Supporting Information

Synthesis of Rocaglamide Derivatives and Evaluation of Wnt Signal Inhibitory Activity

Midori A. Arai,* Yuuki Kofuji, Yuuki Tanaka, Natsuki Yanase, Kazuki Yamaku, Rolly G. Fuentes, Utpal Kumar Karmakar and Masami Ishibashi*

Contents

S1~S23 Experimental data
S24~S31 X-ray Structure Report.
S32~ ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

General experimental procedure

NMR spectra were recorded on JEOL ECP400 and ECP600 spectrometers in a deuterated solvent whose chemical shift was taken as an internal standard. Mass spectra were obtained using AccuTOF LC-plus JMS-T100LP (JEOL). IR spectra were measured on ATR on a JASCO FT-IR 230 spectrophotometer. Column chromatography was performed using silica gel PSQ100B (Fuji Silysia Chemical Ltd., Kasugai, Japan) and silica gel 60N (Kanto Chemical Co., Inc., Tokyo, Japan). Photochemical reactions were carried out using HL-400B-8 (400 W, 33 A; mercury lamp) and HB400P-1 (400 W) (SEN Light Co., Osaka, Japan) with cooling system consists of TRL-117ST and TC-107E (THOMAS, KAGAKU Co., Ltd., Tokyo, Japan). Mercury lamp was cooled using glass container (Pyrex) (USHIO Inc., Tokyo, Japan) with water.

2-hydroxy-4,6-dimethoxyacetophenone (8)

The mixture of $2,4,6$-trihydroxyacetophenone ($4.0 \mathrm{~g}, 21.4 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(16.0 \mathrm{~g}, 115.6 \mathrm{mmol})$, and methyl trifluoromethanesulfonate $(6.6 \mathrm{~mL}, 59.9 \mathrm{mmol})$ in dry acetone $(107 \mathrm{~mL})$ was stirred
for 3 h under reflux condition. The reaction mixture was filtered on celite and then filtrate was concentrated. The resulting residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and then extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude oil was purified by silicagel column chromatography (hexane: $\mathrm{AcOEt}=25: 1$) to afford $8(3.61 \mathrm{~g}, 18.8 \mathrm{mmol}, 88 \%)$. IR (ATR): 3099, 3006, 2945, 2849, 1612, 1593, 1456, 1439, 1422, 1388, 1365, 1322, 1267, $1219,1204,1155,1110,1080,1044,1029,997,961,941,893,835,804 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.04(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.1,167.5,166.0,162.9,105.9,93.4,90.7,55.5,55.5,32.9$.
ESI-HRMS [M-H]: calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{4}$ 195.0657, found 195.0609.

2-hydroxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethan-1-one (9)

A solution of $8(400 \mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added triethylamine $(832 \mu \mathrm{~L}, 6.0 \mathrm{mmol})$ and TBSOTf $(1.1 \mathrm{~mL}, 5.6 \mathrm{mmol})$. The reaction mixture was stirred for 30 min and the reaction was quenched with sat. aq. NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the crude product was directly used for next reaction.

The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. To the mixture was added $\mathrm{NaHCO}_{3}(420 \mathrm{mg}, 5.0 \mathrm{mmol})$ and $\mathrm{mCPBA}(552 \mathrm{mg}, 3.2 \mathrm{mmol})$ and the reaction mixture was stirred at rt for 2 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aq. NaHCO_{3} and water. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was concentrated and the crude product was directly used for next reaction.

The crude product was dissolved in THF $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(37.6 \mathrm{mg}$, 0.2 mmol) was added to the mixture. Then the mixture was stirred for 9 h under reflux condition and the reaction was quenched with sat. aq. NaHCO_{3}. The mixture was extracted with EtOAc and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the resulting residue was purified by silicagel C.C. (hexane: $\mathrm{AcOEt}=5: 1 \rightarrow 2: 1$) to afford $9(290.9 \mathrm{mg}, 69 \%$ in 3 steps $)$.

IR (ATR): 3457, 2980, 2943, 2174, 2141, 1722, 1703, 1688, 1630, 1592, 1546, 1500, 1459, $1422,1391,1325,1279,1217,1201,1151,1116,1092,999,959,938,810 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.20(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.69(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{brs}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.9,167.2,167.1,163.1,103.3,93.7,90.9,68.6,55.7,55.7$. ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}:$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NaO}_{5}$ 235.0582, found 235.0590.

3-(benzyloxy)-4-methoxybenzoic acid (10)

To a solution of 3-hydroxy-4-methoxybenzoic acid ($1.0 \mathrm{~g}, 6.0 \mathrm{mmol}$) in $\mathrm{MeOH}(11 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4}(36 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ and the reaction mixture was stirred for 18 h under reflux condition. The reaction mixture was cooled to rt and concentrated in vacuo. The resulting mixture was diluted with sat. aq. NaHCO_{3} and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by silicagel flash C.C. (hexane:AcOEt =5:1) to give methyl 3-hydroxy-4-methoxybenzoate ($1.04 \mathrm{~g}, 95 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.8,150.4,145.2,123.4,122.8,115.6,109.8,56.0,51.9$.
ESI-HRMS [M-H] : calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{4}$ 181.0501, found 181.0527.
To a solution of methyl 3-hydroxy-4-methoxybenzoate ($1.02 \mathrm{~g}, 5.6 \mathrm{mmol}$) in MeOH was added DBU $(1.3 \mathrm{~mL}, 8.4 \mathrm{mmol})$ and benzyl bromide $(736 \mu \mathrm{~L}, 6.2 \mathrm{mmol})$ and then the reaction mixture was stirred for 20 h under reflux condition. After removal of solvent, the resulting residue was diluted with water and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by crystallization to give methyl 3-(benzyloxy)-4-methoxybenzoate ($1.21 \mathrm{~g}, 79 \%$ yield).

IR (ATR): 2942, 2184, 1962, 1707, 1584, 1509, 1436, 1384, 1341, 1293, 1261, 1207, 1176, 1127, 1006, $873,847 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48-7.30 (m, 5H), $6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.8,153.6,147.7,136.6,128.6,128.0,127.5,124.0,122.5$, $114.4,110.7,71.0,56.0,51.9$.

