Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Gold-catalyzed chemo- and diastereo-selective C(sp²)-H functionalization of enaminones for the synthesis of Pyrrolo[3,4-

c]-quinolin-1-one derivatives

Yulei Zhao, Qizhao Duan, Yuanyuan Zhou, Qiyi Yao and Yanzhong Li*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China. Fax: (+86) 021-54340096, E-mail: yzli@chem.ecnu.edu.cn

Contents:	Page
General methods	S1
Optimization of one-pot reaction conditions	S2
Synthesis and characterization of 3	S3-S6
Synthesis and characterization of 4	S7-S16
References	S17
NMR spectra of all new compounds	S18-S47
X-ray crystal structure of 3a	S48-S66
X-ray crystal structure of 4a	S67-S87

General Methods. All reactions were carried out under air except noted. Anhydrous CH_2CICH_2CI were prepared by distillation from CaH_2 . Toluene was distilled from sodium and benzophenone. Unless noted, all commercial reagents were used without further purification. Ph_3PAuCl^1 and $PPh_3AuNTf_2^2$ were prepared according to the published methods. (Acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold(I) hexafluoroantimonate was purchased from Aldrich Chemical Company. AgNTf_2 was purchased from Sinocompound Technology Company. 3-Diazooxindoles³ were synthesized according to literature procedures. Enaminones⁴ were prepared according to the published methods.

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel or filtration. Chemical yields refer to pure isolated substances. ¹H and ¹³C NMR spectra were obtained using a Bruker DPX-400 or 500 spectrometer. Chemical shifts are reported in ppm from CDCl₃, CD₂Cl₂ or (CD₃)₂SO with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High-resolution mass spectra was obtained by using Waters Micromass GCT, Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS, IonSpec 4.7 Tesla FTMS or Agilent Technologies 6224 TOF LC/MS mass spectrometer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers with molybdenum cathodes.

UN ON	vie			
				OMe
HN +		A	catalyst 80 °C, t (h)	
1a	2a			4a
Entry	Catalyst	Additive	Time [h]	Yield [%] ^[b]
1	TsOH	-	4.0	83
2	CF ₃ CO ₂ H	-	7.5	79
3	FeCl ₃	-	4.5	-
4	TsOH	4Å MS	7.0	trace
5	TsOH	-	13.0	62 ^[c]
6	TsOH	-	4.0	78 ^[d]
7	TsOH	-	4.0	82 ^[e]

Optimization of one-pot reaction conditions.^[a]

~ • •

[a] Unless otherwise noted, reactions were carried out with **1** (0.25 mmol), **2** (0.25 mmol), and **A** (4 mol%), in DCE (2.5 mL) for 20 h. After the first step, catalyst (20 mol%) was added. [b] Isolated yield. [c] 10 mol% of TsOH was used. [d] 2.0 mL of DCE was used. [e] The reaction was carried out under N2 atmosphere.

After complete investigation of the two separate reactions, to build a one-pot reaction became feasible. With the best separate reaction conditions in hand, the one-pot reaction of **1a** with **2a** was carried out with 4 mol% of catalyst **A** under ambient temperature. After 20 hours, 20 mol% of TsOH was added for another 4.0 h at 80 °C, and the desired polycyclic compound **4a** could be isolated with the best yield of 83% (entry 1). When the TsOH was replaced with CF₃CO₂H, **4a** could only be obtained with 79% yield (entry 2). No target product was obtained with FeCl₃ as the catalyst (entry 3). When the 4 Å molecular sieve and TsOH were added to the reaction together, only trace amount of **4a** was obtained (entry 4). No better results could be achieved by reduce the usage of catalyst or solvent (entries 5-6). And no significant difference could be found, when the reaction was carried out under nitrogen atmosphere. (entry 7).

A typical procedure for the synthesis of 3.

Under an atmosphere of air, to a vial were added enaminone 1 (0.25 mmol), diazooxindole 2 (0.25 mmol) and JohnPhos(MeCN)AuSbF₆ (A) (4 mol%), followed by anhydrous CH₂ClCH₂Cl (2.5 mL). The resulting mixture was stirred at ambient temperature till diazooxindole 2a disappeared by TLC analysis. Then, 5 mL petroleum ether was added to the mixture, and kept stirring for 15 min. The mixture was filtered, and the filter cake was washed with petroleum ether (5 mL). The pure filter cake 3a was collected and dried. (If the filtrate still containing a small amount of 3a in individual substrates judging by TLC, the small amount of product could be recovered by column chromatographic purification using CH₂Cl₂/acetone (from 10/1 to 5/1, v/v) as the eluent.)

(3a): Yellow solid, 96% yield (112 mg, t = 20 h),
mp 167-168 °C; ¹H NMR (500 MHz, DMSO): δ
10.78 (s, 1H) , 9.73 (d, J = 13.5 Hz, 1H), 7.67 (d,
J = 13. 5Hz, 1H), 7.49-7.44 (m, 5H), 7.02-6.84

(m, 6H), 4.93 (s, 1H) 3.70 (s, 3H); ¹³C NMR (125 MHz, DMSO): δ 192.30, 176.83, 155.37, 148.19, 146.22, 139.80, 134.49, 132.32, 130.20, 128.99, 128.31, 128.26, 126.23, 120.48, 117.49, 115.03, 108.00, 107.88, 55.29, 43.62; HRMS (ESI) calcd for C₂₄H₁₉Cl₂N₂O₃ [M+H]⁺: 453.0767, found 453.0769.

(3b): Yellowish solid, 94% yield (113 mg, t = 12
h), mp 148-149 °C; ¹H NMR (400 MHz, DMSO):
δ 10.79 (s, 1H) , 9.77 (d, J = 13.6 Hz, 1H), 7.73
(d, J = 13.6 Hz, 1H), 7.54-7.44 (m, 5H), 7.14 (d, J

= 8.4 Hz, 2H), 7.03 (d, J = 2.0 Hz, 1H), 6.93 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 2.0 Hz, 1H), 4.97 (s, 1H), 2.52-2.48 (m, 2H), 1.52-1.47 (m, 2H), 1.30-1.23 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO): δ 193.19, 177.38, 148.02, 146.70, 140.12, 139.29, 137.40, 132.76, 130.73, 129.93, 129.39, 128.74, 128.68, 126.55, 120.85, 116.25, 108.73, 108.32, 43.63, 33.98, 33.10, 21.52, 13.62; HRMS (ESI) calcd for C₂₇H₂₄Cl₂N₂NaO₂ [M+Na]⁺: 501.1107, found 501.1095.

(3c): Yellow solid, 86% yield (91 mg, t = 20 h), mp
162-163 °C; ¹H NMR (400 MHz, DMSO): δ 10.80 (s,
1H), 9.81 (d, J = 13.2 Hz, 1H), 7.77 (d, J = 13.6 Hz,
1H), 7.56-7.42 (m, 5H), 7.36-7.28 (m, 2H), 7.06-6.97

(m, 4H), 6.85 (s, 1H), 4.99 (s, 1H); ¹³C NMR (100 MHz, DMSO): δ 193.38, 177.33, 147.66, 146.70, 141.50, 140.02, 132.81, 130.84, 130.20, 129.41, 128.79, 128.73, 126.49, 123.19, 120.88, 116.19, 109.26, 108.36, 43.66; HRMS (ESI) calcd for $C_{23}H_{16}Cl_2N_2NaO_2$ [M+Na]⁺: 445.0481, found 445.0494.

(**3d**): White solid, 89% yield (95 mg, t = 20 h), mp 147-149 °C; ¹H NMR (400 MHz, DMSO): δ 10.63 (s, 1H) , 7.70-7.60 (m, 1H), 7.46-7.34 (m, 3H), 7.34-7.21 (m, 3H),

S4

6.98 (s, 1H), 6.78 (s, 1H), 4.64 (s, 1H), 3.10 (s, br, 1H), 1.85-1.75 (m, 2H), 1.69 (s, br, 2H), 1.60-1.50 (m, 1H), 1.40-1.35 (m, 4H), 1.10-1.00 (m, 1H); ¹³C NMR (100 MHz, DMSO): δ 191.62, 178.02, 155.32, 146.75, 141.06, 132.35, 129.80, 129.25, 128.45, 127.27, 120.65, 107.98, 103.78, 57.29, 43.38, 34.12, 33.30, 24.76, 24.33; HRMS (ESI) calcd for C₂₃H₂₂Cl₂N₂NaO₂ [M+Na]⁺: 451.0951, found 451.0970.

J = 1.6 Hz, 1H), 6.78 (d, J = 1.6 Hz, 1H), 4.55 (s, 1H), 3.25-3.15 (m, 2H), 1.50-1.41 (m, 2H), 1.40-1.25 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO): δ 191.53, 177.86, 157.07, 146.77, 141.00, 132.37, 129.85, 129.16, 128.45, 128.41, 127.19, 120.62, 108.01, 103.87, 47.76, 43.34, 32.77, 18.74, 13.39; HRMS (ESI) calcd for C₂₁H₂₀Cl₂N₂NaO₂ [M+Na]⁺: 425.0794, found 425.0804.

(3f): White solid, 89% yield (101 mg, t = 20 h), mp 145-146 °C; ¹H NMR (400 MHz, DMSO): δ 10.60 (s, 1H) , 7.90-7.77 (m, 1H), 7.41-7.23 (m, 8H), 7.07-6.93 (m, 4H), 6.77 (d, J = 1.6 Hz, 1H), 4.50

(s, 1H), 3.60-3.37 (m, 2H), 2.90-2.68 (m, 2H); ¹³C NMR (100 MHz, DMSO): δ 191.33, 177.80, 157.03, 146.73, 140.64, 139.03, 132.32, 129.83, 129.55, 129.25, 128.74, 128.58, 128.29, 127.19, 126.65, 120.52, 107.93, 103.71, 49.66, 43.37, 36.96; HRMS (ESI) calcd for C₂₅H₂₀Cl₂N₂NaO₂ [M+Na]⁺: 473.0794, found 473.0809.

8.4 Hz, 1H), 4.40 (s, 1H), 3.60-3.35 (m, 2H), 2.85-2.70 (m, 2H); ¹³C NMR (100 MHz, DMSO): δ 191.28, 178.59, 158.21 (d, $J_{C-F} = 253.2$ Hz), 156.89, 140.66, 139.91, 139.26, 133.17 (d, $J_{C-F} = 7.9$ Hz), 129.81, 129.69, 128.82, 128.45, 128.28, 126.75, 113.12 (d, $J_{C-F} = 22.6$ Hz), 110.38 (d, $J_{C-F} = 24.1$ Hz), 109.34 (d, $J_{C-F} = 8.1$ Hz), 105.63, 49.80, 44.04, 36.77; HRMS (ESI) calcd for C₂₅H₂₁FN₂NaO₂ [M+Na]⁺: 423.1479, found 423.1489.

