DMAP methodology. W. Huang, Y. B. Cao, X. G. Zhang, F. S. Li and H. Yang, *Chin. Chem. Lett.*, 2009, **20**, 873-876 ; A. Y. Bobrovsky, N. I. Boiko and V. P. Shibaev, *Mol. Cryst. Liq. Cryst.*, 2001, **363**, 35-50.

Isosorbide dicaffeate was also synthesized in our lab using the general procedure A with isosorbide (300 mg, 2.05 mmol) in anhydrous pyridine (2.1 mL) and DMF (3.2 mL) and diacetylacaffeoylchloride (1.51 g, 5.36 mmol, 2.6 eq.). (3R, 3aR, 6S, 6aR)-hexahydrofuro[3,2-b]furan-3,6-diyl (2E,2'E)bis-[3,4-bis(acetyloxy)phenyl]prop-2-enoate **I1** was obtained as a white solid (414mg, 32%) was obtained after purification by flash chromatography (pentane/EtOAc 6/4).

[α]²⁵-59 (c 1.00, CH₂Cl₂); m.p.69-70°C (CH₂Cl₂); IR (ATR) cm⁻¹ 1767, 1707, 1638, 1502, 1242, 1204, 1168, 1110; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.67 and 7.63 (2d, 2H, ³J 16.0 Hz, C<u>H</u>=CHCO), 7.40-7.35 (m, 4H, ArH), 7.26-7.21 (m, 2H, ArH), 6.44 and 6.36 (2d, 2H, ³J 16.0 Hz, CH=C<u>H</u>CO), 5.35 (bs, 1H, H₆), 5.29 (q, 1H, $J_{H_3/H_2} \approx J_{H_{3a}/H_3} \approx 5.5$ Hz, H₃), 4.94 (dd, 1H, $J_{H_{3a}/H_{6a}} \approx J_{H_{3a}/H_3} 4.6$ Hz, H_{3a}), 4.59 (d, 1H, $J_{H_{3a}/H_{6a}} 4.6$ Hz, H₆), 4.06 (m, 2H, 2xH₅), 4.03 (dd, 1H, ²J 9.9 and ³J 6.0 Hz, H₂), 3.90 (dd, 1H, ²J 9.8 and ³J 5.4 Hz, H₂), 2.292, 2.294, 2.298, 2.302 (4s, 12H, 3xCH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 168.15 and 168.06 (4 <u>COCH₃</u>), 165.9 and 165.6 (2 COO), 144.03 and 143.98 (2 CH=CH), 143.82 and 143.77 (2 C_{q Ar}), 142.5 (2 C_{q Ar}), 133.1 and 133.0 (2 C_{q Ar}), 126.6, 124.1, and 123.0 (6 CH_{Ar}), 118.5 and 118.4 (2 CH=CH), 86.1 (C_{6a}), 81.1 (C_{3a}), 78.3 (C₆), 74.3 (C₃), 73.6 (C₅), 70.5 (C₂), 20.8 and 20.7 (4 CO<u>C</u>H₃); HRMS (ESI) calcd for C₃₂H₃₀NaO₁₄ [M+Na]⁺ 661.1528, found 661.1537.

I1 was submitted to general procedure D for deprotection : I1 (144 mg, 0.225 mmol) in ethanol (1.2 mL) wih NaOAc (377 mg, 20 eq) in water (600 μ L). 12 was obtained as a white solid (74 mg, 72%) after purification by flash chromatography (CH₂Cl₂/MeOH 97/3-95/5).

[a]²⁵_D-191 (c 0.99, CH₂Cl₂); m.p. 192-193°C (MeOH) ; IR (ATR) cm⁻¹ 3670,3660, 2986, 2972, 2901,

2370, 2322, 1688, 1601, 1379, 1049; ¹H NMR (300 MHz, CD₃OD) δ (ppm) = 7.58 and 7.55 (2d, ³*J* 15.9 Hz, C<u>H</u>=CHCO), 7.05 (dd, 2H, *J* 6.1 Hz, *J* 2.0 Hz, ArH); 6.94 (m, 2H, ArH), 6.77 (dd, 2H, *J* 8.1 Hz, *J* 3.1 Hz, ArH), 6.29 and 6.24 (2d, 2H, ³*J* 15.9 Hz, CH=C<u>H</u>CO), 5.26 (m, 2H, H₃, H₆), 4.92 (dd, 1H, $J_{\text{H}_{3a}/\text{H}_{6a}} \approx J_{\text{H}_{3a}/\text{H}_3}$ 5.0 Hz, H_{3a}), 4.53 (d, 1H, $J_{\text{H}_{3a}/\text{H}_{6a}}$ 5.0 Hz, H6a), 3.95 (m, 4H, H₂, H₅); ¹³C NMR (75 MHz, CD₃OD) δ (ppm) = 168.4, 168.1, 149.71, 149.66, 147.7, 147.5, 146.8, 127.6, 127.5, 123.2, 123.1, 116.5, 115.2, 114.4, 87.3, 82.6, 79.2, 75.5, 74.2, 71.8; HRMS (ESI) calcd for C₂₄H₂₂NaO₁₀ [M+Na]⁺ 493.1105, found 493.1087.

