Table of Contents

1. General Consideration	01
2. Preparation of Rhamnosyl <i>ortho</i> -Hexynylbenzoates	01
3. Preparation of AgBAr ₄ ^F	16
4. Typical Procedure for the Glycosylation	16
5. Characterization of the Glycosylation Products	17
6. NMR Studies	26
7. Known Compounds	31
8. NMR Spectra of New Compounds	32

1. General Considerations

Commercial reagents were used without further purification unless specialized. Crushed 4Å or 5Å molecular sieves were activated through flame-drying under high vacuum immediately prior to use. Dry dichloromethane, diethyl ether, and chlorobenzene were obtained by mixing with 4Å molecular sieves for 2 days. Thin layer chromatography (TLC) was performed on precoated plates of Silica Gel HF254 (0.2 mm, Yantai, China). The TLC plates were visualized with UV light and/or by staining with ethanol/sulfuric acid (10%, v/v). Flash column chromatography was performed on Silica Gel H (10–40 μ , Yantai, China). ¹H, ¹³C, and ³¹P NMR spectra were measured on a Agilent 500 MHz or 600 MHz NMR spectrometer at 25 °C unless specialized. ¹H and ¹³C NMR signals were calibrated to the residual proton and carbon resonance of the solvent (CDCl₃: $\delta_{\rm H} = 0$ ppm (relative to tetramethylsilane); $\delta_{\rm C} = 77.16$ ppm; CD₂Cl₂: $\delta_{\rm H} = 5.3$ ppm, $\delta_{\rm C} = 53.52$ ppm). High-resolution mass spectra were recorded with IonSpec 4.7 Tesla FTMS or APEXIII 7.0 TESLA FTMS. Optical rotations were measured on a Perkin–Elmer Model 241 MC polarimeter.

2. Preparation of Rhamnopyranosyl ortho-Hexynylbenzoates 1-5

2.1. 2,3,4-Tri-O-benzyl-L-rhamnopyranosyl ortho-hexynylbenzoate (1 and 1β)

A solution of 2,3,4-tri-*O*-benzyl-L-rhamnopyranose (S1) (936 mg, 2.15 mmol), *ortho*-hexynylbenzoic acid (S2) (521 g, 2.58 mmol), 4-dimethylaminopyridine (DMAP) (52 mg, 0.43 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCI) (493 mg, 2.58 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature for 3 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 20:1) to provide 1 (630 mg, 47%) and 1β (468 mg, 35%) as colorless oil.

1: $[\alpha]_D^{20} = -27.3$ (*c* 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 4.2, 3.7 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.46–7.40 (m, 3H), 7.36–7.24 (m, 14H), 6.41 (d, J = 1.7 Hz, 1H), 4.98 (d, J = 10.7 Hz, 1H), 4.84 (d, J = 12.3 Hz, 1H), 4.77 (d, J = 12.3 Hz, 1H), 4.67 (d, J = 10.7 Hz, 1H), 4.57 (s, 2H), 3.97 (ddd, J = 15.8, 9.5, 4.6 Hz, 2H), 3.91–3.85 (m, 1H), 3.73 (t, J = 9.5 Hz, 1H), 2.43 (qt, J = 17.0, 7.2 Hz, 2H), 1.58–1.50 (m, 2H), 1.43–1.38 (m, 2H), 1.37 (d, J = 6.3 Hz, 3H), 0.89 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.55, 138.60, 138.28, 138.01, 135.05, 132.16, 130.77, 130.75, 128.53, 128.48, 128.47, 128.18, 127.92, 127.81, 127.79, 127.29, 125.10, 97.04, 92.79, 80.02, 79.74, 79.31, 75.76, 74.03, 72.75, 72.19, 71.13, 30.89, 22.17, 19.69, 18.22, 13.81; HRMS (MALDI) calcd for C₄₀H₄₂O₆Na [M+Na]⁺ 641.2874, found 641.2870.

1β: $[α]_D^{20} = 20.9$ (*c* 2.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.96–7.90 (m, 1H), 7.53 (d, *J* = 7.2 Hz, 1H), 7.45 (td, *J* = 7.6, 1.3 Hz, 1H), 7.42–7.36 (m, 2H), 7.36–7.17 (m, 14H), 5.85 (s, 1H), 4.97 (d, *J* = 10.8 Hz, 1H), 4.92 (d, *J* = 12.3 Hz, 1H), 4.88 (d, *J* = 12.3 Hz, 1H), 4.68 (d, *J* = 10.8 Hz, 1H), 4.64 (d, *J* = 11.8 Hz, 1H), 4.60 (d, *J* = 11.8 Hz, 1H), 4.09 (d, *J* = 2.5 Hz, 1H), 3.70 (t, *J* = 9.1 Hz, 1H), 3.65 (dd, *J* = 9.3, 2.7 Hz, 1H), 3.55 (dq, *J* = 8.9, 6.1 Hz, 1H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.66–1.57 (m, 2H), 1.49 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.40 (d, *J* = 6.1 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.98, 138.44, 138.43, 138.15, 134.60, 132.23, 130.74, 130.51, 128.56, 128.54, 128.54, 128.52, 128.31, 128.25, 128.22, 127.88, 127.85, 127.74, 127.70, 127.14, 125.66, 97.12, 93.84, 82.41, 79.84, 79.15, 75.60, 74.50, 74.35, 73.07, 72.19, 30.80, 22.22, 19.69, 18.06, 13.81; HRMS (MALDI) calcd for C₄₀H₄₂O₆Na [M+Na]⁺ 641.2874, found 641.2874.

2.2. 2,3-Di-O-benzyl-4-O-benzoyl-L-rhamnopyranosyl *ortho*-hexynylbenzoate (2 and 2β)

To a solution of phenyl 2,3-di-*O*-benzyl-1-thio- α -L-rhamnopyranoside (**S3**) (700 mg, 1.6 mmol) in pyridine (10 mL) was added BzCl (0.37 mL, 3.2 mmol) at 0 °C. The solution was stirred at 0 °C for 10 min and then at room temperature for further 5 h. The mixture was quenched with EtOH, and was then washed with H₂O and then extracted with EtOAc. The combined organic layer, being washed with a saturated solution of CuSO₄, aqueous HCl (0.5 M) and brine, respectively, was dried over Na₂SO₄, and concentrated in vacuum. The residue was used directly for the next step without purification.

To a stirred mixture of the residue in CH₂Cl₂/H₂O (10:1, 7 mL) was added NIS (432 mg, 1.92 mmol) followed by H₂SO₄-Silica (160 mg) at 0 °C. The mixture was allowed to stir at 0 °C for 2.5 h until TLC showed complete conversion of the starting materials. The mixture was diluted with CH₂Cl₂ and was washed successively with aqueous Na₂S₂O₃, aqueous NaHCO₃, and brine. The organic layer was collected, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1) provide to 2,3-di-O-benzyl-4-benzoyl-L-rhamnopyranose (S4) (540 mg, $\alpha/\beta = 2.5$, 75% for two steps) as a colorless oil: $[\alpha]_D^{20} = 19.8$ (c 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17–6.91 (m, 21H), 5.50 (t, J = 9.7 Hz, 1H), 5.44 (t, J = 9.6 Hz, 0.4H), 5.25 (d, J = 1.4 Hz, 1H), 5.13 (d, J = 11.6 Hz, 0.4H), 4.83 (d, J = 12.4 Hz, 1H), 4.73 (d, J = 12.3Hz, 1.4H), 4.70–4.62 (m, 1H), 4.56 (d, J = 12.3 Hz, 1.4H), 4.45 (d, J = 12.2 Hz, 1H), 4.11 (dq, J = 9.6, 6.3 Hz, 1H), 3.99 (dd, J = 9.6, 3.0 Hz, 1H), 3.92 (dd, J = 2.9, 1.4 Hz, 0.4H), 3.87 (t, J = 2.5 Hz, 1H), 3.68 (dd, J = 9.8, 2.8 Hz, 0.4H), 3.56 (dg, J = 9.5, 6.2 Hz, 0.4H), 3.03 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.83, 165.80, 138.32,

138.12, 137.88, 137.54, 133.34, 133.14, 130.23, 129.98, 129.90, 129.89, 128.78, 128.57, 128.48, 128.34, 128.28, 128.16, 128.01, 127.93, 127.80, 127.78, 127.77, 127.63, 93.60, 93.36, 79.95, 76.67, 75.87, 75.05, 74.56, 73.79, 73.23, 73.17, 72.43, 71.92, 70.67, 67.25, 17.86, 17.72; HRMS (MALDI) calcd for $C_{37}H_{44}O_{10}$ [M+Na]⁺ 471.1778, found 471.1776.

A solution of compound S4 (820 mg, 1.83 mmol), *ortho*-hexynylbenzoic acid (S2) (555 mg, 2.75 mmol), 4-dimethylaminopyridine (DMAP) (45 mg, 0.37 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (421 mg, 2.21 mmol) in CH₂Cl₂ (30 mL) was stirred at room temperature for 3 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 20:1) to provide 2 (730 mg, 63%) and 2 β (240 mg, 21%) as colorless oil.