Hz 1H), 7.16 (s, 1H), 7.05-6.90 (m, 5H), 4.85 (s, 1H), 3.71 (s, 3H), 3.20 (s, 3H); ¹³C NMR (100 MHz, DMSO): δ 192.75, 176.32, 155.86, 148.69, 144.11, 140.13, 135.00, 132.01, 130.65, 128.74, 128.58, 127.37, 125.97, 122.95, 118.00, 115.29, 109.73, 109.45, 55.35, 43.45, 26.29; HRMS (ESI) calcd for C₂₅H₂₁ClN₂NaO₃ [M+Na]⁺: 455.1133, found 455.1128.

A typical procedure for the synthesis of 4.

Under an atmosphere of air, to a vial were added enaminone **1** (0.25 mmol), diazooxindole **2** (0.25 mmol) and JohnPhos(MeCN)AuSbF₆ (**A**) (4 mol%), followed by anhydrous CH₂ClCH₂Cl (2.5 mL). The resulting mixture was stirred at ambient temperature till diazooxindole **2** disappeared by TLC analysis. Then, 20 mol% of TsOH was added, and the reaction temperature was raised to 80 °C till most of the intermediate **3** disappeared by TLC analysis. Subsequently, the reaction was cooled to room temperature, and the mixture was subjected to column chromatography for purification directly, using petroleum ether/CH₂Cl₂ (from 2/1 to 0/1, v/v) as the eluent.

MHz, CD₂Cl₂): δ164.85, 158.26, 156.66, 151.16, 138.42, 138.21, 136.66, 135.66, 132.86, 132.07, 131.56, 131.20, 129.99, 129.45, 123.15, 121.74, 115.05, 56.07, 51.29; HRMS (ESI) calcd for C₂₄H₁₇Cl₂N₂O₂ [M+H]⁺: 435.0662, found 435.0663.

146.22, 138.71, 136.36 (d, $J_{C-F} = 6.0$ Hz), 133.58, 132.72 (d, $J_{C-F} = 9.4$ Hz), 132.28, 130.32, 129.68, 128.77, 123.91 (d, $J_{C-F} = 11.7$ Hz), 122.21, 121.01 (d, $J_{C-F} = 26.1$ Hz), 114.88, 107.84 (d, $J_{C-F} = 23.9$ Hz), 55.70, 51.28; HRMS (ESI) calcd for C₂₄H₁₈FN₂O₂ [M+H]⁺: 385.1347, found 385.1345.

(4c): White solid, 65% yield (63 mg, t₁ = 14 h, t₂ = 0.6 h), mp 156-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.77 (dd, *J* = 9.6 Hz, 3.2 Hz, 1H) , 8.24 (dd, *J* = 9.6 Hz, 5.6 Hz, 1H), 7.85-7.74 (m, 2H), 7.59-7.47 (m, 4H), 7.34-7.21 (m, 5H), 4.46 (s, 2H), 3.95 (t,

J = 7.2 Hz, 2H), 3.06 (t, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz,

CDCl₃): δ 168.18, 162.06 (d, $J_{C-F} = 250.3$ Hz), 153.23 (d, $J_{C-F} = 2.9$ Hz), 145.87, 138.84, 138.58, 136.06 (d, $J_{C-F} = 6.1$ Hz), 134.43, 132.39 (d, $J_{C-F} = 9.3$ Hz), 129.98, 129.34, 129.14, 129.09, 128.50, 127.09, 123.77 (d, $J_{C-F} = 11.8$ Hz), 120.72 (d, $J_{C-F} = 26.0$ Hz), 107.66 (d, $J_{C-F} = 27.3$ Hz), 50.65, 44.25, 34.85; HRMS (ESI) calcd for $C_{25}H_{19}FN_2NaO$ [M+Na]⁺: 405.1374, found 405.1385.

(4d): Yellow solid, 63% yield (64 mg, $t_1 = 24$ h, $t_2 = 0.8$ h), mp 209-211°C; ¹H NMR (400 MHz, CD₃Cl): δ 9.15 (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 7.2 Hz, 2H), 7.72 (d, J = 8.8 Hz, 3H), 7.60-7.53 (m, 3H), 6.92 (d, J = 8.8 Hz, 2H), 5.03 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CD₃Cl): δ 166.91, 157.82, 154.29, 147.43, 138.62, 136.01, 135.01, 133.67, 132.23, 131.85, 131.71, 130.48, 129.73, 128.81, 123.66, 123.11, 122.28, 114.90, 55.73, 51.33; HRMS (ESI) calcd for C₂₄H₁₈ClN₂O₂ [M+H]⁺: 401.1051, found 401.1049.

7.29 (m, 5H), 4.90 (s, 2H), 4.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.33, 154.45, 147.38, 138.71, 137.19, 135.72, 134.94, 134.79, 131.84, 131.68, 130.37, 129.62, 129.61, 128.81, 128.73, 128.59, 123.82, 123.22, 49.87, 46.71; HRMS (ESI) calcd for C₂₄H₁₇ClN₂NaO [M+Na]⁺: 407.0922, found 407.0914.

(4f): Yellow solid, 69% yield (64 mg, t₁ = 48 h, t₂ = 2 h), mp 197-198°C; ¹H NMR (400 MHz, CD₃Cl): δ 9.15 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.81-7.64 (m, 4H), 7.58-7.51 (m, 3H), 6.90 (d, J = 8.8 Hz, 2H), 4.99 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CD₃Cl):

δ167.40, 157.67, 154.09, 149.05, 138.98, 136.62, 132.88, 132.41, 130.72, 130.24,

130.22, 129.63, 128.84, 128.71, 123.99, 123.19, 122.27, 114.82, 55.68, 51.26; HRMS (ESI) calcd for C₂₄H₁₉N₂O₂ [M+H]⁺: 367.1441, found 367.1442.

NMR (100 MHz, CD₃Cl): δ167.66, 157.72, 153.12, 147.77, 139.25, 139.15, 135.91, 133.06, 132.86, 132.58, 130.06, 129.95, 129.62, 128.81, 123.26, 122.86, 122.31, 114.89, 55.74, 51.29, 22.10; HRMS (ESI) calcd for C₂₅H₂₁N₂O₂ [M+H]⁺: 381.1598, found 381.1599.

(4h): Yellow solid, 62% yield (64 mg, $t_1 = 12$ h, $t_2 = 1$ h), mp 226-228 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.93 (s, 1H) , 8.09 (d, J = 8.4 Hz, 1H), 7.96-7.90 (m, 2H), 7.80-7.73 (m, 2H), 7.66 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.60-7.52 (m, 2H), 7.03-6.95 (m, 2H), 5.02 (s, 2H),

3.83 (s, 3H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 167.49, 158.01, 151.75, 147.85, 139.73, 137.85, 136.28, 136.20, 133.25, 132.96, 132.81, 130.40, 130.07, 129.80, 123.46, 122.85, 122.54, 114.97, 55.87, 51.53, 22.05; HRMS (ESI) calcd for C₂₅H₂₀ClN₂O₂ [M+H]⁺: 415.1208, found 415.1214.

2H), 4.98 (s, 2H), 3.98 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.57, 159.77, 157.47, 150.89, 145.06, 138.89, 134.80, 132.72, 132.25, 131.43, 129.62, 129.34, 128.47, 124.33, 123.62, 122.05, 114.61, 100.96, 55.77, 55.49, 51.00; HRMS (ESI) calcd for C₂₅H₂₁N₂O₃ [M+H]⁺: 397.1547, found 397.1551.

Br (4j): White solid, 61% yield (60 mg, $t_1 = 20$ h, $t_2 = 1$ h), mp 142-143 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.25-8.18 (m, 1H), 8.04-7.98 (m, 1H), 7.90-7.84 (m, 2H), 7.62-7.52 (m, 4H), 4.59 (s, 2H), 3.67 (t, J = 7.2 Hz, 2H), 1.75-1.65 (m, 2H), 1.45-1.35 (m, 2H), 0.96 (t, J = 7.6Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.26, 154.94, 150.50, 138.02, 137.73, 136.63, 135.50, 130.34, 130.30, 130.07, 129.42, 128.72, 124.40, 117.00, 49.56, 42.88, 30.32, 20.07, 13.62; HRMS (ESI) calcd for C₂₁H₁₉BrN₂NaO [M+Na]⁺: 417.0573, found 417.0566.

(4k): Yellow solid, 70% yield (78 mg, $t_1 = 21$ h, $t_2 = 6.0$ h), mp 238-240°C; ¹H NMR (400 MHz, CD₃Cl): δ 8.22 (d, J =8.0 Hz, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 6.8 Hz, 2H),

S11

7.69 (d, J = 8.8 Hz, 2H), 7.62-7.54 (m, 4H), 6.92 (d, J = 9.2 Hz, 2H), 4.99 (s, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CD₃Cl): $\delta 165.02$, 157.83, 155.10, 150.79, 138.01, 137.80, 135.88, 132.42, 130.64, 130.61, 130.47, 129.72, 128.92, 124.37, 122.96, 117.18, 114.83, 55.73, 50.86; HRMS (ESI) calcd for C₂₄H₁₈BrN₂O₂ [M+H]⁺: 445.0546, found 445.0553.

(4m): Yellow solid, 75% yield (86 mg, t₁ = 7 h, t₂ = 6 h),
mp 172-174°C; ¹H NMR (400 MHz, CD₃Cl): δ8.17 (d, J =
1.6 Hz, 1H), 7.89-7.86 (m, 2H), 7.74(d, J = 2.0 Hz, 1H),
7.66 (d, J = 8.4 Hz, 2H),7.60-7.57 (m, 3H),7.20 (d, J = 8.4 Hz, 2H), 5.01 (s, 2H), 2.59 (t, J = 7.6 Hz, 2H), 1.60-1.54 (m,

2H), 1.38-1.32 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₃Cl): δ 164.70, 156.32, 150.81, 140.98, 138.18, 137.78, 136.85, 136.01, 135.60, 131.96, 131.42, 130.88, 129.75, 129.68, 129.06, 128.96, 121.44, 121.16, 50.65, 35.21, 33.71, 22.39, 14.00; HRMS (ESI) calcd for C₂₇H₂₃Cl₂N₂O [M+H]⁺: 461.1182, found 461.1184.

¹³C NMR (100 MHz, CDCl₃): δ 164.78, 156.34, 150.79, 139.25, 138.03, 137.72,

135.97, 135.66, 132.01, 131.36, 130.91, 129.78, 129.08, 128.94, 125.95, 121.36,
120.94, 50.45; HRMS (EI) calcd for C₂₃H₁₄Cl₂N₂O [M⁺]: 404.0483, found 404.0481.