ESI-HRMS [M+Na] ${ }^{+}$: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{4}$ 295.0946, found 295.0871.
To a solution of 3-(benzyloxy)-4-methoxybenzoate ($844 \mathrm{mg}, 3.1 \mathrm{mmol}$) in THF (3.4 mL) was
added $1 \mathrm{~N} \mathrm{NaOH}(8.4 \mathrm{~mL})$ and stirred for 3 h under reflux condition. The reaction was quenched with $1 N \mathrm{HCl}$ and the mixture was extracted with EtOAc. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration afforded 10 (800 mg , 98\%).
IR (ATR): 2957, 2039, 1681, 1599, 1517, 1438, 1348, 1301, 1269, 1224, 1135, $1021 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48-7.30 (m, 5H), $6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2,154.3,147.8,136.5,128.6,128.1,127.5,124.9,121.6$, 114.7, 110.7, 71.0, 56.1.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{4}$ 281.0790, found 281.0793.

Compound 11, 16a-d

General procedure

To a solution of $\mathbf{9}(300 \mathrm{mg}, 1.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added $\mathbf{1 5 a}(538 \mathrm{mg}, 4.2 \mathrm{mmol})$, DMAP ($59 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathrm{EDC} \cdot \mathrm{HCl}(1.2 \mathrm{~g}, 6.3 \mathrm{mmol})$. The reaction mixture was stirred at rt for 8 h and then diluted with water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the resulting residue was purified by silicagel chromatography (hexane: $\mathrm{AcOEt}=3: 1$) to afford $\mathbf{1 6 a}(605 \mathrm{mg}, 1.4 \mathrm{mmol}$, quant.).

2-(2-((3-(benzyloxy)-4-methoxybenzoyl)oxy)-4,6-dimethoxyphenyl)-2-oxoethyl 3-(benzyloxy)-4-methoxybenzoate (11); 90\%

IR (ATR): 2936, 2840, 1718, 1600, 1512, 1455, 1420, 1344, 1290, 1265, 1201, 1175, 1130, 1098, $1019 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, $5.02(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \mathrm{CDCl} 3$): $\delta 194.1,165.5,164.6,162.9,159.7,154.1,153.7,151.2,147.8$, $147.6,136.5,136.5,128.5,127.9,127.6,125.1,124.3,122.0,121.4,114.8,114.4,113.5,110.7$, $110.6,100.8,96.3,70.9,70.8,69.4,56.0,56.0,55.9,55.7$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{NaO}_{11} 715.2155$, found 715.2067.

3,5-dimethoxy-2-(2-((thiophene-2-carbonyl)oxy)acetyl)phenyl thiophene-2-carboxylate (16a); quant.

IR (ATR): 3102, 2943, 2841, 1717, 1608, 1573, 1522, 1457, 1412, 1360, 1332, 1248, 1220, 1197, 1152, 1094, 1053, $1022 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{dd}, J=3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=5.0,3.9,1 \mathrm{H}), 7.05$ $(\mathrm{dd}, J=4.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.2,163.1,161.4,160.2,159.9,150.8,135.1,133.9,133.7$, $133.1,132.7,132.3,128.0,127.7,113.2,100.9,96.6,69.5,56.0,55.7$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaO}_{7} \mathrm{~S}_{2} 455.0235$, found 455.0203.

2-(2-((furan-2-carbonyl)oxy)-4,6-dimethoxyphenyl)-2-oxoethyl furan-2-carboxylate (16b); quant.

IR (ATR): 3141, 2944, 2851, 1734, 1609, 1566, 1470, 1421, 1391, 1361, 1334, 1295, 1228, $1173,1105,1013 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{dd}, J=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=3.6,0.8,1 \mathrm{H}), 7.18(\mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ $(\mathrm{dd}, J=3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.5,163.3,160.1,157.8,156.5,150.6,147.3,146.5,144.1$,
$143.5,120.1,118.6,112.9,112.2,111.9,101.0,96.7,69.3,56.1,55.8$.
ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaO}_{9} 423.0692$, found 423.0673.

2-(2-((5-bromothiophene-2-carbonyl)oxy)-4,6-dimethoxyphenyl)-2-oxoethyl 5-bromothiophene-2-carboxylate (16c); 91\%

IR (ATR) : 1732, 1608, 1415, 1227, $1100 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}$, $2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.5,163.3,160.3,160.0,159.2,150.7,135.3,134.2,134.1$, $133.4,131.1,130.9,121.8,120.7,112.9,101.1,96.7,69.7,56.1,55.8$.
ESI-MS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{7} \mathrm{~S}_{2}$ 612.8425, found 612.8486. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ 610.8445, found 610.8394. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{81} \mathrm{Br}_{2} \mathrm{O}_{7} \mathrm{~S}_{2} 614.8405$ found 614.8307.

2-(2-((5-bromofuran-2-carbonyl)oxy)-4,6-dimethoxyphenyl)-2-oxoethyl 5-bromofuran-2carboxylate (16d); 95\%.

IR (ATR): 3154, 2943, 2845, 1731, 1682, 1608, 1567, 1459, 1421, 1358, 1332, 1286, 1228, 1206, 1142, 1106, $1015 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.0,163.4,160.2,156.7,155.3,150.5,145.7,145.2,128.8$, $127.8,122.2,120.8,114.3,114.0,112.6,101.1,96.7,69.4,56.1,55.8$.
ESI-HRMS $\quad[\mathrm{M}+\mathrm{Na}]^{+}:$calcd for $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNaO}_{9}$ 582.8882, found 582.8861. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{NaO}_{9} 578.8902$, found 578.8956. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{81} \mathrm{Br}_{2} \mathrm{NaO}_{9} 582.8861$, found 582.8852.

Compound 12, 17a-d

General procedure

To a solution of $\mathbf{1 6 a}(578 \mathrm{mg}, 1.3 \mathrm{mmol})$ in THF $(38 \mathrm{~mL})$ was added of LHMDS $(1.3 \mathrm{M}, 3.1$ $\mathrm{mL}, 4.0 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$ in dropwise manner. The reaction mixture was stirred for 2 h and the reaction was quenched using sat. aq. NaHCO_{3}. The resulting mixture was extracted using EtOAc. The combined organic layers were then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuo and the resulting residue was purified by silicagel chromatography (hexane: $\mathrm{AcOEt}=3: 1$) to afford $\mathbf{1 7 a}(432 \mathrm{mg}, 1.0 \mathrm{mmol}, 75 \%)$.