2: $[\alpha]_D^{20} = -15.7$ (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07–7.05 (m, 19H), 6.44 (d, *J* = 2.0 Hz, 1H), 5.61 (t, *J* = 9.8 Hz, 1H), 4.83 (d, *J* = 1.9 Hz, 2H), 4.51 (d, *J* = 12.2 Hz, 1H), 4.37 (d, *J* = 12.2 Hz, 1H), 4.10 (dq, *J* = 9.9, 6.2 Hz, 1H), 4.02 (dd, *J* = 9.9, 3.1 Hz, 1H), 3.96 (dd, *J* = 3.1, 2.0 Hz, 1H), 2.54–2.31 (m, 2H), 1.66–1.53 (m, 2H), 1.53–1.38 (m, 2H), 1.29 (d, *J* = 6.2 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 164.45, 137.87, 137.72, 135.01, 133.25, 132.23, 130.76, 130.63, 130.10, 129.88, 128.52, 128.49, 128.36, 128.19, 127.98, 127.91, 127.76, 127.37, 125.04, 96.73, 93.08, 79.77, 76.05, 73.54, 72.98, 72.96, 71.62, 70.16, 30.90, 22.20, 19.75, 17.86, 13.82; HRMS (MALDI) calcd for C₄₀H₄₀O₇ [M+Na]⁺ 655.2666, found 655.2651.

2 β : [α]_D²⁰ = 63.8 (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08–7.04 (m, 20H), 5.92 (d, *J* = 1.1 Hz, 1H), 5.54 (t, *J* = 9.5 Hz, 1H), 4.91 (s, 2H), 4.55 (d, *J* = 12.4 Hz, 1H), 4.38 (d, *J* = 12.4 Hz, 1H), 4.12 (dd, *J* = 2.9, 1.1 Hz, 1H), 3.79–3.63 (m, 2H), 2.47 (t, *J* = 7.1 Hz, 2H), 1.67–1.56 (m, 2H), 1.54–1.42 (m, 2H), 1.33 (d, *J* = 6.2 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.71, 164.00, 138.18, 137.56, 134.64, 133.30, 132.36, 130.86, 130.32, 129.98, 129.94, 128.53, 128.45, 128.41, 128.33, 127.86, 127.84, 127.77, 127.21, 125.69, 97.19, 93.59, 79.15, 78.92, 74.40, 73.45, 73.01, 72.05, 71.59, 30.79, 22.22, 19.69, 17.78, 13.83; HRMS (MALDI) calcd for C₄₀H₄₀O₇ [M+Na]⁺ 655.2666, found 655.2651.

2.3. 3,4-Di-O-benzoyl-2-O-benzyl-L-rhamnopyranosyl *ortho*-hexynylbenzoate (3 and 3β)

To a solution of phenyl 2-*O*-benzyl-1-thio- α -L-rhamnopyranoside (**S5**) (268 mg, 0.774 mmol) in pyridine (5 mL) was added BzCl (0.37 mL, 3.2 mmol) at 0 °C. The solution was stirred at 0 °C for 10 min and then at room temperature for further 5 h. The mixture was quenched with EtOH, and was then washed with H₂O and then extracted with EtOAc. The combined organic layer, being washed with a saturated solution of CuSO₄, aqueous HCl (0.5 M), and brine, respectively, was dried over Na₂SO₄, and concentrated in vacuum. The residue was used directly for the next step without purification.

To a stirred mixture of the residue in CH₂Cl₂/H₂O (10:1, 3.5 mL) was added NIS (209 mg, 0.93 mmol) followed by H₂SO₄-Silica (77 mg) at 0 °C. The mixture was allowed to stir at 0 °C for 2.5 h until TLC showed complete conversion of the starting materials. The mixture was diluted with CH₂Cl₂ and was washed successively with aq Na₂S₂O₃, aq. NaHCO₃, and brine. The organic layer was collected, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1) to provide 3,4-di-*O*-benzyl-L-rhamnopyranose (**S6**) (297 mg, $\alpha/\beta = 4.0$, 83% for two steps) as a colorless oil: $[\alpha]_D^{20} = 55.3$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04–7.11 (m, 18H), 5.76–5.53 (m, 2.2H), 5.39 (dd, *J* = 10.2, 3.0 Hz, 0.25H), 5.31

(d, J = 1.8 Hz, 1H), 4.93 (d, J = 11.4 Hz, 0.5H), 4.67 (d, J = 2.8 Hz, 2H), 4.56 (d, J = 11.5 Hz, 0.26H), 4.39–4.26 (m, 1H), 4.16 (dd, J = 3.0, 1.4 Hz, 0.25H), 4.10 (t, J = 2.3 Hz, 1H), 3.76 (dt, J = 9.6, 6.2 Hz, 0.5H), 1.35 (d, J = 6.2 Hz, 0.75H), 1.32 (d, J = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.99, 165.89, 137.72, 137.27, 133.64, 133.41, 133.25, 129.96, 129.94, 129.82, 129.78, 129.72, 129.63, 129.49, 129.06, 128.82, 128.68, 128.55, 128.49, 128.42, 128.01, 127.90, 110.12, 93.47, 93.11, 75.97, 75.75, 74.79, 73.49, 72.09, 72.07, 71.38, 70.65, 67.02, 17.86, 17.75; HRMS (MALDI) calcd for C₂₇H₂₆O₇ [M+Na]⁺ 485.1571, found 485.1568.

A solution of compound **S6** (294 mg, 0.64 mmol), *ortho*-hexynylbenzoic acid (**S2**) (154 mg, 0.76 mmol), 4-dimethylaminopyridine (DMAP) (16 mg, 0.13 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (146 mg, 0.76 mmol) in CH₂Cl₂ (6 mL) was stirred at room temperature for 3 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 20:1) to provide **3** (161 mg, 40%) and **3** β (169 mg, 40%) as colorless oil.

3: $[\alpha]_D^{20} = -1.3$ (*c* 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.10–7.06 (m, 19H), 6.53 (d, *J* = 1.9 Hz, 1H), 5.80 (t, *J* = 10.0 Hz, 1H), 5.72 (dd, *J* = 10.3, 3.3 Hz, 1H), 4.82 (d, *J* = 12.2 Hz, 1H), 4.69 (d, *J* = 12.2 Hz, 1H), 4.33 (dq, *J* = 9.7, 6.2 Hz, 1H), 4.21 (dd, *J* = 3.4, 1.9 Hz, 1H), 2.53 (td, *J* = 7.2, 1.2 Hz, 2H), 1.64 (dq, *J* = 8.7, 7.2 Hz, 2H), 1.55–1.44 (m, 2H), 1.37 (d, *J* = 6.2 Hz, 3H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.89, 165.79, 164.56, 137.35, 135.11, 133.36, 132.35, 130.86, 130.57, 129.95, 129.80, 129.62, 129.48, 128.52, 128.48, 128.05, 127.97, 127.47, 125.28, 97.01, 92.47, 79.79, 74.91, 73.30, 71.82, 71.50, 69.86, 30.91, 22.25, 19.79, 17.89, 13.81; HRMS (MALDI) calcd for C₄₀H₃₈O₈ [M+Na]⁺ 669.2459, found 669.2452.

3 β : $[\alpha]_D^{20} = 52.8$ (*c* 2.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.04–7.01 (m, 16H), 6.18 (s, 1H), 5.76 (t, *J* = 9.8 Hz, 1H), 5.40 (dd, *J* = 10.2, 3.0 Hz, 1H), 4.90 (d, *J* = 12.1

Hz, 1H), 4.76 (d, J = 12.1 Hz, 1H), 4.38 (d, J = 3.3 Hz, 1H), 3.96 (dq, J = 12.1, 6.2 Hz, 1H), 2.51 (t, J = 7.1 Hz, 2H), 1.66 (q, J = 7.4 Hz, 2H), 1.59–1.47 (m, 2H), 1.43 (d, J = 6.4 Hz, 3H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.84, 165.74, 163.88, 137.65, 134.56, 133.41, 133.39, 132.33, 130.65, 130.48, 130.00, 129.81, 129.50, 129.24, 128.53, 128.49, 128.29, 128.25, 127.78, 127.19, 125.72, 97.32, 93.19, 79.02, 75.21, 75.13, 73.97, 71.91, 71.34, 30.80, 22.24, 19.71, 17.76, 13.82; HRMS (MALDI) calcd for C₄₀H₃₈O₈ [M+Na]⁺ 669.2459, found 669.2458.