147.96, 139.10, 138.99, 136.06, 135.46, 134.26, 133.24, 132.37, 132.23, 130.96, 130.06, 129.31, 123.95, 123.34, 122.05, 118.82, 51.29; HRMS (ESI) calcd for C₂₃H₁₅BrClN₂O [M+H]⁺: 449.0051, found 449.0051.

(4p): Yellowish solid, 92% yield (94 mg, t₁ = 36 h, t₂ = 5 h), mp 180-182°C; ¹H NMR (400 MHz, CD₃Cl): δ 8.17 (d, J = 1.6 Hz, 1H), 7.86-7.83 (m, 2H), 7.74 (d, J = 1.6 Hz, 1H), 7.60-7.57 (m, 3H), 4.55 (s, 2H), 4.30 (s, br, 1H), 1.92-1.87

(m, 4H), 1.75-1.71 (m, 1H), 1.54-1.38 (m, 4H), 1.26-1.16 (m, 1H); ¹³C NMR (100 MHz, CD₃Cl): δ 165.24, 156.04, 150.32, 138.10, 137.70, 136.84, 134.96, 131.38, 131.12, 130.43 , 129.37, 128.68, 121.29, 51.43, 45.76, 31.08, 25.44, 25.26; HRMS (ESI) calcd for C₂₃H₂₁Cl₂N₂O [M+H]⁺: 411.1025, found 411.1026.

1H), 7.59-7.56 (m, 3H), 4.60 (s, 2H), 3.66 (t, J = 7.6 Hz, 2H), 1.72-1.64 (m, 2H), 1.43-1.36 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₃Cl): δ 166.06, 156.28, 150.70, 138.31, 137.96, 136.90, 135.37, 131.74, 131.46, 130.76, 129.67, 128.95, 121.63, 49.87, 43.19, 30.51, 20.29, 13.84; HRMS (ESI) calcd for C₂₁H₁₉Cl₂N₂O [M+H]⁺: 385.0869, found 385.0869.

(4r): White solid, 68% yield (71 mg, $t_1 = 20$ h, $t_2 = 3.5$ h), mp 179-181°C; ¹H NMR (400 MHz, CD₃Cl): δ8.15 (d, J= 1.2 Hz, 1H), 7.77-7.74 (m, 3H), 7.53-7.51 (m, 3H), 7.34-7.28 (m, 5H), 4.85 (s, 2H), 4.50 (s, 2H); ¹³C NMR

(100 MHz, CD₃Cl): δ 165.96, 156.09, 150.43, 137.57, 136.91, 136.72, 135.22, 131.57, 131.17, 130.51, 129.40, 129.30, 128.77, 128.67, 128.59, 128.28, 121.35, 49.07, 46.96; HRMS (ESI) calcd for C₂₄H₁₇Cl₂N₂O [M+H]⁺: 419.0712, found 419.0715.

(4s): White solid, 71% yield (78 mg, $t_1 = 20$ h, $t_2 = 1$ h), mp 197-198°C; ¹H NMR (400 MHz, CD₃Cl): δ 8.15 (d, J = 1.6 Hz, 1H), 7.72 (s, 3H), 7.54-7.53 (m, 3H), 7.32-7.24 (m, 5H), 4.38 (s, 2H), 3.88 (t, J = 7.2 Hz, 2H), 3.02 (t, J= 7.2 Hz, 2H); ¹³C NMR (100 MHz, CD₃Cl): δ 165.84, 156.03, 150.41, 138.91,

137.78, 137.57, 136.78, 135.14, 131.50, 131.16, 130.48, 129.36, 129.12, 129.09,

128.75, 128.64, 127.01, 121.35, 50.19, 45.01, 34.50; HRMS (ESI) calcd for $C_{25}H_{19}Cl_2N_2O [M+H]^+$: 433.0869, found 433.0870.

MHz, CD_2Cl_2): $\delta165.06$, 162.62, 158.41, 156.21, 151.22, 138.44, 136.56, 135.66, 132.93, 131.75, 131.63, 131.04, 130.54, 129.22, 123.47, 121.53, 115.33, 115.17, 56.18, 56.14, 51.68; HRMS (ESI) calcd for $C_{25}H_{19}Cl_2N_2O_3$ [M+H]⁺: 465.0767, found 465.0781.

7.6 Hz, 2H), 1.57-1.48 (m, 2H), 1.37-1.28 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₃Cl): δ 164.25, 161.70, 154.92, 150.18, 140.27, 137.40, 136.48, 135.33, 134.94, 131.08, 130.76, 130.17, 129.60, 129.19, 128.46, 120.52, 120.23, 114.61, 55.39, 50.29, 34.84, 33.34, 22.15, 13.74; HRMS (ESI) calcd for C₂₈H₂₅Cl₂N₂O₂ [M+H]⁺: 491.1288, found 491.1288.

NMR (100 MHz, CD₃Cl): δ 166.53, 157.76, 152.67, 147.20, 136.82, 136.61, 136.00, 135.09, 133.13, 131.92, 131.83, 131.47, 129.94, 129.74, 123.51, 122.93, 122.17, 114.77, 55.54, 51.11; HRMS (ESI) calcd for C₂₄H₁₇Cl₂N₂O₂ [M+H]+: 435.0662, found 435.0672.

4w): White solid, 49% yield (51 mg, t₁ = 24 h, t₂ = 6 h), mp 106-108 °C; ¹H NMR (400 MHz, CDCl₃): δ
8.08 (d, J = 2.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 2H),
7.70 (d, J = 2.0 Hz, 1H), 7.47-7.36 (m, 2H), 7.25-

7.15 (m, 1H), 4.90 (s, 2H), 2.99 (t, J = 7.6 Hz, 2H), 1.96-1.80 (m, 2H), 1.51-1.41 (m, 2H), 1.40-1.30 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.94, 159.58, 150.66, 139.25, 136.51, 136.26, 134.96, 131.16, 131.02, 129.60, 128.44, 125.67, 121.05, 120.73, 48.88, 34.92, 31.60, 29.23, 27.88, 22.45, 13.93; HRMS (ESI) calcd for C₂₃H₂₂Cl₂N₂NaO [M+Na]⁺: 435.1001, found 435.0999.

References:

- [1] P. Braunstein, H. Lehner, D. Matt, Inorg. Synth. 1990, 27, 218.
- [2] N. Mé zailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133.
- [3] R. Augusti, C. Kascheres, J. Org. Chem. 1993, 58, 7079.
- [4] J. Yang, C. Wang, X. Xie, H. Li, Y. Li, E. J. Org. Chem. 2010, 4189.

zyl-1-13-h

zyl-1-13-c

Zyl-3-90-h

Zyl-3-64-h

Zyl-3-59-h

Zyl-3-59-c

Zyl-3-87-h

Zyl-3-96-h

zyl-1-35-h

zyl-1-118-h

zyl-1-118-c

Zyl-3-91-h

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl(ppm)

zyl-1-121-h

Zyl-1-146-h

X-ray crystal structure of **3a**

Table 1. Crystal data and structure refinement for 3a	l.				
Identification code	entification code cd15125				
Empirical formula	C51 H42 Cl4 N4 O7				
Formula weight	964.68				
Temperature	293(2) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P -1				
Unit cell dimensions	a = 11.980(3) Å	$\alpha = 83.296(5)^{\circ}$.			
	b = 13.777(3) Å	$\beta = 80.970(5)^{\circ}$.			
	c = 14.492(3) Å	$\gamma = 87.489(5)^{\circ}$.			
Volume	2345.2(9) Å ³				
Ζ	2				
Density (calculated)	1.366 Mg/m ³				
Absorption coefficient	0.310 mm ⁻¹				
F(000)	1000				
Crystal size	0.180 x 0.150 x 0.080 mm ³				
Theta range for data collection	1.947 to 25.049°.				
Index ranges	-14<=h<=12, -14<=k<=16, -17<=l<=17				
Reflections collected	13088				
Independent reflections	8312 [R(int) = 0.0533]				
Completeness to theta = 25.242°	97.7 %				
Absorption correction	Semi-empirical from equivalen	its			
Max. and min. transmission	0.7456 and 0.6048				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	8312 / 0 / 615				
Goodness-of-fit on F ²	1.005				
Final R indices [I>2sigma(I)]	R1 = 0.0787, $wR2 = 0.1858$				
R indices (all data)	R1 = 0.1326, $wR2 = 0.2211$				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.468 and -0.310 e.Å ⁻³				

	Х	у	Z	U(eq)
Cl(1)	76(1)	4168(1)	3895(1)	74(1)
Cl(2)	-2094(1)	1761(1)	2178(1)	77(1)
Cl(3)	8573(1)	374(1)	10110(1)	73(1)
Cl(4)	4287(1)	1783(1)	10670(1)	89(1)
N(1)	-865(3)	854(3)	5440(3)	45(1)
N(2)	1492(3)	3457(3)	6553(3)	40(1)
N(3)	7452(3)	3328(3)	8164(3)	53(1)
N(4)	11373(3)	1515(3)	8068(3)	41(1)
O(1)	19(3)	892(2)	6722(2)	57(1)
O(2)	1632(3)	1143(2)	4415(2)	57(1)
O(3)	4213(3)	4926(3)	8798(3)	75(1)
O(4)	9173(3)	3656(3)	7295(3)	66(1)
O(5)	8895(3)	3639(2)	9782(3)	63(1)
O(6)	15875(3)	566(2)	6834(3)	64(1)
O(7)	6616(5)	4052(5)	6392(4)	146(2)
C(1)	-520(4)	3041(3)	3892(4)	50(1)
C(2)	-1035(4)	2875(4)	3136(4)	55(1)
C(3)	-1504(4)	1977(4)	3158(3)	53(1)
C(4)	-1510(4)	1254(3)	3886(3)	48(1)
C(5)	-987(4)	1451(3)	4620(3)	41(1)
C(6)	-483(3)	2339(3)	4632(3)	41(1)
C(7)	59(4)	2295(3)	5504(3)	40(1)
C(8)	-237(4)	1272(3)	5979(3)	44(1)
C(9)	1328(3)	2462(3)	5302(3)	38(1)
C(10)	1881(4)	2995(3)	5809(3)	37(1)
C(11)	1982(4)	1916(3)	4610(3)	43(1)
C(12)	3102(4)	2270(3)	4112(3)	43(1)
C(13)	3955(4)	1591(4)	3857(4)	62(1)
C(14)	4969(5)	1885(5)	3338(5)	89(2)
C(15)	5141(5)	2855(5)	3060(5)	85(2)
C(16)	4308(5)	3536(4)	3299(4)	72(2)
C(17)	3292(4)	3245(3)	3823(3)	51(1)
C(18)	2186(4)	3852(3)	7117(3)	38(1)
C(19)	1703(4)	4464(3)	7759(3)	45(1)
C(20)	2338(4)	4840(3)	8341(3)	53(1)
C(21)	3484(4)	4604(3)	8267(3)	51(1)
C(22)	3966(4)	3992(3)	7628(3)	51(1)
C(23)	3315(4)	3605(3)	7063(3)	45(1)
C(24)	3790(6)	5575(5)	9448(5)	116(3)