1-(3-(benzyloxy)-4-methoxyphenyl)-3-(2-hydroxy-4,6-dimethoxyphenyl)-1,3-dioxopropan-2-yl 3-(benzyloxy)-4-methoxybenzoate (12) (used to next step without purification.)

IR (ATR): 2945, 1718, 1681, 1598, 1513, 1426, 1270, 1216, 1159, 1114, $1020 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.26(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.64-7.59 (m, 2H), 7.43-7.20 (m, 11H), $6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.09(\mathrm{~m}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 3H), $3.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \mathrm{CDCl} 3$): $\delta 194.3,189.8,167.7,166.9,165.1,161.5,154.4,154.3,148.0$, $147.8,136.5,136.3,128.6,128.5,128.1,128.0,127.7,127.6,127.5,124.9,123.8,121.1,114.8$, $113.0,110.8,104.4,94.1,91.0,71.0,70.7,56.1,56.1,55.7,55.1$.
ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}:$calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{NaO}_{11} 715.2155$, found 715.2067.

1-(2-hydroxy-4,6-dimethoxyphenyl)-1,3-dioxo-3-(thiophen-2-yl)propan-2-yl
thiophene-2-carboxylate (17a); 85\%.

IR (ATR): 3103, 2943, 1715, 1671, 1624, 1577, 1521, 1463, 1414, 1359, 1274, 1244, 1217, 1159, 1114, 1091, 861, $821 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.17(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.72(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=5.3,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dd}, J=5.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.41 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.9,183.7,167.7,167.1,161.5,160.9,141.7,134.9,133.8$, $133.4,131.9,128.5,128.0,104.4,94.1,91.0,78.1,55.7,55.2$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaO}_{7} \mathrm{~S}_{2} 455.0235$, found 455.0196 .

1-(furan-2-yl)-3-(2-hydroxy-4,6-dimethoxyphenyl)-1,3-dioxopropan-2-yl furan-2-carboxylate (17b); 70\%.

IR (ATR): 3136, 2945, 1728, 1682, 1609, 1567, 1463, 1438, 1420, 1392, 1347, 1296, 1275, $1248,1215,1158,1105,1048,1011 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.15(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=1.8$, $0.9,1 \mathrm{H}), 7.36(\mathrm{dd}, J=3.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, 3.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{dd}, 3.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, 3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.7,179.4,167.8,167.2,161.5,157.2,150.9,147.24$, $147.21,143.3,119.7,118.9,112.8,112.1,104.3,94.1,91.0,55.7,55.3$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NaO}_{9} 423.0692$, found 423.0672.

1-(5-bromothiophen-2-yl)-3-(2-hydroxy-4,6-dimethoxyphenyl)-1,3-dioxopropan-2-yl 5-bromothiophene-2-carboxylate (17c); 86\%

IR (ATR) : 2925, 1720, 1671, 1631, 1412, 1330, 1238, 1217, 1160, 1115, 1090, $896 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.1(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.2,182.4,167.8,167.3,161.4,159.7,142.9,135.3,133.6$, $132.8,131.2,131.2,124.2,122.1,104.3,94.2,91.2,77.7,55.8,55.3$.
ESI-MS $\quad[\mathrm{M}+\mathrm{Na}]^{+}:$calcd for $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNaO}_{7} \mathrm{~S}_{2}$ 612.8425, found 612.8362. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{2} 610.8445$, found 610.8397. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{81} \mathrm{Br}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{2} 614.8405$, found 614.8322 .

1-(5-bromofuran-2-yl)-3-(2-hydroxy-4,6-dimethoxyphenyl)-1,3-dioxopropan-2-yl-5-bromofuran-2-carboxylate (17d); 65\%.

IR (ATR): 3146, 2924, 2850, 2159, 1730, 1683, 1613, 1578, 1451, 1421, 1359, 1275, 1248, $1214,1159 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.06(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.0,177.8,167.8,167.3,161.4,156.0,152.3,144.8,129.6$, $128.9,121.9,121.1,115.0,114.2,104.2,94.1,91.1,76.9,55.7,55.4$.
ESI-HRMS $\quad[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNaO}_{9} \quad$ 580.8882, found 580.8869. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{NaO}_{9}$ 578.8902, found 578.8945. $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{81} \mathrm{Br}_{2} \mathrm{NaO}_{9} 582.8861$, found 582.8855.

Compound 13, 19a-d

General procedure

To a solution of $17 \mathbf{a}(404 \mathrm{mg}, 0.93 \mathrm{mmol})$ in 12 mL of glacial acetic acid was added $246 \mu \mathrm{~L}$ of sulfuric acid. The resulting mixture was stirred at rt for 22 h . The reaction was quenched with cool water and filtered. Then resulting residue was added EtOH and stirred for a few hours under reflux condition. The reaction mixture was concentrated and resulting crude product 18a (307 mg) was used for next reaction without further purification.

To a solution of crude product $18 \mathrm{a}(307 \mathrm{mg})$ in $\mathrm{EtOH}(3.7 \mathrm{~mL})$ was added $1 N \mathrm{NaOH}(890 \mu \mathrm{~L})$. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ and stirred for 5 h . The reaction was quenched with $1 N \mathrm{HCl}$ and filtered by Kiriyama funnel. The residue was washed with cooled EtOH and the solvent was evaporated in vacuo to afford 19a ($149 \mathrm{mg}, 0.5 \mathrm{mmol}, 66 \%$ from 17a).

2-(3-(benzyloxy)-4-methoxyphenyl)-3-hydroxy-5,7-dimethoxy-4H-chromen-4-one (13); 75\% in 3 steps from 11.

IR (ATR): 2938, 1615, 1514, 1496, 1456, 1437, 1335, 1259, 1213, 1160, $1020 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51-7.49 (m, 2H), 7.39-7.28 (m, 3H), $6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \mathrm{CDCl} 3$) : $\delta 171.9,164.3,160.5,158.8,150.9,147.9,142.0,137.5,136.9$, $128.5,128.0,127.6,123.6,121.2,113.0,111.4,106.2,95.6,92.3,71.3,56.4,56.0,55.8$.

ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{7} 435.1444$, found 435.1440 .

3-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-5,7-dimethoxy-4H-chromen-4-one (14)

To a solution of $13(30 \mathrm{mg}, 0.069 \mathrm{mmol})$ in THF $(950 \mu \mathrm{~L})$ and $\mathrm{EtOH}(950 \mu \mathrm{~L})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}$ on activated carbon $(3 \mathrm{mg})$. Under balloon pressure of hydrogen, the reaction mixture was stirred for 2 h . The reaction mixture was filtered through a celite and the solvent was removed in vacuo to afford a yellow-white solid 14 (23.8 mg , quant.).