2.4. 2,3-Di-*O*-benzyl-4-*O*-pentafluorobenzoyl-L-rhamnopyranosyl *ortho*-hexynylbenzoate (4 and 4β)

To a solution of phenyl 2,3-di-O-benzyl-1-thio-a-L-rhamnopyranoside (S4) (325 mg, 0.75 mmol) in pyridine (5 mL) were added 4-dimethylaminopyridine (DMAP) (12 mg, 0.07 mmol) and pentafluorobenzovl chloride (0.12 mL, 0.9 mmol) at 0 °C. The solution was stirred at 0 °C for 10 min and then at room temperature overnight. The mixture was quenched with EtOH, and was then washed with H₂O and then extracted with EtOAc. The combined organic layer, being washed with a saturated solution of CuSO₄ and brine, respectively, was dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 18:1) to afford phenyl 2,3-di-O-benzyl-4-O-pentafluorobenzoyl-1-thio-α-L -rhamnopyranoside (S7) (376 mg, 80%) as a colorless oil: $\left[\alpha\right]_{D}^{20} = -85.5$ (c 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.38 (m, 2H), 7.37–7.26 (m, 13H), 5.64–5.48 (m, 2H), 4.78–4.63 (m, 2H), 4.52 (q, J = 11.9 Hz, 2H), 4.32 (dq, J = 12.5, 6.2 Hz, 1H), 4.03 (s, 1H), 3.87 (dd, J = 9.7, 2.9 Hz, 1H), 1.34 (d, J = 6.2 Hz, 3H); ¹³C

NMR (126 MHz, CDCl₃) δ 137.77, 137.75, 134.24, 131.36, 129.28, 128.55, 128.45, 128.11, 127.96, 127.85, 127.75, 127.65, 85.97, 76.02, 75.66, 72.52, 72.00, 67.79, 17.61; HRMS (ESI) calcd for C₃₃H₃₇F₅O₅S [M+Na]⁺ 653.1397, found 653.1398.

A solution of compound **S7** (355 mg, 0.563 mmol) in acetone (4.5 mL) and H₂O (0.5 mL) was added NBS (300 mg, 1.69 mmol). The mixture was stirred at room temperature for 3 h, and was then quenched with a saturated solution of Na₂S₂O₃. The mixture was extracted with EtOAc. The combined organic layer was washed with H₂O and brine, respectively, and was then dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by flash column chromatography (petroleum ether /EtOAc, 4:1) to afford 2,3-di-*O*-benzoyl-4-*O*-pentafluorobenzoyl-L-rhamnopyranose (**S8**) (284 mg, $\alpha/\beta = 11.2:1$, 94%) as a colorless oil: HRMS (ESI) calcd for C₂₇H₂₃F₅O₆ [M+Na]⁺ 561.1313, found 561.1309.

A solution of compound **S8** (264 mg, 0.5 mmol), *ortho*-hexynylbenzoic acid (**S2**) (120 mg, 0.6 mmol), 4-dimethylaminopyridine (DMAP) (12 mg, 0.1 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (141 mg, 0.6 mmol) in CH₂Cl₂ (3 mL) was stirred at room temperature for 3 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 20:1) to provide **4** (140 mg, 39%) and **4** β (140 mg, 39%) as colorless oil.

4: $[\alpha]_D{}^{20} = -13.8 \ (c \ 0.6, \text{CHCl}_3); {}^{1}\text{H} \text{ NMR} (500 \text{ MHz, CDCl}_3) \delta 7.84 \ (dd, J = 7.9, 1.1 \text{ Hz, 1H}), 7.56 \ (dd, J = 7.8, 1.0 \text{ Hz, 1H}), 7.48 \ (td, J = 7.6, 1.4 \text{ Hz, 1H}), 7.44-7.39 \ (m, 2\text{H}), 7.37-7.27 \ (m, 4\text{H}), 7.23 \ (s, 5\text{H}), 6.45 \ (d, J = 1.9 \text{ Hz, 1H}), 5.62 \ (t, J = 9.9 \text{ Hz, 1H}), 4.85-4.75 \ (m, 2\text{H}), 4.52 \ (d, J = 11.8 \text{ Hz, 1H}), 4.45 \ (d, J = 11.8 \text{ Hz, 1H}), 4.13 \ (dq, J = 10.0, 6.2 \text{ Hz, 1H}), 4.03 \ (dd, J = 9.9, 3.1 \text{ Hz, 1H}), 3.96-3.90 \ (m, 1\text{H}), 2.47-2.30 \ (m, 2\text{H}), 1.62-1.53 \ (m, 2\text{H}), 1.48-1.38 \ (m, 2\text{H}), 1.36 \ (d, J = 6.2 \text{ Hz, 3H}), 0.92 \ (t, J = 7.3 \text{ Hz, 3H}); {}^{13}\text{C} \text{ NMR} \ (126 \text{ MHz, CDCl}_3) \delta 164.42, 158.07, 137.69, 137.64, 135.14, 135.14, 135.14$

132.32, 130.71, 130.56, 128.55, 128.39, 128.17, 128.00, 127.84, 127.68, 127.42, 125.02, 96.78, 92.78, 79.89, 76.36, 75.10, 73.40, 72.96, 71.75, 69.52, 30.89, 22.18, 19.64, 17.75, 13.72; HRMS (MALDI) calcd for $C_{40}H_{36}O_7F_5$ [M+H]⁺ 723.2376, found 723.2360.

4β: $[α]_D^{20} = 40.9$ (*c* 1.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.56 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.48 (td, *J* = 7.6, 1.3 Hz, 1H), 7.38 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.34–7.24 (m, 6H), 7.21 (dd, *J* = 5.0, 1.8 Hz, 3H), 5.92 (d, *J* = 0.7 Hz, 1H), 5.55 (t, *J* = 9.6 Hz, 1H), 4.94–4.85 (m, 2H), 4.58 (d, *J* = 11.9 Hz, 1H), 4.48 (d, *J* = 11.9 Hz, 1H), 4.13 (d, *J* = 2.2 Hz, 1H), 3.79–3.67 (m, 2H), 2.48 (t, *J* = 7.2 Hz, 2H), 1.68–1.60 (m, 2H), 1.56–1.45 (m, 2H), 1.40 (d, *J* = 6.2 Hz, 3H), 0.96 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.95, 158.19, 138.04, 137.55, 134.64, 132.40, 130.80, 130.27, 128.45, 128.34, 128.29, 127.88, 127.79, 127.53, 127.21, 125.73, 97.25, 93.51, 79.59, 79.10, 75.04, 74.47, 73.53, 71.96, 71.47, 30.79, 22.22, 19.68, 17.67, 13.80; HRMS (MALDI) calcd for C₄₀H₃₆O₇F₅ [M+H]⁺ 723.2376, found 723.2362.

2.5. 4-*O*-Benzoyl-2,3-*O*-isopropylidene-L-rhamnopyranosyl *ortho*-hexynylbenzoate (5 and 5β)

To a stirred mixture of compound **S9** (860 mg, 2 mmol) in CH_2Cl_2/H_2O (10:1, 10 mL) was added NIS (540 mg, 2.4 mmol) followed by H_2SO_4 -Silica (200 mg) at 0 °C. The mixture was allowed to stir at 0 °C for 2.0 h until TLC showed complete conversion of the starting materials. The mixture was diluted with CH_2Cl_2 and was washed successively with aq Na₂S₂O₃, aq. NaHCO₃, and brine. The organic layer was

collected, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc/CH₂Cl₂, 5:1:1) to provide 4-*O*-benzoyl-2,3-*O*-isopropylidene-L-rhamnopyranose (**S10**) (484 mg, 79% for two steps) as a white solid.

A solution of compound **S10** (460 mg, 1.5 mmol), *ortho*-hexynylbenzoic acid (**S2**) (362 mg, 1.8 mmol), 4-dimethylaminopyridine (DMAP) (37 mg, 0.3 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (362 mg, 1.5 mmol) in CH₂Cl₂ (5 mL) was stirred at room temperature for 3 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 20:1) to provide **5** (564 mg, 77%) and **5** β (70 mg, 9%) as colorless oil.

5: $[\alpha]_D^{20} = 6.2$ (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.12–7.29 (m, 9H), 6.63 (s, 1H), 5.23 (dd, *J* = 10.0, 7.9 Hz, 1H), 4.44 (dd, *J* = 7.9, 5.3 Hz, 1H), 4.38–4.31 (m, 1H), 4.13 (dq, *J* = 10.1, 6.3 Hz, 1H), 2.51 (t, *J* = 7.1 Hz, 2H), 1.71–1.57 (m, 6H), 1.56–1.41 (m, 2H), 1.37 (s, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.79, 164.44, 135.00, 133.42, 132.27, 130.84, 130.83, 129.91, 129.78, 128.53, 127.49, 124.82, 110.59, 96.36, 92.00, 79.89, 75.70, 75.37, 74.48, 67.49, 30.96, 27.82, 26.62, 22.27, 19.84, 17.36, 13.81; HRMS (MALDI) calcd for C₂₉H₃₂O₇ [M+Na]⁺ 515.2040, found 515.2033.

5β: $[α]_D^{20} = 21.4$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.14–7.32 (m, 9H), 6.34 (d, *J* = 2.1 Hz, 1H), 5.42 (dd, *J* = 9.2, 6.0 Hz, 1H), 4.53–4.42 (m, 2H), 3.87 (dq, *J* = 9.2, 6.2 Hz, 1H), 2.48 (t, *J* = 7.1 Hz, 2H), 1.67–1.60 (m, 2H), 1.58 (s, 3H), 1.53–1.43 (m, 2H), 1.36 (s, 3H), 1.31 (d, *J* = 6.3 Hz, 3H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.33, 163.72, 134.36, 133.18, 132.01, 130.65, 130.08, 129.63, 129.36, 128.28, 127.05, 125.39, 111.18, 96.80, 90.99, 78.88, 76.62, 73.88, 73.18, 71.13, 30.52, 26.92, 25.66, 21.91, 19.41, 18.26, 13.51; HRMS (MALDI) calcd for C₂₉H₃₂O₇ [M+Na]⁺ 515.2040, found 515.2053.