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **3a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(25)	7552(4)	1243(3)	9837(3)	46(1)
C(26)	6464(4)	1173(4)	10318(4)	56(1)
C(27)	5659(4)	1851(4)	10066(3)	53(1)
C(28)	5886(4)	2602(3)	9354(3)	49(1)
C(29)	6988(4)	2650(3)	8902(3)	44(1)
C(30)	7836(4)	1995(3)	9139(3)	40(1)
C(31)	8929(3)	2257(3)	8523(3)	40(1)
C(32)	8578(4)	3168(3)	7918(3)	48(1)
C(33)	9915(4)	2404(3)	9024(3)	37(1)
C(34)	10986(4)	2055(3)	8766(3)	40(1)
C(35)	9707(4)	3053(3)	9754(3)	43(1)
C(36)	10471(4)	3004(3)	10478(3)	48(1)
C(37)	10819(5)	3867(4)	10742(4)	66(2)
C(38)	11506(6)	3815(6)	11439(5)	97(2)
C(39)	11787(6)	2933(7)	11880(5)	96(2)
C(40)	11429(5)	2093(6)	11641(4)	84(2)
C(41)	10771(4)	2120(4)	10939(4)	64(1)
C(42)	12523(4)	1258(3)	7810(3)	38(1)
C(43)	12861(4)	960(3)	6931(3)	46(1)
C(44)	13979(4)	735(3)	6631(3)	52(1)
C(45)	14791(4)	796(3)	7195(3)	48(1)
C(46)	14459(4)	1080(3)	8078(3)	50(1)
C(47)	13335(4)	1308(3)	8377(3)	50(1)
C(48)	16701(5)	508(5)	7429(5)	86(2)
C(49)	6280(8)	2778(6)	5520(8)	187(6)
C(50)	6572(5)	3765(5)	5623(5)	87(2)
C(51)	6751(9)	4438(5)	4803(6)	135(3)

Cl(1)-C(1)	1.738(4)
Cl(2)-C(3)	1.742(5)
Cl(3)-C(25)	1.732(5)
Cl(4)-C(27)	1.738(5)
N(1)-C(8)	1.355(5)
N(1)-C(5)	1.388(6)
N(1)-H(1)	0.87(4)
N(2)-C(10)	1.327(5)
N(2)-C(18)	1.418(5)
N(2)-H(2A)	0.83(4)
N(3)-C(32)	1.355(6)
N(3)-C(29)	1.397(6)
N(3)-H(3)	0.77(5)
N(4)-C(34)	1.338(5)
N(4)-C(42)	1.410(5)
N(4)-H(4A)	0.84(4)
O(1)-C(8)	1.219(5)
O(2)-C(11)	1.239(5)
O(3)-C(21)	1.369(5)
O(3)-C(24)	1.397(7)
O(4)-C(32)	1.215(5)
O(5)-C(35)	1.235(5)
O(6)-C(45)	1.360(5)
O(6)-C(48)	1.406(7)
O(7)-C(50)	1.235(8)
C(1)-C(6)	1.363(6)
C(1)-C(2)	1.385(6)
C(2)-C(3)	1.377(7)
C(2)-H(2)	0.9300
C(3)-C(4)	1.363(7)
C(4)-C(5)	1.373(6)
C(4)-H(4)	0.9300
C(5)-C(6)	1.391(6)
C(6)-C(7)	1.502(6)
C(7)-C(8)	1.524(6)
C(7)-C(9)	1.525(6)
C(7)-H(7)	0.9800
C(9)-C(10)	1.356(5)
C(9)-C(11)	1.437(6)
C(10)-H(10)	0.9300
C(11)-C(12)	1.493(6)
C(12)-C(17)	1.378(6)

Table 3. Bond lengths [Å] and angles [°] for **3a**.

C(12)-C(13)	1.391(7)
C(13)-C(14)	1.375(8)
C(13)-H(13)	0.9300
C(14)-C(15)	1.364(8)
C(14)-H(14)	0.9300
C(15)-C(16)	1.372(8)
C(15)-H(15)	0.9300
C(16)-C(17)	1.378(7)
C(16)-H(16)	0.9300
C(17)-H(17)	0.9300
C(18)-C(23)	1.373(6)
C(18)-C(19)	1.373(6)
C(19)-C(20)	1.377(6)
C(19)-H(19)	0.9300
C(20)-C(21)	1.387(7)
C(20)-H(20)	0.9300
C(21)-C(22)	1.369(7)
C(22)-C(23)	1.380(6)
C(22)-H(22)	0.9300
C(23)-H(23)	0.9300
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(25)-C(30)	1.374(6)
C(25)-C(26)	1.380(7)
C(26)-C(27)	1.374(7)
C(26)-H(26)	0.9300
C(27)-C(28)	1.376(7)
C(28)-C(29)	1.379(6)
C(28)-H(28)	0.9300
C(29)-C(30)	1.386(6)
C(30)-C(31)	1.496(6)
C(31)-C(33)	1.513(6)
C(31)-C(32)	1.528(6)
C(31)-H(31)	0.9800
C(33)-C(34)	1.362(6)
C(33)-C(35)	1.449(6)
C(34)-H(34)	0.9300
C(35)-C(36)	1.490(6)
C(36)-C(41)	1.381(7)
C(36)-C(37)	1.391(7)
C(37)-C(38)	1.393(8)
C(37)-H(37)	0.9300
C(38)-C(39)	1.360(10)

C(38)-H(38)	0.9300
C(39)-C(40)	1.351(9)
C(39)-H(39)	0.9300
C(40)-C(41)	1.378(8)
C(40)-H(40)	0.9300
C(41)-H(41)	0.9300
C(42)-C(47)	1.378(6)
C(42)-C(43)	1.379(6)
C(43)-C(44)	1.375(6)
C(43)-H(43)	0.9300
C(44)-C(45)	1.377(7)
C(44)-H(44)	0.9300
C(45)-C(46)	1.375(6)
C(46)-C(47)	1.382(6)
C(46)-H(46)	0.9300
C(47)-H(47)	0.9300
C(48)-H(48A)	0.9600
C(48)-H(48B)	0.9600
C(48)-H(48C)	0.9600
C(49)-C(50)	1.449(10)
C(49)-H(49A)	0.9600
C(49)-H(49B)	0.9600
C(49)-H(49C)	0.9600
C(50)-C(51)	1.414(9)
C(51)-H(51A)	0.9600
C(51)-H(51B)	0.9600
C(51)-H(51C)	0.9600
C(8)-N(1)-C(5)	112.0(4)
C(8)-N(1)-H(1)	122(3)
C(5)-N(1)-H(1)	125(3)
C(10)-N(2)-C(18)	124.3(4)
C(10)-N(2)-H(2A)	117(3)
C(18)-N(2)-H(2A)	119(3)
C(32)-N(3)-C(29)	111.8(4)
C(32)-N(3)-H(3)	116(4)
C(29)-N(3)-H(3)	132(4)
C(34)-N(4)-C(42)	124.1(4)
C(34)-N(4)-H(4A)	124(3)
C(42)-N(4)-H(4A)	111(3)
C(21)-O(3)-C(24)	118.1(4)
C(45)-O(6)-C(48)	118.4(4)
C(6)-C(1)-C(2)	121.0(4)
C(6)-C(1)-Cl(1)	119.8(3)
C(2)-C(1)-Cl(1)	119.1(4)

C(3)-C(2)-C(1)	117.6(5)
C(3)-C(2)-H(2)	121.2
C(1)-C(2)-H(2)	121.2
C(4)-C(3)-C(2)	123.9(4)
C(4)-C(3)-Cl(2)	119.1(4)
C(2)-C(3)-Cl(2)	117.1(4)
C(3)-C(4)-C(5)	116.4(4)
C(3)-C(4)-H(4)	121.8
C(5)-C(4)-H(4)	121.8
C(4)-C(5)-N(1)	128.5(4)
C(4)-C(5)-C(6)	122.5(4)
N(1)-C(5)-C(6)	109.0(4)
C(1)-C(6)-C(5)	118.6(4)
C(1)-C(6)-C(7)	132.5(4)
C(5)-C(6)-C(7)	108.9(4)
C(6)-C(7)-C(8)	101.9(3)
C(6)-C(7)-C(9)	113.5(4)
C(8)-C(7)-C(9)	113.2(4)
C(6)-C(7)-H(7)	109.3
C(8)-C(7)-H(7)	109.3
C(9)-C(7)-H(7)	109.3
O(1)-C(8)-N(1)	125.1(4)
O(1)-C(8)-C(7)	126.8(4)
N(1)-C(8)-C(7)	108.0(4)
C(10)-C(9)-C(11)	118.6(4)
C(10)-C(9)-C(7)	124.0(4)
C(11)-C(9)-C(7)	116.9(3)
N(2)-C(10)-C(9)	130.1(4)
N(2)-C(10)-H(10)	114.9
C(9)-C(10)-H(10)	114.9
O(2)-C(11)-C(9)	120.9(4)
O(2)-C(11)-C(12)	118.7(4)
C(9)-C(11)-C(12)	120.4(4)
C(17)-C(12)-C(13)	118.3(4)
C(17)-C(12)-C(11)	122.2(4)
C(13)-C(12)-C(11)	119.2(4)
C(14)-C(13)-C(12)	120.9(5)
C(14)-C(13)-H(13)	119.5
С(12)-С(13)-Н(13)	119.5
C(15)-C(14)-C(13)	119.8(6)
C(15)-C(14)-H(14)	120.1
C(13)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	120.2(6)
C(14)-C(15)-H(15)	119.9