IR (ATR): 3422, 3242, 2952, 2882, 1722, 1614, 1512, 1437, 1334, 1250, 1210, 1159, 1034 cm^{-1}.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.84(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{brs}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, 3.98 (s, 3H), 3.92 (s, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.9,164.4,160.5,158.9,147.7,145.6,141.9,137.7,124.4$, $120.5,113.1,110.5,106.2,95.7,92.4,56.4,56.0,55.8$.

ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{7} 345.0974$, found 345.0943.

3-hydroxy-5,7-dimethoxy-2-(thiophen-2-yl)-4H-chromen-4-one (19a); 66\%.

IR (ATR): $1614,1557,1436,1370,1325,1237,1213,1158,1107,1032,808 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=$ $5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.3,164.4,160.6,158.7,140.0,136.6,133.0,128.7,128.2$, 128.0, 106.4, 95.8, 92.5, 56.4, 55.8.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NaO}_{5} \mathrm{~S}$ 327.0303, found 327.0301.

2-(furan-2-yl)-3-hydroxy-5,7-dimethoxy-4H-chromen-4-one (19b); 92\%.

IR (ATR): 3296, 2922, 2850, 1602, 1568, 1490, 1456, 1435, 1363, 1306, 1267, 1240, 1214, $1157,1133,1106,1076,1055,997,977,938,915,885,846,820 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=3.7,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, 3.89 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2,164.4,160.6,158.6,144.3,144.1,136.3,135.9,114.1$, $112.5,106.5,95.9,92.6,56.4,55.8$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NaO}_{6} 311.0532$, found 311.0512 .

2-(5-bromothiophen-2-yl)-3-hydroxy-5,7-dimethoxy-4H-chromen-4-one (19c); 55\%

IR (ATR) : 2921, 1608, 1439, 1232, 1159, 1130, $1053 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2,164.6,160.6,158.6,138.5,136.1,134.2,130.8,128.1$, $116.8,106.4,95.9,92.5,56.5,55.9,53.4$.

ESI-MS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{11}{ }^{79} \mathrm{BrNaO}_{5} \mathrm{~S} 404.9408$, found 404.9445. $\mathrm{C}_{15} \mathrm{H}_{11}{ }^{81} \mathrm{BrNaO}_{5} \mathrm{~S}$
406.9388, found 406.9372 .

2-(5-bromofuran-2-yl)-3-hydroxy-5,7-dimethoxy-4H-chromen-4-one (19d); 55\%.

IR (ATR): $3414,1616,1489,1455,1244,1217,1163,1128,1008,923,815 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.14(\mathrm{brs}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.0,164.5,160.5,158.6,146.0,136.1,134.8,124.7,116.4$, 114.4, 106.5, 96.0, 92.6, 56.4, 55.9.

ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{15} \mathrm{H}_{12}{ }^{81} \mathrm{BrO}_{6}$ calcd 368.9797, found for 368.9747.

Compound 5, 22a-d

General procedure

To solution of 3-hydroxychromone (19a; $91 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry acetonitrile (4.7 mL) and dry $\mathrm{MeOH}(3.2 \mathrm{~mL})$ was added methyl cinnamate $(610 \mu \mathrm{~L}, 3.9 \mathrm{mmol})$. The reaction mixture was irradiated (400 W mercury lamp) at $0^{\circ} \mathrm{C}$ for 2 h . The solvent was removed in vacuo and the resulting residue was purified by silicagel column chromatography (hexane:AcOEt $=$ $10: 1 \rightarrow 2: 1 \rightarrow 1: 1)$ to afford a mixture containing 20a $(95.7 \mathrm{mg})$.

To a mixture containing 20a $(95.7 \mathrm{mg})$ in dry $\mathrm{MeOH}(7 \mathrm{~mL})$ was added $\mathrm{NaOMe}(31 \mathrm{mg}, 0.57$ mmol). The reaction mixture was stirred for 2 h under reflux condition. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with EtOAc. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the resulting residue was purified by silicagel column chromatography (hexane:AcOEt $=2: 1$) to afford inseparable keto-enol isomers of 21a $(55.9 \mathrm{mg}, 0.12 \mathrm{mmol}, 53 \%$ in 2 steps from 19a).

A mixture of tetramethylammonium triacetoxyborohydride ($189 \mathrm{mg}, 0.72 \mathrm{mmol}$) and acetic acid $(70 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in dry acetonitrile $(3.1 \mathrm{~mL})$ was stirred at rt for 5 min . The mixture was added to a solution of keto-enol tautomers 21a ($55.9 \mathrm{mg}, 0.12 \mathrm{mmol}$) in dry acetonitrile (2.1 mL) and the mixture was stirred at rt for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the resulting residue was purified by silicagel column chromatography (hexane: $\mathrm{AcOEt}=3: 2$) to afford 22a $(45.9 \mathrm{mg}, 0.098 \mathrm{mmol}$,

82\%).
methyl ($1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} R^{*}, 8 \mathrm{~b} S^{*}$)-1,8b-dihydroxy-3a-(3-hydroxy-4-methoxyphenyl)-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (5); 35\% in 3 steps.

IR (ATR): 3490, 2951, 2842, 1740, 1622, 1597, 1512, 1499, 1454, 1437, 1340, 1266, 1216, $1200,1146,1120,1059,1030 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.05-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.43(\mathrm{brs}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=14.3$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{brs}, 1 \mathrm{H}), 1.86(\mathrm{brs}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 172.6,165.2,162.2,159.3,147.7,146.0,139.2,130.0,129.1$, $128.5,127.2,120.7,116.6,111.2,109.2,102.7,95.1,93.1,90.0,80.6,56.4,56.2,56.1,56.0$, 52.5, 52.2.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6,164.1,160.9,157.0,145.7,144.6,137.0,127.8,127.7$, $127.6,126.5,119.7,114.4,109.5,107.5,101.8,93.7,92.6,89.4,79.5,55.8,55.7,55.7,55.0$, 52.0, 50.5.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NaO}_{9} 531.1631$, found 531.1598 .
methyl ($1 R^{*}, 2 R^{*}, 3 S^{*}$)- 1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-3a-(thiophen-2-yl)-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (22a); 43\% in 3 steps.