2.6. 2,3-Di-*O*-benzyl-4-*O*-benzoyl-L-rhamnopyranosyl 2-hexynyl-4-methoxybenzoate (6 and 6β)

To a degassed solution of Pd(PPh₃)₂Cl₂ (424 mg, 0.6 mmol), CuI (118 mg, 0.6 mmol), compound **S11** (1.8 g, 6 mmol), and *N*,*N*-diisopropylethylamine (3.5 mL) in DMF (25 mL) was added *n*-hexyne (1.24 mL, 10.5 mmol) introduced via a gastight syringe. After 24 h at room temperature, the reaction mixture was poured into a flask containing a saturated NH₄Cl solution (60 mL) and pentane (60 mL). After filtration, the organic layer was separated, washed with water, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 30:1) to afford methyl 4-methoxyl-2-(1-hexynyl)benzoate (**S12**) (1.35 g, 91%) as a light yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.8 Hz, 1H), 6.99 (d, *J* = 2.6 Hz, 1H), 6.81 (dd, *J* = 8.8, 2.6 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 2.48 (t, *J* = 7.1 Hz, 2H), 1.69–1.56 (m, 2H), 1.56–1.42 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.53, 162.00, 132.49, 126.68, 118.82, 113.69, 96.08, 79.50, 55.52, 51.85, 30.85, 22.16, 19.60, 13.75; HRMS (ESI) calcd for C₁₅H₁₈O₃ [M+H]⁺ 247.1329, found 247.1337.

To a flask containing LiOH monohydrate (856 mg) in methanol (80 mL) and H₂O (40 mL) was added a solution of **S12** (1.1 g, 4.5 mmol) in methanol (40 mL). The resulting mixture was heated at 35 °C for 48 h before it was allowed to cool to room temperature. Then, the flask was placed in an ice water bath. A dilute NH₄Cl solution at 0 °C was added until the pH of the solution became *ca*. 8. The solution was then treated dropwise diluted HCl (1.0 M) until the pH reached 4. At this point a white solid appeared, and was then diluted with CH₂Cl₂. The mixture was washed with H₂O

and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum to provide 4-methoxy-2-(1-hexynyl)benzoic acid (**S13**) (975 mg, 93%) as a light yellow solid: ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.8 Hz, 1H), 7.02 (d, *J* = 2.7 Hz, 1H), 6.88 (dd, *J* = 8.9, 2.7 Hz, 1H), 3.86 (s, 3H), 2.51 (t, *J* = 7.0 Hz, 2H), 1.74–1.61 (m, 2H), 1.58–1.46 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.18, 162.74, 133.64, 126.84, 123.10, 118.90, 114.03, 97.81, 79.31, 55.67, 30.64, 19.64; HRMS (ESI) calcd for C₁₄H₁₆O₃ [M+H]⁺233.1177, found 233.1170.

A solution of rhamnopyranose **S4** (235 mg, 0.75 mmol), *ortho*-hexynylbenzoic acid (**S2**) (260 mg, 1.1 mmol), 4-dimethylaminopyridine (DMAP) (18 mg, 0.15 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (157 mg, 0.9 mmol) in CH₂Cl₂ (6 mL) was stirred at room temperature for 3 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 9:1) to provide **6** (198 mg, 34%) and **6**β (298 mg, 51%) as colorless oil.

6: $[\alpha]_{D}^{20} = -19.6$ (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.0 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.65–7.56 (m, 1H), 7.50–7.11 (m, 10H), 7.04 (d, J = 2.7 Hz, 1H), 6.87 (dd, J = 8.9, 2.6 Hz, 1H), 6.45 (d, J = 2.0 Hz, 1H), 5.62 (t, J = 9.9 Hz, 1H), 4.90–4.77 (m, 2H), 4.53 (d, J = 12.2 Hz, 1H), 4.39 (d, J = 12.2 Hz, 1H), 4.10 (dq, J = 9.9, 6.2 Hz, 1H), 4.03 (dd, J = 9.9, 3.1 Hz, 1H), 3.98–3.94 (m, 1H), 3.89 (s, 3H), 2.46 (qt, J = 17.0, 7.2 Hz, 2H), 1.67–1.58 (m, 2H), 1.54–1.42 (m, 2H), 1.30 (d, J = 6.2 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.76, 163.81, 162.53, 137.94, 137.77, 133.25, 132.91, 130.13, 129.90, 128.52, 128.50, 128.38, 128.19, 128.01, 127.89, 127.77, 127.29, 122.85, 119.40, 113.98, 96.80, 92.67, 79.89, 76.07, 73.55, 73.03, 72.91, 71.54, 70.07, 55.71, 30.91, 22.27, 19.80, 17.88, 13.85; HRMS (ESI) calcd for C₄₁H₄₃O₈ [M+Na]⁺ 685.2774, found 685.2784.

6β: $[\alpha]_D^{20} = 62.9$ (*c* 0.9, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.06–7.93 (m, 3H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.41 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.25–7.12 (m, 8H), 7.03 (d, J = 2.6 Hz, 1H), 6.80 (dd, J = 8.9, 2.7 Hz, 1H), 5.93 (d, J = 1.0 Hz, 1H), 5.55 (t, J = 9.5 Hz, 1H), 4.93 (s, 2H), 4.55 (d, J = 12.4 Hz, 1H), 4.38 (d, J = 12.4 Hz, 1H), 4.13 (d, J = 2.9 Hz, 1H), 3.85 (s, 3H), 3.77–3.68 (m, 2H), 2.49 (t, J = 7.2 Hz, 2H), 1.64 (dq, J = 8.6, 7.1 Hz, 2H), 1.56–1.44 (m, 2H), 1.34 (d, J = 6.2 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.73, 163.43, 162.67, 138.27, 137.63, 133.28, 133.16, 130.05, 129.96, 128.53, 128.45, 128.42, 128.41, 128.36, 128.35, 127.98, 127.85, 127.75, 122.50, 119.31, 113.60, 97.21, 93.41, 79.30, 78.99, 74.41, 73.59, 73.09, 72.04, 71.59, 55.67, 30.81, 22.28, 19.73, 17.80, 13.84; HRMS (ESI) calcd for C₄₁H₄₃O₈ [M+Na]⁺ 685.2772, found 685.2784.

2.7. 2,3-Di-O-benzyl-4-O-benzoyl-L-rhamnopyranosyl 2-hexynyl-4-nitrobenzoate (7 and 7β)

A solution of 2,3-di-*O*-benzyl-4-*O*-benzoyl-L-rhamnopyranose (**S4**) (2.0 g, 4.5 mmol), 2-iodo-4-nitrobenzoic acid (**S14**) (1.57 g, 5.4 mmol), 4-dimethylaminopyridine (DMAP) (0.8 g, 6.7 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (1.7 g, 8.9 mmol) in CH₂Cl₂ (30 mL) was stirred at room temperature for 6 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the mixture was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 10:1) to provide a pale yellow foam (3.1 g, 96 %).

To a degassed solution of the foam (3.1 g, 4.3 mmol), Pd(PPh₃)₂Cl₂ (302 mg, 0.43 mmol), CuI (82 mg, 0.43 mmol), and *N*,*N*-diisopropylethylamine (2.0 mL) in DMF (80 mL) was added *n*-hexyne (0.88 mL, 7.7 mmol) introduced via a gastight syringe. After 24 h at room temperature, the reaction mixture was poured into a flask containing a saturated NH₄Cl solution (100 mL) and CH₂Cl₂ (100mL). After filtration, the organic layer was separated, washed with water, dried over Na₂SO₄, and

concentrated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 20:1) to afford 7 (1.7 g, 58%) and 7 β (0.8 g, 28%) as light yellow liquid. 7: $[\alpha]_D^{20} = -26.8$ (c 1.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.48–7.06 (m, 19H), 6.46 (d, J = 1.7 Hz, 1H), 5.64 (t, J = 9.6 Hz, 1H), 4.86 (s, 2H), 4.56 (d, J = 12.2 Hz, 1H), 4.43 (d, J = 12.2 Hz, 1H), 4.10 (dd, J = 9.7, 6.2 Hz, 1H), 4.03–3.93 (m, 2H), 2.57–2.36 (m, 2H), 1.63 (dd, J = 15.0, 7.3 Hz, 2H), 1.48 (dd, J = 15.0, 7.4 Hz, 2H), 1.33 (d, J = 6.2 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.66, 163.14, 149.63, 137.71, 137.64, 136.17, 133.35, 131.63, 129.98, 129.85, 129.38, 128.56, 128.53, 128.40, 128.19, 128.01, 127.97, 127.87, 126.57, 121.73, 100.17, 94.00, 78.07, 75.82, 73.44, 73.09, 72.84, 71.71, 70.47, 30.59, 22.21, 19.72, 17.87, 13.76; HRMS (ESI) calcd for $C_{40}H_{39}N_1O_9$ [M+Na]⁺ 700.2517, found 700.2506. **7β**: $[α]_D^{20} = 56.1$ (*c* 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, *J* = 2.2 Hz, 1H), 8.03 (dd, J = 9.3, 1.6 Hz, 3H), 7.98 (d, J = 8.6 Hz, 1H), 7.66–7.57 (m, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.43-7.34 (m, 2H), 7.25-7.14 (m, 8H), 5.95 (d, J = 1.0 Hz, 1H),5.57 (t, J = 9.2 Hz, 1H), 4.90 (d, J = 12.3 Hz, 2H), 4.56 (d, J = 12.2 Hz, 2H), 4.15 (dd, J = 2.6, 0.9 Hz, 1H), 3.82-3.72 (m, 2H), 2.49 (t, J = 7.1 Hz, 2H), 1.72-1.58 (m, 2H), 1.56–1.45 (m, 2H), 1.37 (d, J = 6.3 Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.65, 162.68, 149.68, 138.06, 137.50, 135.78, 133.37, 131.84, 129.92, 129.89, 128.94, 128.56, 128.51, 128.40, 128.37, 127.97, 127.90, 127.87, 127.25, 121.52, 100.71, 93.83, 78.80, 74.41, 73.50, 72.89, 72.17, 72.02, 30.44, 22.20, 19.68, 17.88, 14.32, 13.76; HRMS (ESI) calcd for $C_{40}H_{39}NO_9$ [M+Na]⁺ 700.2523, found 700.2523.