C(16)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	120.2(5)
C(15)-C(16)-H(16)	119.9
C(17)-C(16)-H(16)	119.9
C(12)-C(17)-C(16)	120.5(5)
C(12)-C(17)-H(17)	119.7
C(16)-C(17)-H(17)	119.7
C(23)-C(18)-C(19)	119.4(4)
C(23)-C(18)-N(2)	121.7(4)
C(19)-C(18)-N(2)	118.9(4)
C(18)-C(19)-C(20)	120.9(4)
C(18)-C(19)-H(19)	119.5
C(20)-C(19)-H(19)	119.5
C(19)-C(20)-C(21)	119.3(4)
C(19)-C(20)-H(20)	120.3
C(21)-C(20)-H(20)	120.3
C(22)-C(21)-O(3)	114.7(4)
C(22)-C(21)-C(20)	119.8(4)
O(3)-C(21)-C(20)	125.5(4)
C(21)-C(22)-C(23)	120.2(4)
C(21)-C(22)-H(22)	119.9
C(23)-C(22)-H(22)	119.9
C(18)-C(23)-C(22)	120.3(4)
C(18)-C(23)-H(23)	119.8
C(22)-C(23)-H(23)	119.8
O(3)-C(24)-H(24A)	109.5
O(3)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
O(3)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(30)-C(25)-C(26)	120.8(4)
C(30)-C(25)-Cl(3)	119.4(4)
C(26)-C(25)-Cl(3)	119.8(4)
C(27)-C(26)-C(25)	118.7(5)
C(27)-C(26)-H(26)	120.6
C(25)-C(26)-H(26)	120.6
C(26)-C(27)-C(28)	123.1(5)
C(26)-C(27)-Cl(4)	119.5(4)
C(28)-C(27)-Cl(4)	117.4(4)
C(27)-C(28)-C(29)	116.1(4)
C(27)-C(28)-H(28)	122.0
C(29)-C(28)-H(28)	122.0
C(28)-C(29)-C(30)	123.2(4)

C(28)-C(29)-N(3)	128.2(4)
C(30)-C(29)-N(3)	108.6(4)
C(25)-C(30)-C(29)	118.1(4)
C(25)-C(30)-C(31)	132.2(4)
C(29)-C(30)-C(31)	109.7(4)
C(30)-C(31)-C(33)	116.0(4)
C(30)-C(31)-C(32)	101.7(4)
C(33)-C(31)-C(32)	114.1(3)
C(30)-C(31)-H(31)	108.2
C(33)-C(31)-H(31)	108.2
C(32)-C(31)-H(31)	108.2
O(4)-C(32)-N(3)	124.5(5)
O(4)-C(32)-C(31)	127.2(4)
N(3)-C(32)-C(31)	108.2(4)
C(34)-C(33)-C(35)	119.1(4)
C(34)-C(33)-C(31)	124.2(4)
C(35)-C(33)-C(31)	116.3(4)
N(4)-C(34)-C(33)	128.7(4)
N(4)-C(34)-H(34)	115.7
C(33)-C(34)-H(34)	115.7
O(5)-C(35)-C(33)	120.2(4)
O(5)-C(35)-C(36)	120.1(4)
C(33)-C(35)-C(36)	119.8(4)
C(41)-C(36)-C(37)	119.4(5)
C(41)-C(36)-C(35)	121.1(4)
C(37)-C(36)-C(35)	119.4(4)
C(36)-C(37)-C(38)	119.0(6)
С(36)-С(37)-Н(37)	120.5
C(38)-C(37)-H(37)	120.5
C(39)-C(38)-C(37)	120.2(6)
C(39)-C(38)-H(38)	119.9
C(37)-C(38)-H(38)	119.9
C(40)-C(39)-C(38)	121.0(6)
C(40)-C(39)-H(39)	119.5
C(38)-C(39)-H(39)	119.5
C(39)-C(40)-C(41)	120.1(6)
C(39)-C(40)-H(40)	119.9
C(41)-C(40)-H(40)	119.9
C(40)-C(41)-C(36)	120.2(6)
C(40)-C(41)-H(41)	119.9
C(36)-C(41)-H(41)	119.9
C(47)-C(42)-C(43)	117.9(4)
C(47)-C(42)-N(4)	123.8(4)
C(43)-C(42)-N(4)	118.3(4)

C(44)-C(43)-C(42)	120.7(4)
C(44)-C(43)-H(43)	119.7
C(42)-C(43)-H(43)	119.7
C(43)-C(44)-C(45)	121.3(4)
C(43)-C(44)-H(44)	119.3
C(45)-C(44)-H(44)	119.3
O(6)-C(45)-C(46)	124.5(4)
O(6)-C(45)-C(44)	117.0(4)
C(46)-C(45)-C(44)	118.5(4)
C(45)-C(46)-C(47)	120.1(4)
C(45)-C(46)-H(46)	120.0
C(47)-C(46)-H(46)	120.0
C(42)-C(47)-C(46)	121.6(4)
C(42)-C(47)-H(47)	119.2
C(46)-C(47)-H(47)	119.2
O(6)-C(48)-H(48A)	109.5
O(6)-C(48)-H(48B)	109.5
H(48A)-C(48)-H(48B)	109.5
O(6)-C(48)-H(48C)	109.5
H(48A)-C(48)-H(48C)	109.5
H(48B)-C(48)-H(48C)	109.5
C(50)-C(49)-H(49A)	109.5
C(50)-C(49)-H(49B)	109.5
H(49A)-C(49)-H(49B)	109.5
C(50)-C(49)-H(49C)	109.5
H(49A)-C(49)-H(49C)	109.5
H(49B)-C(49)-H(49C)	109.5
O(7)-C(50)-C(51)	119.1(8)
O(7)-C(50)-C(49)	123.1(8)
C(51)-C(50)-C(49)	117.7(8)
C(50)-C(51)-H(51A)	109.5
C(50)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
C(50)-C(51)-H(51C)	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	90(1)	43(1)	95(1)	3(1)	-40(1)	-15(1)
Cl(2)	60(1)	122(1)	56(1)	-26(1)	-17(1)	-16(1)
Cl(3)	65(1)	51(1)	96(1)	14(1)	-11(1)	4(1)
Cl(4)	46(1)	136(2)	76(1)	-3(1)	10(1)	-12(1)
N(1)	51(2)	35(2)	53(3)	-9(2)	-5(2)	-17(2)
N(2)	35(2)	44(2)	43(2)	-9(2)	-8(2)	-7(2)
N(3)	38(2)	62(3)	56(3)	13(2)	-14(2)	-3(2)
N(4)	41(2)	47(2)	38(2)	-11(2)	-10(2)	-3(2)
O(1)	64(2)	57(2)	53(2)	-2(2)	-14(2)	-14(2)
O(2)	54(2)	42(2)	77(2)	-23(2)	-5(2)	-15(2)
O(3)	72(3)	85(3)	85(3)	-44(2)	-39(2)	3(2)
O(4)	53(2)	79(2)	60(2)	15(2)	-6(2)	-14(2)
O(5)	52(2)	65(2)	79(3)	-29(2)	-23(2)	16(2)
O(6)	42(2)	72(2)	77(3)	-23(2)	3(2)	6(2)
O(7)	111(5)	233(7)	87(4)	14(4)	-24(3)	30(4)
C(1)	49(3)	43(3)	59(3)	-6(2)	-14(2)	-2(2)
C(2)	45(3)	65(3)	57(3)	-3(3)	-15(2)	-3(2)
C(3)	43(3)	78(4)	44(3)	-22(3)	-9(2)	-3(3)
C(4)	40(3)	53(3)	54(3)	-18(2)	-8(2)	-11(2)
C(5)	38(2)	42(2)	46(3)	-12(2)	-4(2)	-8(2)
C(6)	33(2)	44(3)	48(3)	-14(2)	-6(2)	-1(2)
C(7)	45(3)	36(2)	43(3)	-14(2)	-6(2)	-3(2)
C(8)	41(3)	50(3)	42(3)	-12(2)	-5(2)	-7(2)
C(9)	38(2)	36(2)	41(3)	-7(2)	-8(2)	-6(2)
C(10)	42(2)	34(2)	37(2)	-5(2)	-6(2)	-7(2)
C(11)	51(3)	39(2)	41(3)	-7(2)	-11(2)	-10(2)
C(12)	41(3)	45(3)	47(3)	-14(2)	-11(2)	-9(2)
C(13)	58(3)	47(3)	80(4)	-16(3)	3(3)	-6(2)
C(14)	58(4)	73(4)	128(6)	-32(4)	19(4)	0(3)
C(15)	62(4)	85(5)	101(5)	-21(4)	27(3)	-18(3)
C(16)	82(4)	62(3)	67(4)	-3(3)	7(3)	-23(3)
C(17)	54(3)	46(3)	53(3)	-10(2)	-7(2)	-8(2)
C(18)	41(3)	34(2)	39(2)	-2(2)	-6(2)	-12(2)
C(19)	46(3)	47(3)	42(3)	-13(2)	-6(2)	-1(2)
C(20)	61(3)	53(3)	48(3)	-18(2)	-14(2)	4(2)
C(21)	61(3)	48(3)	51(3)	-11(2)	-20(2)	-7(2)
C(22)	41(3)	60(3)	56(3)	-16(3)	-9(2)	-1(2)
C(23)	47(3)	45(3)	47(3)	-14(2)	-9(2)	-6(2)
C(24)	116(6)	132(6)	131(7)	-89(5)	-67(5)	24(5)

Table 4. Anisotropic displacement parameters (Å²x10³) for **3a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(25)	42(3)	45(3)	51(3)	-4(2)	-10(2)	-2(2)
C(26)	53(3)	59(3)	53(3)	5(2)	-8(3)	-14(3)
C(27)	37(3)	68(3)	55(3)	-14(3)	-3(2)	-11(2)
C(28)	41(3)	53(3)	54(3)	-9(2)	-15(2)	-2(2)
C(29)	41(3)	48(3)	45(3)	-12(2)	-10(2)	-8(2)
C(30)	41(3)	40(2)	42(3)	-9(2)	-10(2)	-3(2)
C(31)	37(2)	43(2)	41(3)	-5(2)	-5(2)	-2(2)
C(32)	44(3)	58(3)	42(3)	-3(2)	-9(2)	-12(2)
C(33)	39(2)	38(2)	34(2)	0(2)	-6(2)	-5(2)
C(34)	44(3)	36(2)	41(3)	-2(2)	-10(2)	-2(2)
C(35)	35(2)	49(3)	45(3)	-5(2)	-6(2)	-1(2)
C(36)	42(3)	61(3)	41(3)	-13(2)	-5(2)	4(2)
C(37)	60(3)	79(4)	63(4)	-20(3)	-12(3)	-7(3)
C(38)	86(5)	138(7)	81(5)	-41(5)	-33(4)	-17(5)
C(39)	69(4)	174(8)	58(4)	-37(5)	-30(3)	17(5)
C(40)	70(4)	126(6)	59(4)	-15(4)	-21(3)	34(4)
C(41)	57(3)	78(4)	56(3)	-14(3)	-12(3)	17(3)
C(42)	41(3)	31(2)	44(3)	-4(2)	-5(2)	-1(2)
C(43)	46(3)	43(3)	51(3)	-11(2)	-11(2)	0(2)
C(44)	63(3)	49(3)	46(3)	-17(2)	-4(2)	4(2)
C(45)	47(3)	37(2)	56(3)	-8(2)	-1(2)	2(2)
C(46)	42(3)	56(3)	54(3)	-11(2)	-10(2)	-1(2)
C(47)	48(3)	62(3)	41(3)	-14(2)	-7(2)	-2(2)
C(48)	39(3)	117(5)	101(5)	-19(4)	-2(3)	7(3)
C(49)	171(10)	66(5)	275(14)	28(7)	79(9)	3(5)
C(50)	71(4)	111(6)	65(4)	13(4)	7(3)	20(4)
C(51)	208(10)	91(5)	95(6)	1(5)	1(6)	-12(6)