IR (ATR): 2950, 2844, 1735, 1623, 1597, 1499, 1455, 1436, 1339, 1276, 1216, 1200, 1146, $1116,1033 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=3.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}$, $J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{ddd}, J=14.3,6.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right): \delta 7.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=13.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.4,164.2,160.9,157.1,137.4,136.5,127.8,127.7,126.8$, $126.4,125.9,125.6,107.0,101.6,93.5,93.0,89.4,79.0,55.8,55.7,55.0,52.0,50.1$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right): \delta 171.4,163.9,161.8,159.0,141.1,139.2,128.7,128.0$, $126.69,126.66,126.62,124.7,109.2,102.5,94.7,92.8,89.4,80.4,56.3,55.6,55.4,52.3,51.5$. ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{7} \mathrm{~S}$ 491.1140, found 491.1099.
methyl $\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}\right)$-3a-(furan-2-yl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro- $1 H$-cyclopenta[b]benzofuran-2-carboxylate (22b); 13\% in 3 steps.

IR(ATR): 3505, 2950, 2844, 1742, 1625, 1600, 1499, 1455, 1437, 1344, 1285, 1216, 1201, 1147, 1122, 1083, 1033, 914, $813 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.26(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=0.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=2.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=6.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{brs}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6,164.2,161.3,156.9,149.4,142.6,136.6,127.8,127.6$, $126.8,110.1,109.6,107.0,100.2,94.3,92.9,89.6,79.3,55.8,55.7,54.2,52.0,50.1$.

ESI-HRMS [M+Na] ${ }^{+}$: calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{8} 475.1369$, found 475.1365.
methyl $\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}\right)$-3a-(5-bromothiophen-2-yl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta $[b]$ benzofuran-2-carboxylate (22c); 55\% in 3 steps.

IR (ATR) : 3507, 1743, 1599, 1499, 1437, 1201, 1148, 1117, 885, $811 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right): \delta 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{br}, 1 \mathrm{H}), 6.29(\mathrm{br}, 1 \mathrm{H})$, $5.58(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=14.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right): \delta 171.3,163.9,161.8,159.0,143.3,139.0,129.9,128.6$, $128.2,127.5,126.9,111.2,108.7,102.4,94.8,93.0,89.3,80.2,56.1,55.6,55.3,52.4,51.6$. ESI-MS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{25} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO}_{7} \mathrm{~S} 567.0246$, found 569.0238. $\mathrm{C}_{25} \mathrm{H}_{23}{ }^{81} \mathrm{BrNaO}_{7} \mathrm{~S}$ 571.0225 , found 571.0225 .
methyl ($1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}$)-3a-(5-bromofuran-2-yl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (22d); 32\% in 3 steps.

IR (ATR): 3483, 2951, 2842, 1738, 1625, 1600, 1505, 1455, 1437, 1376, 1343, 1284, 1201, 1148, 1116, 1073, 1034, 915, $813 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=$ $14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.31$ (brs, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \mathrm{CDCl} 3$) : $\delta 170.6,164.3,161.2,157.0,151.2,136.3,127.9,127.7,127.0$, $121.9,112.0,111.6,106.8,99.9,94.2,93.0,89.6,79.1,55.8,55.7,54.1,52.0,49.9$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{25} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO}_{8}$ 553.0474, found 553.0470. calcd for $\mathrm{C}_{25} \mathrm{H}_{23}{ }^{81} \mathrm{BrNaO}_{8}$ 555.0454, found 555.0448.

Compound 4, 23a-d

General procedure

Rocaglamide derivative 22a($10.3 \mathrm{mg}, 0.022 \mathrm{mmol}$) was dissolved in 4.7 mL of a $5: 1$ mixture of dry THF and distilled water. Lithium hydroxide monohydrate ($13.8 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added and the reaction mixture was stirred at rt for 23 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $1 N \mathrm{HCl}$ and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Concentration in vacuo gave rocagloic acid 23a ($9.7 \mathrm{mg}, 0.021 \mathrm{mmol}, 97 \%$).
$\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} R^{*}, 8 \mathrm{~b} S^{*}\right)$-1,8b-dihydroxy-3a-(3-hydroxy-4-methoxyphenyl)-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylic acid (4); quant.

IR (ATR): 2934, 2842, 1725, 1597, 1499, 1428, 1333, 1268, 1216, 1199, 1146, 1120, 1030 cm^{-1}.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{Py}-d_{5}\right): \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=$ 9.2, 3.2 Hz, 1H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.09-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=14.1,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{Py}-d_{5}\right): 173.7,163.7,162.4,159.0,147.1,146.6,140.5,131.3,129.0$, $128.0,126.2,120.0,117.3,110.9,109.8,103.2,95.3,92.4,89.3,81.0,56.4,55.59,55.56,55.3$,
53.3.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.2,164.0,160.8,157.0,145.7,144.5,136.7,127.8,127.7$, $127.5,126.5,119.6,114.4,109.5,107.3,101.7,93.6,92.6,89.4,79.3,55.7,55.7,54.9,50.2$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NaO}_{9} 517.1475$, found 517.1456.

Figure 1. HMBC and COSY of 4
$\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}\right)$-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-3a-(thiophen-2-yl)-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxylic acid (23a); 97\%.

IR (ATR): 3472, 1717, 1599, 1499, 1200, 1148, $1118 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.09-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.24$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, 1 H), 3.87 (dd, $J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3 H), $3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.1164 .2,160.8,157.0,137.2,136.2,127.8,127.7,126.9$, 126.4, 126.0, 125.6, 106.8, 101.5, 93.4, 93.0, 89.4, 78.8, 55.78, 55.72, 54.9, 49.7.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{7} \mathrm{~S} 477.0984$, found 477.0972.
$\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}\right)$-3a-(furan-2-yl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxylic acid (23b); 87%.

IR (ATR): 3373, 2938, 1716, 1602, 1501, 1454, 1217, 1200, 1148, $1122 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=2.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=6.0,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,164.3,161.2,156.9,149.2,142.6,136.3,127.9,127.7$, $126.9,110.1,109.6,106.8,100.1,94.2,92.9,89.6,79.1,55.8,55.7,54.1,49.7$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{8}$ 461.1212, found 461.1143.
$\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}\right)$-3a-(5-bromothiophen-2-yl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylic acid (23c); 66\%

IR (ATR) : 3450, 1725, 1599, 1501, 1217, 1146, $1118 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right): \delta 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=14.0,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (s, 3H), $3.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right): \delta 173.3,163.8,162.0,159.0,143.7,139.6,129.8,128.8$, $128.1,127.4,126.7,111.0,109.0,102.7,94.9,92.9,89.3,80.4,56.4,55.6,55.3,52.8$.