2.8. 2,3-Di-*O*-benzyl-4-*O*-benzoyl-L-rhamnopyranosyl 2-hexynyl-5-nitrobenzoate (8 and 8β)

A solution of rhamnopyranose S4 (2.0 g, 4.5 mmol), 2-iodo-5-nitrobenzoic acid (S15) (1.57 g, 5.4 mmol), 4-dimethylaminopyridine (DMAP) (0.8 g, 6.7 mmol), and 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDCl) (1.7 g, 8.9 mmol) in CH₂Cl₂ (30 mL) was stirred at room temperature for 6 h, and was then diluted with CH₂Cl₂. The mixture was washed with saturated NaHCO₃ solution, H₂O, and brine, respectively, and was then dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuum. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 10:1) to provide a pale yellow foam (3.0 g, 93%).

To a degassed solution of the foam (2.2 g, 3.1 mmol), Pd(PPh₃)₂Cl₂ (218 mg, 0.31 mmol), CuI (117 mg, 0.61 mmol), and N,N-diisopropylethylamine (1.5 mL) in DMF (80 mL) was added *n*-hexyne (0.6 mL, 5.5 mmol) introduced via a gastight syringe. After 24 h at room temperature, the reaction mixture was poured into a flask containing a saturated NH₄Cl solution (100 mL) and CH₂Cl₂ (100 mL). After filtration, the organic layer was separated, washed with water, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 20:1) to afford 8 (1.2 g, 54%) and 8β (0.7 g, 34%) as light yellow liquid. 8: $[\alpha]_D^{20} = -19.2$ (c 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.77–6.92 (m, 21H), 6.44 (d, J = 1.9 Hz, 1H), 5.63 (s, 1H), 4.85 (d, J = 3.2 Hz, 2H), 4.55 (d, J = 12.2 Hz, 1H), 4.44 (d, J = 12.2 Hz, 1H), 4.16–4.05 (m, 1H), 4.04–3.98 (m, 1H), 3.95 (d, J = 2.4 Hz, 1H), 2.49 (d, J = 13.4 Hz, 2H), 1.69–1.57 (m, 2H), 1.48 (d, J = 7.5 Hz, 2H), 1.32 (d, J = 6.2 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.71, 162.58, 146.15, 137.77, 137.62, 135.94, 133.33, 132.10, 131.56, 129.99, 129.92, 128.58, 128.55, 128.46, 128.21, 128.07, 128.02, 127.90, 126.39, 125.74, 103.87, 94.08, 78.88, 76.06, 73.59, 73.17, 72.84, 72.00, 70.48, 30.54, 22.23, 19.99, 17.93, 13.77; HRMS (ESI) calcd for $C_{40}H_{39}NO_9 [M+Na]^+$ 700.2517, found 700.2521. **86**: $[\alpha]_D^{20} = 33.4$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.86 (d, J = 2.4 Hz, 1H), 8.31 (dd, J = 8.6, 2.4 Hz, 1H), 8.11–7.96 (m, 2H), 7.69 (d, J = 8.6 Hz, 1H), 7.64–7.57 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.45–7.40 (m, 2H), 7.25–7.09 (m, 9H),

71.0, 12.3 Hz, 2H), 4.15 (d, J = 1.8 Hz, 1H), 3.76 (ddd, J = 9.7, 6.7, 3.0 Hz, 2H), 2.52 (t, J = 7.2 Hz, 2H), 1.70–1.60 (m, 2H), 1.54–1.43 (m, 2H), 1.36 (d, J = 6.2 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.67, 162.34, 146.03, 137.96, 137.54, 135.53, 133.37, 132.11, 131.74, 129.96, 128.58, 128.52, 128.42, 127.96, 127.91, 127.87, 126.56, 126.00, 104.42, 94.01, 78.85, 78.43, 74.53, 73.36, 72.96, 72.23, 71.89, 30.42, 22.25, 19.97, 17.87, 13.78; HRMS (ESI) calcd for C₄₀H₃₉NO₉ [M+Na]⁺ 700.2523, found 700.2522.

3. Preparation of AgBAr₄^F

A 5 mL standard brown opening screw top vial was charged with NaBAr₄^F (200 mg, 0.23 mmol), AgNO₃ (80 mg, 0.46 mmol), H₂O (1.0 mL), and Et₂O (1.0 mL). After stirring the mixture at room temperature for 30 min, the Et₂O layer was transferred to a 2.5 mL opening brown crew top vial using a syringe. Then, Et₂O was evaporated at room temperature to 0.5 mL to afford the solution of AgBAr₄^F in Et₂O (0.45 M).

4. Typical procedure for the glycosylation with rhamnopyranosyl *ortho*-hexynylbenzoates using Ph₃PAuCl/AgBAr₄^F as the catalyst

A mixture of the α -donor (~30 mg, 0.05 mmol), acceptor (0.1 mmol, 2.0 equiv), 5Å MS (100 mg), and Ph₃PAuCl (2.5 mg, 0.005 mmol) in PhCl (2 mL) was stirred for 30 min at the indicated temperature under argon atmosphere. A solution of AgBAr₄^F in Et₂O (17 μ L × 0.28 M, or 11 μ L × 0.45 M, 0.005 mmol) was then added. Stirring was continued at the same temperature under argon atmosphere until the reaction was completed. Ph₃P (~6 mg) was added. The mixture was filtered through Celite. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to provide the coupled glycoside.

5. Characterization of the glycosylation products

Compound 6H

¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.8 Hz, 1H), 6.98 (dd, J = 8.8, 2.5 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.19 (s, 1H), 3.90 (s, 3H), 2.51 (t, J = 7.6 Hz, 2H), 1.69 (p, J= 7.6 Hz, 2H), 1.44-1.37 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.79, 162.99, 159.08, 140.14, 131.85, 116.00, 113.43, 107.21, 103.04, 55.73, 33.41, 29.10, 22.26, 13.91; HRMS (EI) calcd for C₁₄H₁₆O₃ [M]⁺ 232.1099, found 232.1099.

Compound 7H

¹H NMR (500 MHz, CDCl₃) δ 8.48–8.37 (m, 1H), 8.20 (dd, J = 7.5, 2.0 Hz, 2H), 6.38 (s, 1H), 2.60–2.54 (m, 2H), 1.71 (dt, J = 15.3, 7.6 Hz, 2H), 1.46–1.37 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.35, 161.09, 151.73, 138.82, 131.65, 124.19, 121.53, 120.32, 102.40, 33.43, 28.95, 22.24, 13.86; HRMS (EI) calcd for C₁₃H₁₃NO₄ [M]⁺ 247.0845, found 247.0847.

Compound 8H

¹H NMR (500 MHz, CDCl₃) δ 9.08 (d, J = 2.3 Hz, 1H), 8.47 (dd, J = 8.6, 2.4 Hz, 1H), 7.51 (d, J = 8.7 Hz, 2H), 6.37 (s, 1H), 2.70–2.53 (m, 2H), 1.72 (dt, J = 15.2, 7.6 Hz, 2H), 1.51–1.34 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.74, 161.24, 146.67, 129.05, 126.49, 125.82, 120.50, 102.35, 33.64, 28.93, 22.27, 13.86; HRMS (EI) calcd for $C_{13}H_{13}NO_4 [M]^+ 247.0845$, found 247.0845.