	Х	у	Z	U(eq)
H(1)	-1030(30)	240(30)	5550(30)	36(11)
H(2)	-1063	3354	2631	66
H(4)	-1849	660	3887	57
H(7)	-309	2781	5901	48
H(10)	2654	3043	5604	45
H(13)	3838	929	4039	75
H(14)	5536	1425	3176	106
H(15)	5826	3055	2708	102
H(16)	4429	4196	3107	87
H(17)	2731	3711	3982	61
H(19)	937	4627	7802	54
H(20)	2003	5249	8779	63
H(22)	4735	3837	7575	62
H(23)	3643	3174	6643	54
H(24A)	3395	6110	9143	174
H(24B)	4404	5820	9699	174
H(24C)	3279	5240	9950	174
H(26)	6278	676	10803	67
H(28)	5329	3050	9187	58
H(31)	9141	1738	8115	49
H(34)	11519	2213	9122	48
H(37)	10596	4470	10459	79
H(38)	11774	4385	11602	116
H(39)	12233	2907	12354	116
H(40)	11627	1496	11951	101
H(41)	10528	1540	10775	76
H(43)	12328	912	6537	55
H(44)	14190	538	6034	63
H(46)	14992	1118	8475	60
H(47)	13123	1500	8975	60
H(48A)	16790	1143	7617	129
H(48B)	17408	285	7101	129
H(48C)	16471	58	7977	129
H(49A)	6545	2332	6004	280
H(49B)	6628	2608	4915	280
H(49C)	5474	2740	5573	280
H(51A)	6111	4881	4791	203
H(51B)	6845	4090	4258	203
H(51C)	7418	4799	4802	203

Table 5. Hydrogen coordinates ($x10^4$) and isotropic displacement parameters (Å² $x10^3$) **3a**.

H(2A)	800(40)	3520(30)	6690(30)	34(12)
H(4A)	10990(40)	1380(30)	7660(30)	43(13)
H(3)	7170(50)	3730(40)	7850(40)	68(19)

Table 6. Torsion angles [°] for **3a**.

C(6)-C(1)-C(2)-C(3)	-0.1(7)
Cl(1)-C(1)-C(2)-C(3)	-179.7(4)
C(1)-C(2)-C(3)-C(4)	1.4(8)
C(1)-C(2)-C(3)-Cl(2)	-177.3(4)
C(2)-C(3)-C(4)-C(5)	-1.5(7)
Cl(2)-C(3)-C(4)-C(5)	177.1(3)
C(3)-C(4)-C(5)-N(1)	-179.7(4)
C(3)-C(4)-C(5)-C(6)	0.4(7)
C(8)-N(1)-C(5)-C(4)	176.1(5)
C(8)-N(1)-C(5)-C(6)	-4.0(5)
C(2)-C(1)-C(6)-C(5)	-0.9(7)
Cl(1)-C(1)-C(6)-C(5)	178.7(3)
C(2)-C(1)-C(6)-C(7)	176.3(5)
Cl(1)-C(1)-C(6)-C(7)	-4.1(7)
C(4)-C(5)-C(6)-C(1)	0.7(7)
N(1)-C(5)-C(6)-C(1)	-179.1(4)
C(4)-C(5)-C(6)-C(7)	-177.1(4)
N(1)-C(5)-C(6)-C(7)	3.1(5)
C(1)-C(6)-C(7)-C(8)	-178.5(5)
C(5)-C(6)-C(7)-C(8)	-1.1(5)
C(1)-C(6)-C(7)-C(9)	-56.5(6)
C(5)-C(6)-C(7)-C(9)	120.9(4)
C(5)-N(1)-C(8)-O(1)	-178.2(4)
C(5)-N(1)-C(8)-C(7)	3.2(5)
C(6)-C(7)-C(8)-O(1)	-179.8(5)
C(9)-C(7)-C(8)-O(1)	58.0(6)
C(6)-C(7)-C(8)-N(1)	-1.2(5)
C(9)-C(7)-C(8)-N(1)	-123.5(4)
C(6)-C(7)-C(9)-C(10)	140.1(4)
C(8)-C(7)-C(9)-C(10)	-104.3(5)
C(6)-C(7)-C(9)-C(11)	-48.2(5)
C(8)-C(7)-C(9)-C(11)	67.3(5)
C(18)-N(2)-C(10)-C(9)	168.9(4)
C(11)-C(9)-C(10)-N(2)	-170.9(4)
C(7)-C(9)-C(10)-N(2)	0.7(7)
C(10)-C(9)-C(11)-O(2)	149.5(4)
C(7)-C(9)-C(11)-O(2)	-22.6(6)
C(10)-C(9)-C(11)-C(12)	-30.4(6)
C(7)-C(9)-C(11)-C(12)	157.5(4)
O(2)-C(11)-C(12)-C(17)	140.7(4)
C(9)-C(11)-C(12)-C(17)	-39.3(6)
O(2)-C(11)-C(12)-C(13)	-33.6(6)

C(9)-C(11)-C(12)-C(13)	
C(17)-C(12)-C(13)-C(14)	
C(11)-C(12)-C(13)-C(14)	
C(12)-C(13)-C(14)-C(15)	
C(13)-C(14)-C(15)-C(16)	
C(14)-C(15)-C(16)-C(17)	
C(13)-C(12)-C(17)-C(16)	
C(11)-C(12)-C(17)-C(16)	
C(15)-C(16)-C(17)-C(12)	
C(10)-N(2)-C(18)-C(23)	
C(10)-N(2)-C(18)-C(19)	
C(23)-C(18)-C(19)-C(20)	
N(2)-C(18)-C(19)-C(20)	
C(18)-C(19)-C(20)-C(21)	
C(24)-O(3)-C(21)-C(22)	
C(24)-O(3)-C(21)-C(20)	
C(19)-C(20)-C(21)-C(22)	
C(19)-C(20)-C(21)-O(3)	
O(3)-C(21)-C(22)-C(23)	
C(20)-C(21)-C(22)-C(23)	
C(19)-C(18)-C(23)-C(22)	
N(2)-C(18)-C(23)-C(22)	
C(21)-C(22)-C(23)-C(18)	
C(30)-C(25)-C(26)-C(27)	
Cl(3)-C(25)-C(26)-C(27)	
C(25)-C(26)-C(27)-C(28)	
C(25)-C(26)-C(27)-Cl(4)	
C(26)-C(27)-C(28)-C(29)	
Cl(4)-C(27)-C(28)-C(29)	
C(27)-C(28)-C(29)-C(30)	
C(27)-C(28)-C(29)-N(3)	
C(32)-N(3)-C(29)-C(28)	
C(32)-N(3)-C(29)-C(30)	
C(26)-C(25)-C(30)-C(29)	
Cl(3)-C(25)-C(30)-C(29)	
C(26)-C(25)-C(30)-C(31)	
Cl(3)-C(25)-C(30)-C(31)	
C(28)-C(29)-C(30)-C(25)	
N(3)-C(29)-C(30)-C(25)	
C(28)-C(29)-C(30)-C(31)	
N(3)-C(29)-C(30)-C(31)	
C(25)-C(30)-C(31)-C(33)	
C(29)-C(30)-C(31)-C(33)	
C(25)-C(30)-C(31)-C(32)	

146.4(5) 0.7(8) 175.2(5) -0.6(10) 0.2(11) 0.1(10) -0.4(7) -174.8(5) 0.0(8) -14.5(6) 168.4(4) 0.8(7) 178.0(4) 0.7(7) 178.3(6) -2.4(8) -0.9(7) 179.9(5) 178.9(4) -0.4(7) -2.1(7) -179.2(4) 1.9(7) 2.1(7) -177.7(4) 0.0(7) -179.4(4) -0.8(7) 178.6(3) -0.3(6) -179.9(4) 177.9(4) -1.7(5) -3.1(6) 176.7(3) 179.0(4) -1.2(7) 2.3(6) -178.1(4) -179.4(4) 0.2(5) -56.5(6) 125.5(4) 179.1(4)

C(29)-C(30)-C(31)-C(32)	1.1(4)
C(29)-N(3)-C(32)-O(4)	179.7(4)
C(29)-N(3)-C(32)-C(31)	2.4(5)
C(30)-C(31)-C(32)-O(4)	-179.3(4)
C(33)-C(31)-C(32)-O(4)	55.0(6)
C(30)-C(31)-C(32)-N(3)	-2.1(5)
C(33)-C(31)-C(32)-N(3)	-127.8(4)
C(30)-C(31)-C(33)-C(34)	137.0(4)
C(32)-C(31)-C(33)-C(34)	-105.4(5)
C(30)-C(31)-C(33)-C(35)	-50.2(5)
C(32)-C(31)-C(33)-C(35)	67.4(5)
C(42)-N(4)-C(34)-C(33)	174.5(4)
C(35)-C(33)-C(34)-N(4)	-174.4(4)
C(31)-C(33)-C(34)-N(4)	-1.8(7)
C(34)-C(33)-C(35)-O(5)	154.5(4)
C(31)-C(33)-C(35)-O(5)	-18.7(6)
C(34)-C(33)-C(35)-C(36)	-26.1(6)
C(31)-C(33)-C(35)-C(36)	160.7(4)
O(5)-C(35)-C(36)-C(41)	131.8(5)
C(33)-C(35)-C(36)-C(41)	-47.6(6)
O(5)-C(35)-C(36)-C(37)	-43.4(7)
C(33)-C(35)-C(36)-C(37)	137.2(5)
C(41)-C(36)-C(37)-C(38)	2.9(8)
C(35)-C(36)-C(37)-C(38)	178.2(5)
C(36)-C(37)-C(38)-C(39)	-3.0(10)
C(37)-C(38)-C(39)-C(40)	1.4(11)
C(38)-C(39)-C(40)-C(41)	0.2(11)
C(39)-C(40)-C(41)-C(36)	-0.2(9)
C(37)-C(36)-C(41)-C(40)	-1.4(8)
C(35)-C(36)-C(41)-C(40)	-176.5(5)
C(34)-N(4)-C(42)-C(47)	17.4(6)
C(34)-N(4)-C(42)-C(43)	-161.0(4)
C(47)-C(42)-C(43)-C(44)	-0.9(6)
N(4)-C(42)-C(43)-C(44)	177.7(4)
C(42)-C(43)-C(44)-C(45)	0.2(7)
C(48)-O(6)-C(45)-C(46)	7.2(7)
C(48)-O(6)-C(45)-C(44)	-172.6(5)
C(43)-C(44)-C(45)-O(6)	-179.5(4)
C(43)-C(44)-C(45)-C(46)	0.7(7)
O(6)-C(45)-C(46)-C(47)	179.4(4)
C(44)-C(45)-C(46)-C(47)	-0.8(7)
C(43)-C(42)-C(47)-C(46)	0.7(7)
N(4)-C(42)-C(47)-C(46)	-177.7(4)
C(45)-C(46)-C(47)-C(42)	0.1(7)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(7)	0.77(5)	2.30(5)	2.952(7)	143(5)
N(4)-H(4A)O(1)#1	0.84(4)	2.11(5)	2.946(5)	173(4)
N(2)-H(2A)O(4)#2	0.83(4)	2.02(4)	2.831(5)	168(4)
C(31)-H(31)O(1)#1	0.98	2.51	3.451(6)	160.3
C(22)-H(22)O(7)	0.93	2.61	3.391(8)	141.4
C(7)-H(7)O(4)#2	0.98	2.45	3.388(6)	159.1
C(22)-H(22)O(7)	0.93	2.61	3.391(8)	141.4