ESI-MS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{24} \mathrm{H}_{21}{ }^{79} \mathrm{BrNaO}_{7} \mathrm{~S} 555.0089$, found 555.0072. $\mathrm{C}_{24} \mathrm{H}_{21}{ }^{81} \mathrm{BrNaO}_{7} \mathrm{~S}$ 557.0069, found 557.0047.
$\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 3 \mathrm{a} S^{*}, 8 \mathrm{~b} S^{*}\right)$-3a-(5-bromofuran-2-yl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro- $1 H$-cyclopenta[b]benzofuran-2-carboxylic acid (23d); quant.

IR (ATR): $3477,2944,2024,1717,1626,1503,1455,1200,1148,1117 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.20-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=$ $13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \mathrm{CD} 3 \mathrm{OD}): ~ \delta 174.2,165.4,162.6,159.5,154.3,138.8,129.1,128.6,127.5$, $122.0,112.3,112.3,101.2,108.2,95.7,93.3,89.8,79.8,56.1,55.9,55.7,52.2$.

ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{24} \mathrm{H}_{21}{ }^{79} \mathrm{BrNaO}_{8} 539.0318$, found 539.0265, $\mathrm{C}_{24} \mathrm{H}_{21}{ }^{81} \mathrm{BrNaO}_{8}$ 541.0297, found 541.0243.

Reporter gene assay and transfection for Wnt signal inhibitory activity

A cell-based assay method was previously described (Li et al., 2009, Chem. Asian J. 4, 540547). This assay was used to evaluate TCF / β-catenin transcriptional activity. Assay cells (STF/293 cells) were seeded into 96-well plates (3×10^{4} cells/well). After 24 h , the cells were treated with compounds combined with 15 mM LiCl for another 24 h . The cells were then lysed, and luciferase activity was measured using the Luciferase Assay System (Promega) on a Luminoskan Ascent (Thermo). To eliminate the nonspecific inhibition of TOP activity, FOP activity was also evaluated. HEK293 cells were plated on 24 -well plates (1×10^{5} cells $/$ well) and incubated for 24 h . Using Lipofectamine 2000, the cells were transiently transfected with 500 $\mathrm{ng} /$ well of the luciferase reporter construct (SuperFOPflash), and $25 \mathrm{ng} /$ well of pRL-CMV (Promega, USA) for normalization. Compounds combined with 15 mM LiCl were then added to the cells 12 h post-transfection. After being incubated for 24 h with the compounds, cells were lysed and luciferase activity was measured using PICAGENE Dual Seapansy (Toyo Ink) with Luminoskan Ascent (Thermo).

Viability assay
STF/293 (3 x 10^{4} cells/well), AGS, HCT116, SW480, DLD1, RKO and HEK293 cells (5×10^{3} cells/well) were seeded into 96 -well plates for 24 h . Compounds were then added and incubated as described. The viability of cells was measured using the fluorometric microculture cytotoxicity assay (FMCA) (Lindhagen et al., 2008, Nat. Protoc. 3, 1364-1369). After being
incubated with the compounds, cells were washed with PBS and then added to fluorescein diacetate (Wako, Japan) in PBS. Cells were incubated for 1 h and fluorescence was measured using a Fluoroskan (Ascent).

Figure 2 Comparison of coupling constant of synthetic compound $\mathbf{5}$ with reported value.

Baudouin Gerard; Sheharbano Sangji; Daniel J. O'Leary; John A. Porco, Jr. J. Am. Chem. Soc. 2006, 128, 7754-7755.

Synthetic compound 5

Table 1 Comparison of data of synthetic compound 5 with reported value.

position	${ }^{1} \mathrm{H}-\mathrm{NMR} \delta(J$ in Hz)		${ }^{13} \mathrm{C}-\mathrm{NMR} \delta(J$ in Hz)	
	5 (400 MHz)	ref 10	5 (100 MHz)	ref 10
1	overlapped	4.89 (d, 6.2)	80.6	80.7
2	3.96 (dd, 6.3, 14.1)	4.01 (dd, 6.2, 14.2)	52.2	52.2
3	4.22 (d, 14.1)	4.27 (d, 14.2)	56.4	56.4
3a			102.7	102.8
4a			*	**
5	6.27 (d, 2.0)	6.32 (d, 1.9)	90.0	90.0
6			*	**
7	6.16 (d, 2.0)	6.21 (d, 2.0)	93.1	93.1
8			*	**
8 a			109.2	109.3
8b			95.1	95.1
1 '			130.0	130.1
2	6.71 (d, 2.2)	6.76 (d, 2.0)	116.6	116.7
3 '			146.0	146.0
4'			*	**
5	6.62 (d, 8.4)	6.67 (d, 8.6)	111.2	111.2
6 ,	6.65 (dd, 2.2, 8.4)	6.70 (dd, 2.1, 8.5)	120.7	120.7
1 "			139.2	139.2
2"/6"	6.91 (m)	6.95 (m)	129.1	129.1
3"/5"	7.01 (m)	7.05 (m)	128.5	128.5
4"	7.01 (m)	7.05 (m)	127.2	127.2
6-OMe	3.81 (s)	3.86 (s)		
8 -OMe	3.82 (s)	3.87 (s)	56.2, 56.1, 56.0	56.2, 56.1, 56.0
4'-OMe	3.70 (s)	3.76 (s)		
$\mathrm{CO}_{2} \mathrm{Me}$			172.6	172.6
$\mathrm{CO}-\mathrm{OMe}$	3.61 (s)	3.66 (s)	52.5	52.5

*147.7, 159.3, 162.2, 165.2 exchangeable
**147.8, 159.3, 162.2, 165.3 exchangeable (in $\mathrm{CD}_{3} \mathrm{OD}$)

Table 2 Comparison of data of synthetic compound 4 with reported value.