2,3-Di-*O*-benzyl-4-*O*-benzoyl-β-L-rhamnopyranosyl-(1→6)-1,2:3,4-di-*O*-isopropy lidene-α-D-galactopyranoside (11β)

Compound **11** β was purified by silica gel column chromatography (petroleum ether/EtOAc, 7:1) as a colorless oil: $[\alpha]_D{}^{20} = 30.4$ (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04–6.99 (m, 9H), 5.51 (d, *J* = 5.0 Hz, 1H), 5.44 (t, *J* = 9.6 Hz, 1H), 4.92 (q, *J* = 12.6 Hz, 2H), 4.60 (dd, *J* = 8.0, 2.3 Hz, 1H), 4.49–4.40 (m, 2H), 4.31 (dd, *J* = 5.1, 2.3 Hz, 1H), 4.27–4.20 (m, 2H), 4.08 (ddd, *J* = 8.1, 5.7, 1.8 Hz, 1H), 4.00–3.86 (m, 2H), 3.73 (t, *J*= 9.0 Hz, 1H), 3.49 (ddd, *J* = 9.6, 6.9, 4.6 Hz, 2H), 1.55 (s, 3H), 1.45 (s, 3H), 1.33 (s, 4H), 1.33 (s, 3H), 1.28 (d, *J*= 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.68, 138.67, 137.78, 133.17, 130.15, 129.88, 128.69, 128.47, 128.33, 128.18, 127.70, 127.67, 127.54, 109.13, 108.70, 101.91, 96.39, 78.74, 73.98, 73.47, 73.21, 71.06, 70.98, 70.89, 70.69, 70.61, 67.95, 65.93, 26.29, 26.13, 25.06, 24.55, 17.73; HRMS (MALDI) calcd for C₃₉H₄₆O₁₁ [M+Na]⁺713.2932, found 713.2938.

3,4-Di-*O*-benzoyl-2-*O*-benzyl-α-L-rhamnopyranosyl-(1→6)-1,2:3,4-di-*O*-isopropy lidene-α-D-galactopyranoside (12α)

 $[α]_D^{20}$ = -14 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08–6.97 (m, 13H), 5.65 (t, *J* = 9.9 Hz, 1H), 5.57–5.50 (m, 2H), 4.99 (d, *J* = 1.8 Hz, 1H), 4.73–4.51 (m, 3H), 4.33 (dt, *J* = 7.4, 2.1 Hz, 2H), 4.19 (dq, *J* = 9.8, 6.2 Hz, 1H), 4.09–3.99 (m, 2H), 3.91 (dd, *J* = 9.8, 6.8 Hz, 1H), 3.63 (dd, *J* = 9.8, 6.4 Hz, 1H), 1.56 (s, 3H), 1.44 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H), 1.29 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.76, 137.78, 133.20, 129.90, 129.75, 129.73, 129.65, 128.46, 128.44, 128.36, 127.95, 127.77, 109.29, 108.81, 97.91, 96.32, 75.73, 73.18, 72.34, 72.02, 70.99, 70.70, 66.83, 66.79, 65.51, 26.30, 26.11, 25.09, 24.54, 17.59; HRMS (ESI) calcd for $C_{39}H_{44}O_{12}$ [M+Na]⁺ 727.2731, found 727.2724.

4-*O*-Benzoyl-2,3-*O*-isopropylidene-α-L-rhamnopyranosyl-(1→6)-1,2:3,4-di-*O*-iso propylidene-α-D-galactopyranoside (13α)

Compound **13** α was purified by silica gel column chromatography (petroleum ether/EtOAc, 7:1) as a colorless oil: $[\alpha]_D{}^{20}$ = -39.6 (*c* 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, *J*= 8.3, 1.4 Hz, 2H), 7.61–7.54 (m, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 5.56 (d, *J* = 5.0 Hz, 1H), 5.18–5.04 (m, 2H), 4.64 (dd, *J* = 7.9, 2.4 Hz, 1H), 4.41–4.21 (m, 4H), 4.01 (td, *J* = 6.4, 1.9 Hz, 1H), 3.97–1.90 (m, 2H), 3.67 (dd, *J* = 10.2, 6.7 Hz, 1H), 1.62 (s, 3H), 1.57 (s, 3H), 1.46 (s, 3H), 1.36 (d, *J* = 1.9 Hz, 9H), 1.22 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.87, 133.25, 130.04, 129.89, 128.48, 109.96, 109.50, 108.75, 97.25, 96.44, 76.09, 75.97, 75.29, 71.21, 70.79, 70.67, 66.69, 65.92, 64.33, 27.88, 26.55, 26.26, 26.13, 25.06, 24.65, 17.15; HRMS (MALDI) calcd for C₂₈H₃₈O₁₁ [M+Na]⁺ 573.2306, found 573.2309.

4-*O*-Benzoyl-2,3-*O*-isopropylidene- β -L-rhamnopyranosyl-(1 \rightarrow 6)-1,2:3,4-di-*O*-iso propylidene- α -D-galactopyranoside (13 β)

Compound **13** β was purified by silica gel column chromatography (petroleum ether/EtOAc, 7:1) as a colorless oil: $[\alpha]_D{}^{20} = 5.4$ (*c* 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 8.4, 1.3 Hz, 2H), 7.61–7.54 (m, 1H), 7.45 (t, J = 7.8 Hz, 2H), 5.52 (d, J = 5.0 Hz, 1H), 5.21 (dd, J = 9.5, 6.1 Hz, 1H), 4.90 (d, J = 1.6 Hz, 1H), 4.64 (dd, J = 8.0, 2.3 Hz, 1H), 4.40 (dd, J = 8.0, 1.8 Hz, 1H), 4.38–4.28 (m, 3H), 4.17–4.01 (m, 2H), 3.86 (dd, J = 10.0, 8.7 Hz, 1H), 3.61 (dq, J = 9.4, 6.2 Hz, 1H), 1.66 (s, 3H),

1.55 (s, 3H), 1.46 (s, 3H), 1.39 (s, 3H), 1.37 (s, 3H), 1.33 (s, 3H), 1.30 (d, J = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.71, 133.35, 129.90, 128.52, 111.36, 109.22, 108.73, 99.30, 96.42, 75.02, 74.64, 70.86, 70.70, 70.65, 70.45, 68.32, 65.66, 27.73, 26.48, 26.25, 26.18, 25.03, 24.68, 17.97; HRMS (MALDI) calcd for C₂₈H₃₈O₁₁ [M+Na]⁺ 573.2306, found 573.2296.

Methyl

2,3-di-O-benzyl-4-O-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -2,3-O-isopropylidene- α -L-rhamnopyranoside (14 α)

Compound 14 α was purified by silica gel column chromatography (petroleum ether/EtOAc, 7:1) as a colorless oil: $[\alpha]_D^{20} = -5.3$ (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.04–7.08 (m, 10H), 5.50 (t, *J* = 9.7 Hz, 1H), 5.43 (d, *J* = 1.9 Hz, 1H), 4.87 (s, 1H), 4.84–4.75 (m, 2H), 4.52 (d, *J* = 12.2 Hz, 1H), 4.39 (d, *J* = 12.2 Hz, 1H), 4.14–4.05 (m, 2H), 3.94–3.82 (m, 3H), 3.63 (dq, *J* = 9.8, 6.2 Hz, 1H), 3.49 (dd, *J* = 9.9, 6.8 Hz, 1H), 3.40 (s, 3H), 1.54 (s, 3H), 1.37 (s, 3H), 1.30 (d, *J* = 6.2 Hz, 3H), 1.26 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.78, 138.38, 138.16, 133.11, 130.31, 129.91, 128.47, 128.43, 128.29, 128.19, 127.73, 127.56, 109.66, 98.17, 97.72, 78.63, 78.56, 76.78, 76.20, 74.49, 73.68, 72.81, 71.61, 67.79, 64.11, 55.04, 28.12, 26.57, 18.03, 17.83; HRMS (MALDI) calcd for C₃₇H₄₄O₁₀ [M+Na]⁺ 671.2827, found 671.2821.

Methyl

2,3-di-O-benzyl-4-O-benzoyl- β -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -2,3-O-isopropylidene- α -L-rhamnopyranoside (14 β)

Compound **14** β was purified by silica gel column chromatography (petroleum ether/EtOAc, 6:1) as a colorless oil: $[\alpha]_D^{20} = 42.3$ (*c* 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.12–7.01 (m, 15H), 5.47 (t, *J* = 9.6 Hz, 1H), 4.98 (d, *J* = 12.6 Hz, 1H), 4.86 (d, *J* = 13.2 Hz, 2H), 4.64 (d, *J* = 0.9 Hz, 1H), 4.52–4.40 (m, 2H), 4.28 (d, *J* = 12.4 Hz, 1H), 4.13 (dd, *J* = 5.9, 0.8 Hz, 1H), 3.97 (dd, *J* = 2.9, 0.8 Hz, 1H), 3.75 (dq, *J* = 9.6, 6.3 Hz, 1H), 3.54 (ddd, *J* = 15.7, 9.6, 4.6 Hz, 2H), 3.46–3.34 (m, 4H), 1.52 (s, 3H), 1.34 (s, 3H), 1.31 (dd, *J* = 6.3, 5.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 165.73, 138.68, 137.91, 133.16, 130.26, 129.90, 128.55, 128.48, 128.25, 127.64, 127.57, 108.98, 101.34, 98.50, 82.96, 79.30, 76.75, 75.88, 74.01, 73.76, 73.61, 71.18, 71.10, 64.37, 55.03, 28.19, 26.28, 18.11, 17.73; HRMS (MALDI) calcd for C₃₇H₄₄O₁₀ [M+Na]⁺ 671.2827, found 671.2815.