Table 7. Hydrogen bonds for **3a** [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x-1,y,z

X-ray crystal structure of **4a**

Table 1. Crystal data and structure refinem	nent for 4a.			
Identification code	mo_dm14733_0m			
Empirical formula	C25 H17 Cl5 N2 O2			
Formula weight	554.65			
Temperature	130 K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 7.0166(5) Å	α= 66.5140(10)°.		
	b = 13.2800(9) Å	β= 85.3090(10)°.		
	c = 13.9998(10) Å	$\gamma = 89.3010(10)^{\circ}.$		
Volume	1192.13(15) Å ³			
Ζ	2			
Density (calculated)	1.545 Mg/m ³			
Absorption coefficient	0.636 mm ⁻¹			
F(000)	564			
Crystal size	0.35 x 0.2 x 0.18 mm ³			
Theta range for data collection	1.672 to 30.572°.			
Index ranges	-9<=h<=10, -18<=k<=17,	-20<=l<=20		
Reflections collected	12148			
Independent reflections	7236 [R(int) = 0.0187]			
Completeness to theta = 25.242°	99.9 %			
Absorption correction	Semi-empirical from equiv	valents		
Max. and min. transmission	0.7461 and 0.6543			
Refinement method	Full-matrix least-squares of	on F ²		
Data / restraints / parameters	7236 / 0 / 308			
Goodness-of-fit on F ²	1.053			
Final R indices [I>2sigma(I)]	R1 = 0.0537, wR2 = 0.135	57		
R indices (all data)	R1 = 0.0681, WR2 = 0.146	R1 = 0.0681, $wR2 = 0.1467$		
Extinction coefficient	n/a			
Largest diff. peak and hole	1.570 and -1.663 e.Å ⁻³			

	Х	у	Z	U(eq)
Cl(1)	5913(1)	-3381(1)	4421(1)	29(1)
Cl(2)	6420(1)	-2944(1)	488(1)	27(1)
O(1)	7407(3)	-1931(1)	5252(1)	31(1)
O(2)	8276(2)	466(1)	8393(1)	28(1)
N(1)	7364(2)	-53(1)	4690(1)	17(1)
N(2)	7056(2)	416(1)	1252(1)	18(1)
C(1)	7236(3)	-1027(2)	4564(1)	18(1)
C(2)	6922(3)	-721(1)	3434(1)	16(1)
C(3)	6770(3)	-1347(1)	2810(1)	17(1)
C(4)	6467(3)	-2497(2)	3131(2)	19(1)
C(5)	6432(3)	-2975(2)	2424(2)	21(1)
C(6)	6620(3)	-2316(2)	1351(2)	20(1)
C(7)	6840(3)	-1206(2)	980(2)	20(1)
C(8)	6898(3)	-705(2)	1702(1)	17(1)
C(9)	7034(3)	963(2)	1857(1)	17(1)
C(10)	6976(3)	401(1)	2957(1)	16(1)
C(11)	7185(3)	901(1)	3725(1)	17(1)
C(12)	7197(3)	2177(2)	1331(1)	18(1)
C(13)	6037(3)	2856(2)	1661(2)	21(1)
C(14)	6183(3)	3988(2)	1121(2)	24(1)
C(15)	7489(3)	4445(2)	257(2)	25(1)
C(16)	8666(3)	3775(2)	-70(2)	24(1)
C(17)	8521(3)	2640(2)	468(1)	20(1)
C(18)	7659(3)	74(2)	5624(1)	17(1)
C(19)	7801(3)	-820(2)	6579(1)	19(1)
C(20)	8005(3)	-654(2)	7480(2)	22(1)
C(21)	8104(3)	402(2)	7453(2)	21(1)
C(22)	8021(3)	1297(2)	6507(2)	21(1)
C(23)	7790(3)	1130(2)	5605(2)	20(1)
C(24)	8286(3)	1536(2)	8404(2)	28(1)
Cl(3)	12182(2)	5337(1)	3020(1)	66(1)
Cl(4)	8701(2)	4283(1)	4191(1)	101(1)
Cl(5)	10334(2)	3716(1)	2526(1)	75(1)
C(25)	10806(4)	4126(2)	3538(2)	35(1)

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **4a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(4)	1.7315(19)
Cl(2)-C(6)	1.7341(19)
O(1)-C(1)	1.215(2)
O(2)-C(21)	1.367(2)
O(2)-C(24)	1.427(3)
N(1)-C(1)	1.379(2)
N(1)-C(11)	1.451(2)
N(1)-C(18)	1.415(2)
N(2)-C(8)	1.367(2)
N(2)-C(9)	1.316(2)
C(1)-C(2)	1.504(2)
C(2)-C(3)	1.435(2)
C(2)-C(10)	1.367(2)
C(3)-C(4)	1.423(2)
C(3)-C(8)	1.438(2)
C(4)-C(5)	1.375(3)
C(5)-H(5)	0.9500
C(5)-C(6)	1.401(3)
C(6)-C(7)	1.360(3)
C(7)-H(7)	0.9500
C(7)-C(8)	1.417(2)
C(9)-C(10)	1.415(2)
C(9)-C(12)	1.483(2)
C(10)-C(11)	1.489(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.394(3)
C(12)-C(17)	1.392(3)
C(13)-H(13)	0.9500
C(13)-C(14)	1.388(3)
C(14)-H(14)	0.9500
C(14)-C(15)	1.385(3)
C(15)-H(15)	0.9500
C(15)-C(16)	1.389(3)
C(16)-H(16)	0.9500
C(16)-C(17)	1.391(3)
C(17)-H(17)	0.9500
C(18)-C(19)	1.400(3)
C(18)-C(23)	1.396(3)
C(19)-H(19)	0.9500
C(19)-C(20)	1.383(3)
C(20)-H(20)	0.9500

Table 3. Bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for 4a.

C(20)-C(21)	1.391(3)
C(21)-C(22)	1.387(3)
C(22)-H(22)	0.9500
C(22)-C(23)	1.388(3)
С(23)-Н(23)	0.9500
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
Cl(3)-C(25)	1.743(2)
Cl(4)-C(25)	1.728(3)
Cl(5)-C(25)	1.762(3)
C(25)-H(25)	1.0000
C(21)-O(2)-C(24)	117.12(17)
C(1)-N(1)-C(11)	112.59(14)
C(1)-N(1)-C(18)	126.84(15)
C(18)-N(1)-C(11)	120.56(15)
C(9)-N(2)-C(8)	119.12(16)
O(1)-C(1)-N(1)	124.63(17)
O(1)-C(1)-C(2)	129.16(17)
N(1)-C(1)-C(2)	106.18(15)
C(3)-C(2)-C(1)	133.31(16)
C(10)-C(2)-C(1)	107.28(15)
C(10)-C(2)-C(3)	119.13(16)
C(2)-C(3)-C(8)	114.58(15)
C(4)-C(3)-C(2)	129.50(17)
C(4)-C(3)-C(8)	115.90(16)
C(3)-C(4)-Cl(1)	122.99(14)
C(5)-C(4)-Cl(1)	114.72(14)
C(5)-C(4)-C(3)	122.06(17)
C(4)-C(5)-H(5)	120.1
C(4)-C(5)-C(6)	119.72(17)
C(6)-C(5)-H(5)	120.1
C(5)-C(6)-Cl(2)	118.14(14)
C(7)-C(6)-Cl(2)	119.90(15)
C(7)-C(6)-C(5)	121.85(17)
C(6)-C(7)-H(7)	120.5
C(6)-C(7)-C(8)	118.94(17)
C(8)-C(7)-H(7)	120.5
N(2)-C(8)-C(3)	124.19(16)
N(2)-C(8)-C(7)	114.41(16)
C(7)-C(8)-C(3)	121.39(16)
N(2)-C(9)-C(10)	120.70(16)
N(2)-C(9)-C(12)	116.99(16)
C(10)-C(9)-C(12)	122.19(16)
C(2)-C(10)-C(9)	121.90(16)
---------------------	------------
C(2)-C(10)-C(11)	111.20(15)
C(9)-C(10)-C(11)	126.55(16)
N(1)-C(11)-C(10)	102.62(14)
N(1)-C(11)-H(11A)	111.2
N(1)-C(11)-H(11B)	111.2
C(10)-C(11)-H(11A)	111.2
C(10)-C(11)-H(11B)	111.2
H(11A)-C(11)-H(11B)	109.2
C(13)-C(12)-C(9)	121.86(17)
C(17)-C(12)-C(9)	118.44(17)
C(17)-C(12)-C(13)	119.68(17)
C(12)-C(13)-H(13)	120.0
C(14)-C(13)-C(12)	120.04(18)
C(14)-C(13)-H(13)	120.0
C(13)-C(14)-H(14)	120.0
C(15)-C(14)-C(13)	120.09(19)
C(15)-C(14)-H(14)	120.0
C(14)-C(15)-H(15)	119.9
C(14)-C(15)-C(16)	120.23(18)
C(16)-C(15)-H(15)	119.9
C(15)-C(16)-H(16)	120.1
C(15)-C(16)-C(17)	119.83(19)
C(17)-C(16)-H(16)	120.1
C(12)-C(17)-H(17)	119.9
C(16)-C(17)-C(12)	120.13(18)
C(16)-C(17)-H(17)	119.9
C(19)-C(18)-N(1)	122.61(16)
C(23)-C(18)-N(1)	119.16(16)
C(23)-C(18)-C(19)	118.22(17)
C(18)-C(19)-H(19)	119.8
C(20)-C(19)-C(18)	120.44(18)
C(20)-C(19)-H(19)	119.8
C(19)-C(20)-H(20)	119.6
C(19)-C(20)-C(21)	120.78(18)
C(21)-C(20)-H(20)	119.6
O(2)-C(21)-C(20)	115.60(18)
O(2)-C(21)-C(22)	125.03(18)
C(22)-C(21)-C(20)	119.37(17)
C(21)-C(22)-H(22)	120.1
C(21)-C(22)-C(23)	119.86(18)
C(23)-C(22)-H(22)	120.1
C(18)-C(23)-H(23)	119.4
C(22)-C(23)-C(18)	121.30(18)