position	${ }^{1} \mathrm{H}-\mathrm{NMR} \delta(J$ in Hz)		${ }^{13} \mathrm{C}-\mathrm{NMR} \delta(J$ in Hz)	
	$\begin{gathered} \mathbf{4} \\ (400 \mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \text { ref } 5 \\ (400 \mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{4} \\ (100 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { ref } 5 \\ (100 \mathrm{MHz}) \end{gathered}$
1	4.98 (d, 6.6)	4.93 (d, 5.5)	79.3	78.8
2	3.92 (dd, 6.6, 14.1)	3.87 (dd, 5.5, 14.5)	50.2	51.4
3	4.26 (d, 14.1)	4.29 (d, 14.5)	55.7	55.9
3a			101.7	101.7
4a			160.8	161.1
5	6.25 (d, 2.0)	6.28 (d, 2.0)	89.4	88.9
6			164.0	163.9
7	6.09 (d, 2.0)	6.13 (d, 2.0)	92.6	92.4
8			157.0	157.4
8a			107.3	106.9
8 b			93.6	93.7
1 '			127.5	127.7
2 '	6.78 (d, 2.0)	6.84 (d, 2.5)	114.4	114.6
3 '			144.5	144.3
4'			145.7	145.8
5	6.58 (d, 8.6)	6.60 (d, 8.5)	109.5	109.6
6 '	6.63 (dd, 2.0, 8.6)	6.71 (dd, 2.5, 8.5)	119.6	119.5
$1 "$			136.7	136.5
2"/6"	7.09-7.04 (m)	7.14-7.06 (m)	127.7	128.2
3"/5"	6.94-6.92 (m)	$7.14-7.06$ (m)	127.8	128.8
$4 "$	7.09-7.04 (m)	7.14-7.06 (m)	126.5	126.7
	3.81 (s)	3.86 (s)	55.7	55.6
Ar-OMe	3.81 (s)	3.84 (s)	55.7	55.6
	3.76 (s)	3.77 (s)	54.9	55.6
$\mathrm{CO}_{2} \mathrm{H}$			174.2	173.2

Figure 3 TRAIL resistance overcoming activity of 5, 22c and 23c.

X-ray data for 22a

Figure 4. X-ray structure of compound 22a.

Table 3. Crystal data for 22a

Chemical formula $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~S}$
Formula weight 468.50
Wavelength $1.54178 \AA$
Crystal size $0.200 \times 0.200 \times 0.800 \mathrm{~mm}$
Crystal system orthorhombic
Space group Pbca
Unit cell dimensions
$\mathrm{a}=9.8131(3) \AA \alpha=90^{\circ}$
$\mathrm{b}=20.4457(5) \AA \beta=90^{\circ}$
$\mathrm{c}=21.4000(6) \AA \gamma=90^{\circ}$

Volume 4293.6(2) \AA^{3}
Z 8
Density (calculated) $1.450 \mathrm{~g} / \mathrm{cm} 3$
Absorption coefficient 1.744 mm-1
F(000) 1968

Table 4. Data collection and structure refinement for 22a

Theta range for data collection 4.13 to 68.11°
Index ranges $-11<=\mathrm{h}<=9,-24<=\mathrm{k}<=23,-25<=1<=23$
Reflections collected 14098
Independent reflections $3851[\mathrm{R}(\mathrm{int})=0.0174]$
Coverage of independent
Reflections 98.3\%
Absorption correction multi-scan
Max. and min. transmission 0.7217 and 0.3359
Structure solution technique direct methods
Structure solution program SHELXS-97 (Sheldrick, 1997)
Refinement method Full-matrix least-squares on F2
Refinement program SHELXL-97 (Sheldrick, 1997)
Function minimized $\Sigma \mathrm{w}\left(\mathrm{Fo}_{2}-\mathrm{Fc} 2\right) 2$
Data / restraints / parameters 3851 / 0 / 355
Goodness-of-fit on F2 1.035
Final R indices 3510 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0374, \mathrm{wR} 2=0.0999$
all data $\mathrm{R} 1=0.0404, \mathrm{wR} 2=0.1030$
Weighting scheme $\mathrm{w}=1 /[\sigma 2(\mathrm{Fo} 2)+(0.0672 \mathrm{P}) 2+1.5656 \mathrm{P}]$ where $\mathrm{P}=(\mathrm{Fo} 2+2 \mathrm{Fc} 2) / 3$
Largest diff. peak and hole 0.337 and -0.252 e $\AA-3$
R.M.S. deviation from mean $0.049 \mathrm{e} \AA-3$

X-ray data for 23c

Figure 5. X-ray structure of compound 23c.

Table 5. Crystal data for 23c
A. Crystal Data

Empirical Formula
Formula Weight
Crystal Color, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
$\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrO}_{8} \mathrm{~S}$
561.40
colorless, platelet
$0.200 \times 0.030 \times 0.010 \mathrm{~mm}$
monoclinic
Primitive
$a=11.1283(3) \AA$
$\mathrm{b}=29.5193(7) \AA$
$c=7.7932(2) \AA$
$b=108.307(2){ }^{\circ}$
$V=2430.5(1) \AA^{3}$
P2 1_{1} (\#14)

Z value	4
D calc	$1.534 \mathrm{~g} / \mathrm{cm}^{3}$
F000	1144.00
m(CuKa)	$35.352 \mathrm{~cm}^{-1}$
B. Intensity Measurements	
Diffractometer	R-AXIS RAPID
Radiation	CuKa ($\mathrm{I}=1.54187$ A $)$
Voltage, Current	$40 \mathrm{kV}, 30 \mathrm{~mA}$
Temperature	$-180.0^{\circ} \mathrm{C}$
Detector Aperture	$460 \times 256 \mathrm{~mm}$
Data Images	30 exposures
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=0.0$)	80.0-260.00
Exposure Rate	10.0 sec./o
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=90.0$)	80.0-260.0 ${ }^{0}$
Exposure Rate	10.0 sec./O
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=180.0$)	80.0-260.0 ${ }^{0}$
Exposure Rate	10.0 sec./o
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=270.0$)	80.0-260.0 ${ }^{0}$
Exposure Rate	10.0 sec./o
w oscillation Range ($\mathrm{c}=0.0, \mathrm{f}=0.0$)	80.0-260.0 ${ }^{0}$
Exposure Rate	10.0 sec./o
Detector Position	127.40 mm
Pixel Size	0.100 mm
$2 \mathrm{qmax}^{\text {max }}$	136.5°
No. of Reflections Measured	Total: 26111
	Unique: $4455\left(\mathrm{R}_{\mathrm{int}}=0.2105\right)$
Corrections	Lorentz-polarization
	Absorption (trans. factors: 0.564-0.965)
	Secondary Extinction (coefficient: 1.17000e-003)