¹H NMR (300MHz, CD₃OD, 300K)

S14

Methyl (3*R*,5*R*)-1-hydroxy-4-[(1*H*-imidazol-1-ylcarbothioyl)oxy]-3,5-*tert*-butyldimethylsilyloxy cyclohexanecarboxylate Q3 ¹H NMR (400MHz, CDCl₃, 296K)

HO COOMe

¹³C NMR (100MHz, CDCl₃, 297K)

Methyl (35,55)-1-hydroxy-3,5- tert-butyldimethylsilyloxy cyclohexanecarboxylate 5

¹H NMR (300MHz, CDCl₃, 296K)

¹³C NMR (100MHz, CD₃OD, 295K)

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-diacetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 9a ¹H NMR (500MHz, CDCl₃, 297K)

¹³C NMR (125MHz, CD₃OD, 295K)

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-di-(prop-2-en-1-yloxy)phenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 9b ¹H NMR (300MHz, CDCl₃, 296K)

¹³C NMR (75MHz, CDCl₃, 296K)

Methyl~(3S,5S)~1-hydroxy-3,5~bis[[(2E)-3-(3-acetoxy,4-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy] cyclohexane carboxylate~9c~1-yl]oxy] cyclohexane carboxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxylate~9c~1-yl]oxy

¹H NMR (300MHz, CDCl₃, 296K)

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 9d

¹H NMR (300MHz, CDCl₃, 296K)

¹³C NMR (100MHz, CDCl₃, 295K)

 $Methyl~(3S,5S)~1-hydroxy-3,5~bis[[(2E)-3-(4-acetoxyphenyl)-1-oxo-2-propen-1-yl]oxy] cyclohexane carboxylate~9e^{-1} e^{-1} e^{$

¹H NMR (400MHz, CDCl₃, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 10a

¹H NMR (500MHz, CD₃OD, 298K)

¹³C NMR (125MHz, CD₃OD, 297K)

Methyl (3S,5S) 1-hydroxy-3,5 bis[[(2E)- 3-(4-hydroxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 10c ¹H NMR (400MHz, CD₃OD, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

Methyl (38,58) 1-hydroxy-3,5 bis[[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 10d

¹H NMR (400MHz, CD₃OD, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

Methyl (38,58) 1-hydroxy-3,5 bis[[(2E)-3-(2-hydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylate 10e ¹H NMR (400MHz, CD₃OD, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

(3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-diacetoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 11a ¹H NMR (400MHz, CD₃OD, 298K)

¹³C NMR (100MHz, CD₃OD, 298K)

(3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-acetoxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 11c ¹H NMR (400MHz, CDCl₃, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

(3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 11d ¹H NMR (400MHz, CDCl₃, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

(38,58) 1-hydroxy-3,5 bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 4a ¹H NMR (400MHz, CDCl₃, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

(3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-hydroxy-3-methoxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 4c

¹H NMR (400MHz, CD₃OD, 297K)

¹³C NMR (100MHz, CD₃OD, 297K)

(3S,5S) 1-hydroxy-3,5 bis[[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]cyclohexanecarboxylic acid 4d ¹H NMR (400MHz, CDCl₃, 295K)

¹³C NMR (100MHz, CD₃OD, 295K)

(3R, 3aR, 6S, 6aR)-hexahydrofuro[3,2-b]furan-3,6-diyl (2E,2'E)bis--[4-(acetyloxy)-3-methoxyphenyl]prop-2-enoate I1 NMR ¹H (400 MHz, CDCl₃, 295 K)

NMR¹³C (100 MHz, CDCl₃)

-OH

OH

(3R,3aR,6S,6aR)-hexahydrofuro[3,2-b]furan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate 12

NMR ¹³C (75 MHz, CD₃OD)

¹H NMR Spectra of 4a and 4d in CD₃OD at 296,5 K at different time intervals (t₀ +6h, t₀+24h, t₀ +48h, t₀ + 60h)

HPLC conditions : Agilent equipment, Column phenomenex C18: Jupiter® 5 μ m; 300 Å, LC Column 250 x 4.6mm, flow 1ml/min; Mobile phase 0 - 2min: 80% H₂O UHQ + TFA (A) / 20% CH₃CN + TFA (B); 22min: 40 % A / 60% B; 30min: 100% ACN + TFA; 33min: 80% A/ 20% B. Samples were dissolved in MeOH (6mL) and 10 μ g were injected per sample

UV spectrum (210 - 400nm) à 15,670min (signal 330nm)

Spectre UV (210 - 400nm) à 19,893min (signal 330nm)

Spectre UV (210 - 400nm) à 22,308min (signal 330nm)

10e; 10µg (3µl) ; 270 – 330nm ; TR=19,4min

-

Spectre UV (210 - 400nm) à 19,569min (signal 330nm)

Spectre UV (210 - 400nm) à 13,910min (signal 330nm)

Spectre UV (210 - 400nm) à 17,823min (signal 330nm)

4d 10µg (4µl) ; 270 – 330nm ; TR=17,2min

-

Spectre UV (210 - 400nm) à 17,207min (signal 330nm)

12 : (dissolved in 1,5ml MeOH); 24µg injected (2µl) ;

280-330nm ; TR=16,5min

Spectre UV (210 – 400nm) à 16,374min (signal 330nm)

^{*a*} Detailed mortality curves upon ingestion of synthetized compounds **10a** to **12**, incorporated in artificial diet of the pea aphid *Acyrthosiphon pisum* at 0.5 mM;.^{*b*} in days; ^{*c*} confidence intervals (at 95% confidence levels) of mean LT50 under log-normal survival model.