C(22)-C(23)-H(23)	119.4
O(2)-C(24)-H(24A)	109.5
O(2)-C(24)-H(24B)	109.5
O(2)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
Cl(3)-C(25)-Cl(5)	109.46(14)
Cl(3)-C(25)-H(25)	108.4
Cl(4)-C(25)-Cl(3)	111.28(15)
Cl(4)-C(25)-Cl(5)	110.77(16)
Cl(4)-C(25)-H(25)	108.4
Cl(5)-C(25)-H(25)	108.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	43(1)	18(1)	22(1)	-3(1)	-3(1)	-7(1)
Cl(2)	33(1)	26(1)	31(1)	-19(1)	-2(1)	-1(1)
O(1)	55(1)	17(1)	20(1)	-5(1)	-10(1)	3(1)
O(2)	36(1)	32(1)	19(1)	-13(1)	-6(1)	-1(1)
N(1)	20(1)	16(1)	14(1)	-5(1)	-1(1)	0(1)
N(2)	22(1)	16(1)	18(1)	-7(1)	-1(1)	-1(1)
C(1)	20(1)	18(1)	17(1)	-7(1)	-1(1)	0(1)
C(2)	16(1)	16(1)	16(1)	-5(1)	0(1)	0(1)
C(3)	16(1)	15(1)	19(1)	-7(1)	-1(1)	0(1)
C(4)	19(1)	15(1)	21(1)	-4(1)	-2(1)	0(1)
C(5)	21(1)	16(1)	26(1)	-9(1)	-2(1)	1(1)
C(6)	19(1)	21(1)	24(1)	-14(1)	-1(1)	0(1)
C(7)	21(1)	20(1)	20(1)	-10(1)	-2(1)	1(1)
C(8)	18(1)	15(1)	18(1)	-7(1)	-1(1)	0(1)
C(9)	17(1)	16(1)	17(1)	-6(1)	0(1)	0(1)
C(10)	16(1)	16(1)	16(1)	-6(1)	1(1)	0(1)
C(11)	19(1)	15(1)	15(1)	-6(1)	0(1)	0(1)
C(12)	22(1)	15(1)	16(1)	-5(1)	-5(1)	-1(1)
C(13)	23(1)	19(1)	20(1)	-7(1)	-3(1)	1(1)
C(14)	27(1)	19(1)	27(1)	-10(1)	-8(1)	4(1)
C(15)	31(1)	14(1)	27(1)	-4(1)	-10(1)	-2(1)
C(16)	27(1)	19(1)	21(1)	-3(1)	-2(1)	-6(1)
C(17)	24(1)	19(1)	17(1)	-7(1)	-2(1)	-1(1)
C(18)	14(1)	20(1)	18(1)	-8(1)	-1(1)	1(1)
C(19)	19(1)	20(1)	19(1)	-7(1)	-1(1)	0(1)
C(20)	23(1)	25(1)	17(1)	-6(1)	-3(1)	0(1)
C(21)	18(1)	30(1)	18(1)	-12(1)	-2(1)	-1(1)
C(22)	21(1)	23(1)	22(1)	-11(1)	-1(1)	0(1)
C(23)	22(1)	19(1)	19(1)	-7(1)	-1(1)	0(1)
C(24)	28(1)	37(1)	27(1)	-20(1)	-4(1)	-1(1)
Cl(3)	82(1)	48(1)	57(1)	-9(1)	-9(1)	-35(1)
Cl(4)	69(1)	70(1)	119(1)	-1(1)	36(1)	23(1)
Cl(5)	124(1)	36(1)	54(1)	1(1)	-50(1)	-20(1)
C(25)	36(1)	23(1)	37(1)	-1(1)	-8(1)	-1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **4a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	x	v	Z	U(ea)
		5	_	- (• q)
H(5)	6281	-3749	2662	25
H(7)	6953	-773	249	24
H(11A)	8339	1385	3531	20
H(11B)	6047	1328	3781	20
H(13)	5146	2544	2257	25
H(14)	5385	4449	1345	29
H(15)	7579	5220	-113	30
H(16)	9568	4090	-659	29
H(17)	9326	2181	246	25
H(19)	7757	-1547	6607	23
H(20)	8078	-1269	8124	27
H(22)	8123	2022	6477	25
H(23)	7719	1747	4962	24
H(24A)	9457	1937	8017	43
H(24B)	8238	1471	9128	43
H(24C)	7170	1934	8074	43
H(25)	11557	3540	4047	42

Table 5. Hydrogen coordinates ($x10^4$) and isotropic displacement parameters (Å²x 10 ³) for **4a**.

Table 6. Torsion angles [°] for **4a**.

Cl(1)-C(4)-C(5)-C(6)	172.04(15)
Cl(2)-C(6)-C(7)-C(8)	176.68(14)
O(1)-C(1)-C(2)-C(3)	-1.5(4)
O(1)-C(1)-C(2)-C(10)	-175.2(2)
O(2)-C(21)-C(22)-C(23)	-178.17(18)
N(1)-C(1)-C(2)-C(3)	176.47(19)
N(1)-C(1)-C(2)-C(10)	2.8(2)
N(1)-C(18)-C(19)-C(20)	-177.12(17)
N(1)-C(18)-C(23)-C(22)	178.04(17)
N(2)-C(9)-C(10)-C(2)	-0.6(3)
N(2)-C(9)-C(10)-C(11)	171.95(17)
N(2)-C(9)-C(12)-C(13)	135.67(19)
N(2)-C(9)-C(12)-C(17)	-42.7(2)
C(1)-N(1)-C(11)-C(10)	-1.45(19)
C(1)-N(1)-C(18)-C(19)	-2.1(3)
C(1)-N(1)-C(18)-C(23)	178.75(18)
C(1)-C(2)-C(3)-C(4)	15.1(3)
C(1)-C(2)-C(3)-C(8)	-166.60(18)
C(1)-C(2)-C(10)-C(9)	169.77(16)
C(1)-C(2)-C(10)-C(11)	-3.9(2)
C(2)-C(3)-C(4)-Cl(1)	8.4(3)
C(2)-C(3)-C(4)-C(5)	-177.35(19)
C(2)-C(3)-C(8)-N(2)	-3.1(3)
C(2)-C(3)-C(8)-C(7)	177.78(16)
C(2)-C(10)-C(11)-N(1)	3.34(19)
C(3)-C(2)-C(10)-C(9)	-4.9(3)
C(3)-C(2)-C(10)-C(11)	-178.56(16)
C(3)-C(4)-C(5)-C(6)	-2.7(3)
C(4)-C(3)-C(8)-N(2)	175.41(17)
C(4)-C(3)-C(8)-C(7)	-3.7(3)
C(4)-C(5)-C(6)-Cl(2)	-176.10(15)
C(4)-C(5)-C(6)-C(7)	0.1(3)
C(5)-C(6)-C(7)-C(8)	0.6(3)
C(6)-C(7)-C(8)-N(2)	-177.83(17)
C(6)-C(7)-C(8)-C(3)	1.3(3)
C(8)-N(2)-C(9)-C(10)	4.2(3)
C(8)-N(2)-C(9)-C(12)	-179.61(16)
C(8)-C(3)-C(4)-Cl(1)	-169.93(14)
C(8)-C(3)-C(4)-C(5)	4.4(3)
C(9)-N(2)-C(8)-C(3)	-2.2(3)
C(9)-N(2)-C(8)-C(7)	176.95(17)
C(9)-C(10)-C(11)-N(1)	-169.93(17)

C(9)-C(12)-C(13)-C(14)	-177.39(18)
C(9)-C(12)-C(17)-C(16)	177.60(18)
C(10)-C(2)-C(3)-C(4)	-171.86(18)
C(10)-C(2)-C(3)-C(8)	6.4(2)
C(10)-C(9)-C(12)-C(13)	-48.2(3)
C(10)-C(9)-C(12)-C(17)	133.43(19)
C(11)-N(1)-C(1)-O(1)	177.40(19)
C(11)-N(1)-C(1)-C(2)	-0.7(2)
C(11)-N(1)-C(18)-C(19)	178.67(17)
C(11)-N(1)-C(18)-C(23)	-0.4(2)
C(12)-C(9)-C(10)-C(2)	-176.67(17)
C(12)-C(9)-C(10)-C(11)	-4.1(3)
C(12)-C(13)-C(14)-C(15)	-0.4(3)
C(13)-C(12)-C(17)-C(16)	-0.8(3)
C(13)-C(14)-C(15)-C(16)	-0.4(3)
C(14)-C(15)-C(16)-C(17)	0.5(3)
C(15)-C(16)-C(17)-C(12)	0.1(3)
C(17)-C(12)-C(13)-C(14)	1.0(3)
C(18)-N(1)-C(1)-O(1)	-1.8(3)
C(18)-N(1)-C(1)-C(2)	-179.97(16)
C(18)-N(1)-C(11)-C(10)	177.85(15)
C(18)-C(19)-C(20)-C(21)	-1.1(3)
C(19)-C(18)-C(23)-C(22)	-1.1(3)
C(19)-C(20)-C(21)-O(2)	179.07(18)
C(19)-C(20)-C(21)-C(22)	-0.8(3)
C(20)-C(21)-C(22)-C(23)	1.7(3)
C(21)-C(22)-C(23)-C(18)	-0.7(3)
C(23)-C(18)-C(19)-C(20)	2.0(3)
C(24)-O(2)-C(21)-C(20)	-176.96(18)
C(24)-O(2)-C(21)-C(22)	2.9(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 4a [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)