1-Adamantanyl 2,3-di-O-benzyl-4-O-benzoyl-β-L-rhamnopyranoside (16β)

Compound **16** β was purified by silica gel column chromatography (petroleum ether/EtOAc, 13:1) as a colorless oil: $[\alpha]_D^{20} = 59.4$ (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03–7.02 (m, 15H), 5.42 (t, *J* = 9.6 Hz, 1H), 4.98 (q, *J* = 12.9 Hz, 2H), 4.70 (d, *J* = 1.0 Hz, 1H), 4.42 (d, *J* = 12.5 Hz, 1H), 4.19 (d, *J* = 12.5 Hz, 1H), 3.77 (d, *J* = 3.0 Hz, 1H), 3.56–3.44 (m, 2H), 2.15 (s, 3H), 1.92–1.74 (m, 6H), 1.68–1.56 (m, 6H), 1.27 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.71, 138.87, 137.95, 133.08, 130.29, 129.85, 128.76, 128.44, 128.27, 128.10, 127.60, 127.55, 127.41, 94.23, 79.23, 75.05, 74.44, 73.82, 73.69, 70.79, 70.48, 42.56, 36.40, 30.75, 18.08; HRMS (MALDI) calcd for C₃₇H₄₂O₆ [M+Na]⁺ 605.2874, found 605.2876.

Methyl

2,3-di-O-benzyl-4-O-benzoyl-β-L-rhamnopyranosyl-(1→6)-2,3,4-tri-O-benzoyl- α -D-glucopyranoside (17 β)

 $[\alpha]_{D}^{20} = 118.6 \ (c \ 0.7, \ CHCl_3); \ ^{1}H \ NMR \ (500 \ MHz, \ CDCl_3) \ \delta \ 8.05-7.98 \ (m, \ 6H),$ 7.96-7.90 (m, 2H), 7.59 (t, $J = 7.4 \ Hz, \ 1H), \ 7.52 \ (q, J = 7.4 \ Hz, \ 2H), \ 7.49-7.35 \ (m, \ chc)$ 10H), 7.31 (m, 6H), 7.17 (dt, J = 24.6, 7.2 Hz, 4H), 7.10 (d, J = 7.2 Hz, 2H), 6.22 (t, J = 9.9 Hz, 1H), 5.68 (t, J = 9.8 Hz, 1H), 5.44 (t, J = 9.6 Hz, 1H), 5.29 (dd, J = 10.1, 3.6 Hz, 1H), 5.24 (d, J = 3.6 Hz, 1H), 4.87–4.68 (m, 2H), 4.51 (s, 1H), 4.41 (d, J = 12.5 Hz, 1H), 4.28 (dd, J = 9.8, 4.0 Hz, 1H), 4.25–4.18 (m, 2H), 3.85–3.78 (m, 2H), 3.54–3.46 (m, 5H), 1.28 (d, J = 6.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.01, 165.93, 165.64, 165.34, 138.84, 137.84, 133.49, 133.19, 133.11, 130.19, 130.04, 129.95, 129.86, 129.77, 129.41, 129.34, 129.16, 129.13, 128.58, 128.53, 128.43, 128.39, 128.32, 128.29, 128.23, 128.17, 127.58, 127.38, 125.39, 101.77, 97.11, 78.76, 74.18, 73.76, 73.45, 72.29, 71.03, 70.73, 70.61, 70.53, 68.72, 68.67, 55.84, 17.67; HRMS (ESI) calcd for C₅₅H₅₂O₁₄ [M+NH₄]⁺954.3701, found 954.3696.

Methyl

2,3-di-O-benzyl-4-O-benzoyl-α-L-rhamnopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-α-D-glucopyranoside (17α)

[α]_D²⁰ = 39.5 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.08–8.04 (m, 2H), 8.03–7.99 (m, 2H), 7.96 (d, J = 7.3 Hz, 2H), 7.93–7.88 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.56–7.34 (m, 11H), 7.30 (m, 5H), 7.19 (m, 5H), 6.17 (t, J = 9.9 Hz, 1H), 5.61 (t, J = 9.9 Hz, 1H), 5.49 (t, J = 9.7 Hz, 1H), 5.29 (dd, J = 10.2, 3.6 Hz, 1H), 5.22 (d, J = 3.6 Hz, 1H), 4.79 (m, 3H), 4.49 (d, J = 12.2 Hz, 2H), 4.25–4.19 (m, 1H), 3.96 (d, J = 1.8 Hz, 1H), 3.94–3.85 (m, 3H), 3.62 (dd, J = 11.6, 5.2 Hz, 1H), 3.40 (s, 3H), 1.19 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.01, 165.94, 165.80, 165.36, 138.49, 138.20, 133.65, 133.54, 133.25, 133.11, 130.30, 130.07, 129.95, 129.91, 129.77, 129.38, 129.17, 129.04, 128.64, 128.57, 128.47, 128.42, 128.41, 128.31, 128.04, 127.85, 127.69, 127.61, 99.42, 97.14, 74.40, 73.58, 73.10, 72.18, 71.58, 70.61, 69.34, 69.00, 67.40, 66.28, 55.64, 17.70; HRMS (ESI) calcd for C₅₅H₅₂O₁₄ [M+NH₄]⁺ 954.3701, found 954.3696.

Cholestanyl 2,3-di-O-benzyl-4-O-benzoyl-β-L-rhamnopyranoside (18β)

[α]_D²⁰ = 30.9 (*c* 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.03–7.99 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.49 (d, *J* = 6.9 Hz, 2H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.34–7.24 (m, 3H), 7.19–7.16 (m, 1H), 7.12 (t, *J* = 7.3 Hz, 2H), 7.08 (d, *J* = 7.2 Hz, 2H), 5.45 (t, *J* = 9.6 Hz, 1H), 5.37 (d, *J* = 5.2 Hz, 1H), 4.96 (d, *J* = 12.8 Hz, 2H), 4.55 (s, 1H), 4.45 (d, *J* = 12.5 Hz, 1H), 4.23 (d, *J* = 12.5 Hz, 1H), 3.89 (d, *J* = 2.9 Hz, 1H), 3.62–3.43 (m, 3H), 2.50 (dd, *J* = 13.5, 3.2 Hz, 1H), 2.41 (dd, *J* = 18.0, 6.8 Hz, 1H), 2.08–1.94 (m, 2H), 1.92–1.78 (m, 3H), 1.64–0.79 (m, 36H), 0.69 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.71, 140.94, 138.86, 137.95, 133.13, 130.31, 129.91, 128.71, 128.48, 128.33, 128.16, 127.69, 127.62, 127.48, 121.98, 99.37, 79.00, 78.60, 73.96, 73.88, 73.70, 70.92, 70.87, 56.95, 56.32, 50.34, 42.49, 40.32, 39.96, 39.67, 37.28, 36.89, 36.35, 35.93, 32.10, 32.05, 28.38, 28.25, 28.17, 24.44, 23.98, 22.97, 22.71, 21.25, 19.56, 18.89, 17.91, 12.03; HRMS (ESI) calcd for C₅₄H₇₂O₆ [M+NH₄]⁺ 834.5673, found 834.5667.

Cholestanyl 2,3-di-O-benzyl-4-O-benzoyl-α-L-rhamnopyranoside (18α)

 $[\alpha]_D^{20}$ = -19.1 (*c* 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.60–7.55 (m, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.40–7.36 (m, 2H), 7.35–7.30 (m, 2H), 7.21–7.13 (m, 5H), 5.48 (t, *J* = 9.7 Hz, 1H), 5.36–5.32 (m, 1H), 4.95 (d, *J* = 1.7 Hz, 1H), 4.77 (d, *J* = 12.5 Hz, 2H), 4.52 (d, *J* = 12.1 Hz, 2H), 3.93 (dd, *J* = 9.7, 2.9 Hz, 2H), 3.80–3.77 (m, 1H), 3.45 (ddd, *J* = 15.8, 11.2, 4.5 Hz, 1H), 2.27–2.21 (m, 1H), 2.13 (t, *J* = 11.2 Hz, 1H), 2.00 (ddd, *J* = 19.4, 11.1, 6.8 Hz, 2H), 1.91–1.80 (m, 3H),

1.64–1.42 (m, 13H), 1.40–1.25 (m, 5H), 1.23 (d, J = 6.3 Hz, 3H), 1.20–1.04 (m, 8H), 1.03–0.97 (m, 5H), 0.96–0.90 (m, 4H), 0.87 (dd, J = 6.6, 2.3 Hz, 7H), 0.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.86, 140.53, 138.55, 138.37, 133.07, 130.40, 129.92, 128.48, 128.46, 128.31, 128.12, 127.75, 127.65, 127.52, 122.15, 96.90, 75.18, 74.03, 73.18, 71.95, 67.20, 56.88, 56.30, 50.29, 42.48, 39.92, 39.68, 38.63, 37.44, 36.90, 36.35, 35.95, 32.10, 32.06, 29.64, 28.39, 28.18, 24.46, 23.98, 22.98, 22.72, 21.22, 19.55, 18.88, 17.81, 12.02; HRMS (ESI) calcd for C₅₄H₇₂O₆ [M+Na]⁺ 839.5227, found 839.5224.