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F^{2}
Function Minimized	$\mathrm{Sw}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Least Squares Weights	$\mathrm{w}=1 /\left[\mathrm{s}^{2}\left(\mathrm{Fo}^{2}\right)+(0.1860 \cdot \mathrm{P})^{2}\right.$
	$+0.0000 \cdot \mathrm{P}]$
	where $\mathrm{P}=\left(\mathrm{Max}\left(\mathrm{Fo}^{2}, 0\right)+2 \mathrm{Fc}^{2}\right) / 3$
	136.5°
2qmax cutoff	All non-hydrogen atoms
Anomalous Dispersion	4455
No. Observations (All reflections)	317
No. Variables	14.05
Reflection/Parameter Ratio	0.1210
Residuals: R1 (I>2.00s(I))	0.2434
Residuals: R (All reflections)	0.3993
Residuals: wR2 (All reflections)	1.014
Goodness of Fit Indicator	0.000
Max Shift/Error in Final Cycle	$1.07 \mathrm{e}^{-/ / \AA^{3}}$
Maximum peak in Final Diff. Map	$-0.94 \mathrm{e}^{-/ / \AA^{3}}$

X-ray data for 23d

Figure 6. X-ray structure of compound 23d.

Table 6. Crystal data for 23d
A. Crystal Data

Empirical Formula

Formula Weight
Crystal Color, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrCl}_{3} \mathrm{O}_{8}$
636.71
colorless, platelet
0.200 X $0.050 \times 0.050 \mathrm{~mm}$
triclinic
Primitive
$a=9.7833(3) \AA$
$b=10.5843(4) \AA$
$c=14.6153(5) \AA$
$a=74.063(2){ }^{\circ}$
$b=80.510(2)^{\circ}$
$\mathrm{g}=63.284(2)^{\circ}$
$V=1298.37(8) \AA^{3}$
P-1 (\#2)

Z value	2
$D_{\text {calc }}$	$1.629 \mathrm{~g} / \mathrm{cm}^{3}$
F000	644.00
m (CuKa)	$54.275 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer
Radiation
Voltage, Current
Temperature
Detector Aperture
Data Images
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=0.0$)
Exposure Rate
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=90.0$)
Exposure Rate
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=180.0$)
Exposure Rate
w oscillation Range ($\mathrm{c}=54.0, \mathrm{f}=270.0$)
Exposure Rate
w oscillation Range ($\mathrm{c}=0.0, \mathrm{f}=0.0$)
Exposure Rate
Detector Position
Pixel Size
$2 q_{\text {max }}$
No. of Reflections Measured

Corrections

R-AXIS RAPID
CuKa ($I=1.54187 \AA$)
$40 \mathrm{kV}, 30 \mathrm{~mA}$
$-180.0^{\circ} \mathrm{C}$
$460 \times 256 \mathrm{~mm}$
30 exposures
80.0-260.0 ${ }^{\circ}$
4.0 sec. ${ }^{\circ}$
80.0-260.0 ${ }^{\circ}$
4.0 sec. ${ }^{\circ}$
80.0-260.0 ${ }^{\circ}$
$4.0 \mathrm{sec} .{ }^{\circ}$
80.0-260.0 ${ }^{\circ}$
$4.0 \mathrm{sec} .{ }^{\circ}$
80.0-260.0 ${ }^{\circ}$
4.0 sec. ${ }^{\circ}{ }^{\circ}$
127.40 mm
0.100 mm
136.5°
Total: 13987
Unique: 4644 ($\mathrm{R}_{\text {int }}=0.0629$)
Lorentz-polarization
Absorption
(trans. factors: 0.617-0.762)
Secondary Extinction
(coefficient: 2.40000e-004)

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F^{2}
Function Minimized	$\mathrm{S} w\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Least Squares Weights	$\mathrm{w}=1 /\left[\mathrm{s}^{2}\left(\mathrm{Fo}^{2}\right)+(0.0000 \cdot \mathrm{P})^{2}\right.$
	$+8.1150 \cdot \mathrm{P}]$
	where $\mathrm{P}=\left(\mathrm{Max}\left(\mathrm{Fo}^{2}, 0\right)+2 \mathrm{Fc}^{2}\right) / 3$
2qmax cutoff	136.5^{0}
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4644
No. Variables	335
Reflection/Parameter Ratio	13.86
Residuals: R1 (I>2.00s(I))	0.0547
Residuals: R (All reflections)	0.1044
Residuals: wR2 (All reflections)	0.1490
Goodness of Fit Indicator	1.137
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.77 \mathrm{e}^{-/ \not \AA^{3}}$
Minimum peak in Final Diff. Map	$-0.84 \mathrm{e}^{-/ \not \AA^{3}}$

Compound 8

Compound 8

Compound 9
(

Compound 9

Compound 10

Compound 10
(

Compound 11

Compound 11

Compound 12

Compound 12

Compound 14

Compound 14

Compound 5

Compound 5

Compound 4

Compound 4

Compound 16a

Compound 16a

Compound 16b

Compound 16b

Compound 16c

Compound 16c

Compound 16d
U|KK-optiplex $3020 \backslash n m r \backslash E C P 400 \backslash-" i \backslash C^{c}$ _ 221 c-non.als

Compound 16d

Compound 17a

Compound 17a
U|Kk-optiplex $3020 \backslash \mathrm{~nm}$ r\ECP400\-"i\C", 22 a-bcm.als

Compound 17b

Compound 17b

Compound 17c

Compound 17c

Compound 17d

Compound 17d

Compound 19a

Compound 19a

Compound 19b
\YKk-optiplex3020\nmr\ECP400\-"i\C"_|24b-non.als

Compound 19b

Compound 19c
Z:\NMR\ECP400\"' ${ }^{\prime}+$-D \backslash kkyt-2-39-1227.als

Compound 19c

Compound 19d

Compound 19d

Compound 22a

Compound 22a

Compound 22b

Compound 22b

Compound 22c

Compound 22c

Compound 22d

Compound 22d

Compound 23a

Compound 23a
\|Kk-optiplex3020\nmr\ECP400\-"i\C"_\28a-bcm-new-23a-KKyk-6-6-bcm-140829.als

Compound 23b

Compound 23b

Compound 23c

23c

Compound 23c

Compound 23d

Compound 23d