Methyl

2,3-di-*O*-benzyl-4-*O*-benzoyl-β-L-rhamnopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-α-D -glucopyranoside (19β)

BzO BnO OBn BnO OBn BnO OMe

[α]_D²⁰ = -23.2 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 7.3 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.38–7.23 (m, 18H), 7.23–7.11 (m, 7H), 5.43 (t, *J* = 9.7 Hz, 1H), 5.06 (d, *J* = 1.5 Hz, 1H), 5.01 (d, *J* = 10.9 Hz, 1H), 4.77–4.38 (m, 11H), 4.08 (dq, *J* = 12.4, 6.1 Hz, 1H), 3.89–3.84 (m, 2H), 3.81 (t, *J* = 9.2 Hz, 1H), 3.77–3.74 (m, 1H), 3.68 (d, *J* = 9.4 Hz, 1H), 3.61–3.54 (m, 2H), 3.46 (dd, *J* = 11.2, 3.5 Hz, 1H), 3.39 (s, 3H), 0.95 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.76, 138.77, 138.43, 138.14, 138.08, 137.96, 133.01, 130.31, 129.87, 128.59, 128.55, 128.48, 128.41, 128.35, 128.32, 128.31, 128.10, 128.04, 127.85, 127.83, 127.73, 127.70, 127.64, 127.57, 127.46, 98.33, 98.09, 80.39, 80.12, 75.46, 74.55, 74.47, 73.74, 73.65, 73.53, 72.85, 71.74, 70.25, 68.99, 67.77, 55.45, 29.84, 17.49; HRMS (ESI) calcd for C₅₅H₅₈O₁₁ [M+NH₄]⁺912.4323, found 912.4319.

Methyl

2,3-di-*O*-benzyl-4-*O*-benzoyl-α-L-rhamnopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-α-D-glucopyranoside (19α)

BnO[°] BzO, \tilde{B}_{nO} \tilde{B}_{nO} \tilde{B}_{nO} \tilde{B}_{nO} \tilde{B}_{nO} \tilde{B}_{nO} \tilde{B}_{nO} BnO

 $[\alpha]_{D}^{20} = 52.3$ (*c* 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.98–7.93 (m, 2H), 7.57 (t,

J = 7.4 Hz, 1H), 7.43 (t, J = 7.8 Hz, 4H), 7.39–7.27 (m, 15H), 7.17 (dd, J = 15.5, 7.1 Hz, 4H), 7.10 (t, J = 7.4 Hz, 2H), 7.00 (d, J = 7.3 Hz, 2H), 5.37 (t, J = 9.7 Hz, 1H), 4.99 (d, J = 11.6 Hz, 1H), 4.88–4.81 (m, 2H), 4.75 (d, J = 12.1 Hz, 1H), 4.71–4.61 (m, 4H), 4.55 (d, J = 12.0 Hz, 1H), 4.34 (d, J = 11.6 Hz, 1H), 4.26 (d, J = 12.2 Hz, 1H), 4.03 (d, J = 12.3 Hz, 1H), 3.94–3.84 (m, 2H), 3.83–3.68 (m, 4H), 3.56 (dd, J = 9.7, 3.5 Hz, 1H), 3.46 (s, 3H), 3.39–3.32 (m, 1H), 3.21 (dd, J = 9.8, 2.8 Hz, 1H), 1.18 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.70, 139.03, 138.77, 138.69, 138.06, 137.89, 133.09, 130.21, 129.83, 128.62, 128.59, 128.57, 128.43, 128.32, 128.29, 128.26, 128.25, 128.11, 127.70, 127.59, 127.54, 127.46, 127.44, 102.46, 97.97, 82.10, 80.01, 79.64, 75.52, 73.85, 73.54, 73.47, 73.30, 73.23, 71.20, 70.86, 69.91, 69.04, 55.52, 17.67; HRMS (ESI) calcd for C₅₅H₅₈O₁₁ [M+NH₄]⁺912.4323, found 912.4318.

6. NMR studies

6.1. Formation of 1-α-glycosyloxy-isochromenylium-4-gold(I) intermediate 6Cα

General procedure: A 5 mL standard opening screw top vial was charged with rhamnosyl *ortho*-hexynylbenzoate **6** (33 mg, 0.05 mmol) and heated at 60 °C for 5 min under high vacuum. The vial was allowed to cool to room temperature, and then filled with argon. After addition of CD₂Cl₂ (0.5 mL), the solution was transferred into an NMR tube which contained Ph₃PAuCl (25 mg, 0.05 mmol, 1.0 equiv). The mixture was then cooled down to -60 °C. A solution of AgBAr₄^F in PhCl-*d5* (0.25 M, 100 μ L × 2, 0.05 mmol) was added followed by vigorously shaking for 30 s at -60 °C. The ¹H, HSQC (50 min), as well as HMBC (20 min) and ¹³C NMR (90 min) spectra were recorded successively at -42 °C or after warming up, using an Agilent 600 MHz NMR spectrometer.

Figure S1. The ¹H NMR spectra after addition of $AgBAr_4^F$ (1.0 equiv) into a mixture of **6** and Ph₃PAuCl (1.0 equiv) in CD₂Cl₂ at -42 °C or after warming up to -32 °C. a: pure **6** at -42 °C; b: 2 min after addition of $AgBAr_4^F$ at -42 °C; c: 17 min after addition of $AgBAr_4^F$ at -42 °C; c: 38 min after addition of $AgBAr_4^F$ at -32 °C; e: 38 min after addition of $AgBAr_4^F$ at -32 °C; c: 17 min after addition of $AgBAr_4^F$ at -32 °C; c: 17 min after addition addition of $AgBAr_4^F$ at -32 °C; f: pure **6H** at 25 °C.

Figure S2. The regional HMBC spectra after addition of $AgBAr_4^F$ (1.0 equiv) into a mixture of **6** and Ph₃PAuCl (1.0 equiv) in CD₂Cl₂ at -42 °C.

Table S1. ¹H (600 MHz), ¹³C (150 MHz), HMBC NMR data assigned for compound $6C\alpha$ in CD₂Cl₂ at -42 °C.

Position	Complex 6Ca		
	δH (ppm)	δC (ppm), type	HMBC
1	6.61 (bs)	100.7, CH	H1 to C2
2		166.7, C	C2 to H1
9		151.2, C	C9 to H11
10		163.2, C	C10 to H11, H12
11	3.20	36.7, CH ₂	H11 to C9, C10, C12
12	1.90	31.8, CH ₂	H12 to C10

6.2. Formation of 1- α -glycosyloxy-isochromenylium-4-gold(I) intermediate 2C α

Figure S3. The ¹H NMR spectra after addition of AgBAr₄^F (1.0 equiv) into a mixture of **2** and Ph₃PAuCl (1.0 equiv) in CD₂Cl₂ at -42 °C or after warming up to -32 °C. a: pure **2** at -42 °C; b: 2 min after addition of AgBAr₄^F at -42 °C; c: 17 min after addition of AgBAr₄^F at -42 °C; d: 22 min after addition of AgBAr₄^F at -32 °C; e: pure **2H** at -42 °C.

Figure S4. The ¹H NMR spectra after addition of AgBAr₄^F (1.0 equiv) into a mixture of **7** and Ph₃PAuCl (1.0 equiv) in CD₂Cl₂ at -69 °C or after warming up. a: pure **7** at -69 °C; b: 2 min after addition of AgBAr₄^F at -69 °C; c: 13 min after addition of AgBAr₄^F at -42 °C; d: 20 min after addition of AgBAr₄^F at -35 °C.

7. Known compounds

Он	Somnath, D.; Bimalendu, R.; Balaram, M.
BnO BnO	Carbohydr. Res. 2006, 341, 2708-2713.
SI OBn	
ⁿ Bu	Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B.
	Chem. Eur. J. 2010 , 16, 1871-1882.
S2 HOOC	
ŞPh	Crich, D.; Vinogradova, O. J. Org. Chem. 2007, 72,
HO	3581-3584.
BnO OBn	
SPn ≁07	Crich, D.; Vinogradova, O. J. Org. Chem. 2007, 72,
HO	3581-3584.
S5 OBn	
SPh	Pozsgay, V. Carbohydr. Res. 1992, 235, 295-302.
BzO	
to to	
S9	
° For	Mereyala, H.; Reddy, G. Tetrahedron 1991, 47,
BDQ- TOT MO	6435-6448.
10 BnO OBn	
MeQ ~ OTf	
	Matos, M.; Murphy, P. V. J. Org. Chem. 2007, 72,
S11 COOMe	1803-1806.
	Monnereau, C.; Blart, E.; Montembault, V.;
	Fontaine, L.; Odobel, F. Tetrahedron 2005, 61,
515 -	10113-10121.

8 NMR Spectra of New Compounds

Compounds 1 and 1_β:

Compound S4:

Compounds 2 and 2_β:

Compound S6:

Compounds 3 and 3_β:

Compound S7:

Compounds 4 and 4_β:

Compounds 5 and 5_β:

Compound S12:

Compound S13:

Compounds 6 and 68:

Compounds 7 and 7_β:

Compounds 8 and 86:

Compound 6H:

Compound 11_β:

Compound 12a:

Compounds 14a and 14_β:

Compounds 18a and 18_β:

Compounds 19a and 19_β:

