Dramatic Enhancing Effect of InBr₃ Towards the Oxidative Sonogashira Cross-Coupling Reaction of 2-Ethynylanilines

Akari Ikeda, Masaaki Omote, Miyuki Komori, Kana Kusumoto, Atsushi Tarui, Kazuyuki Sato and Akira Ando*

Faculty of Pharmaceutical Sciences, Setsunan University 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan

Supporting Information

Experimental Section	S2-8
Synthesis of starting acetylenes	S2-4
Iodonation of aniline derivatives	S2
Sonogashira cross-coupling reaction and desilylation	S2
Different approach to 2-iodo-4-methoxyanisidine	S2-3
Spectroscopic data of iodoaniline derivatives and aryl acetylenes	S3-8
References	S8
¹ H and ¹³ C NMR Charts	S9-56

Experimental Section

Synthesis of starting acetylenes

Iodination of aniline derivatives

Method A¹; In a round bottom flask equipped with a magnetic stir bar aniline derivative (5.0 mmol) was added iodine (635 mg, 5.0 mmol) and Ag_2SO_4 (1.56 g, 5.0 mmol) and dissolved in ethanol (15 mL). The mixture was stirred until the substrate was disappeared and then the solids were removed by filtration with celite and the filtrate was concentrated under reduced pressure. The crude was dissolved in CHCl₃ (15 mL) and washed with Na₂S₂O₃ (790 mg, 5.0 mmol) and water (5 mL). The organic layer was dried over anhydrous MgSO₄ and filtered the solid off. After evaporation of the solvent, the crude was purified by silica gel column chromatography to provide the iodoaniline derivative **5**.

Method B²; To aniline derivative (5.0 mmol) in 50 mL of H_2O was added NaHCO₃ (630 mg, 7.5 mmol) and iodine (635 mg, 5.0 mmol). The mixture was stirred until the substrate was disappeared and then Na₂S₂O₃ (790 mg, 5.0 mmol) was added. The reaction was extracted with CHCl₃, the combined organic layer was dried over anhydrous MgSO₄ and filtered the solid off. The crude was purified by silica gel column chromatography to provide the iodoaniline derivative **5**.

Sonogashira cross-coupling reaction and desilylation^{3,4}

To a mixture of aryl iodide (5.0 mmol), $PdCl_2 (PPh_3)_2$ (175 mg, 5 mol%), CuI (48 mg, 5 mol%) and Et₃N (1.04 mL, 7.5 mmol) in dry THF (7.5 mL) was slowly added trimethylsilylacetylene (1.04 mL, 7.5 mmol). After the reaction mixture was stirred at room temperature for overnight, the reaction was quenched by addition of water and the whole mixture was extracted with Et₂O. The organic layer was dried over anhydrous MgSO₄ and filtered the solid off. After evaporation of the solvent, the crude was purified by silica gel column chromatography to afford the silylated arylacetylenes. The mixture of silylated arylacetylenes and K₂CO₃ (691 mg, 5.0 mmol) in MeOH and H₂O was stirred at room temperature until silylated acetylenes were disappeared. Then, the mixture was extracted with CHCl₃ and dried over anhydrous MgSO₄. After filtration of the solid, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel chromatography to provide the arylacetylenes **2**.

Different approach to 2-iodo-4-methoxybenzenamine^{5,6,7}

Under argon atmosphere, to the solution of *p*-anisidine (12.3 g, 100.0 mmol) in CH_2Cl_2 was added Et₃N (15.4 mL, 110.0 mmol) and Boc₂O (25.3 mL, 110.0 mmol) slowly at 0 °C. After the reaction mixture was stirred at same temperature for overnight, the reaction was quenched by addition of water and the whole mixture was extracted with CH_2Cl_2 . The organic layer was dried over anhydrous MgSO₄ and filtered the solid off. After evaporation of the solvent, the *tert*-butyl 4-methoxyphenylcarbamate **6i** was isolated as a white solid (21.9 g, 98%).

mp 95-96 °C; δ_H (CDCl₃, 400 MHz) 1.51 (9H, s), 3.77 (3H, s), 6.37 (1H, br s), 6.8 (2H, d, J 8.3Hz),

7.26 (2H, d, *J* 8.3Hz); δ_C (CDCl₃, 400 MHz) 28.4, 55.5, 80.2, 114.1, 120.5, 131.3, 153.0, 155.6; *m/z* (EI) 223.1201 (M⁺. C₁₂H₁₇NO₃ requires 223.1208).

Under argon atmosphere, to a magnetically stirred solution of *tert*-butyl 4methoxyphenylcarbamate **6i** (17.9 g, 80.0 mmol) in anhydrous Et₂O (150 mL) was slowly added *tert*-butyllithium (88.4 mL of a 1.9M solution in hexane, 168.0 mmol) at -20 °C. After stirring for 3 hours, the reaction mixture was cooled to -78 °C, and 1,2-diiodoethane (45.1 g, 160.0 mmol) dissolved in anhydrous Et₂O (300 mL) was added. Then the reaction mixture was gradually warmed to room temperature and stirred for overnight. After addition of Na₂S₂O₃ (150 mL of a saturated aqueous solution), the whole mixture was extracted with Et₂O and dried over anhydrous MgSO₄. The solid was filtered off, and the organic layer was concentrated under reduced pressure. The residue was purified by silica gel chromatography (AcOEt : hexane = 10 : 90) to provide *tert*-butyl 2-iodo-4-methoxyphenlcarbamate **7i** as a light yellow oil in 69% yield (19.3 g).

 $δ_{\rm H}$ (CDCl₃, 400 MHz) 1.52 (9H, s), 3.76 (3H, s), 6.54 (1H, br s), 6.90 (1H, dd, *J* 3.0Hz, 8.8Hz), 7.30 (1H, d, *J* 3.0Hz), 7.81 (1H, d, *J* 8.8Hz); $δ_{\rm C}$ (CDCl₃, 400 MHz) 28.4, 55.7, 80.7, 90.4, 114.8, 122.0, 123.6, 132.3, 153.0, 155.9; *m/z* (EI) 349.0182 (M⁺. C₁₂H₁₆INO₃ requires 349.0175).

To the solution of *tert*-butyl 2-iodo-4-methoxyphenylcarbamate **7i** (17.5 g, 50.0 mmol) in CH_2Cl_2 (250 mL) was added CF₃COOH (44.6 mL, 600.0 mmol) at room temperature. After the reaction mixture was stirred for overnight, 10% aqueous NaOH solution was added until pH of the solution became 7. The mixture was extracted with CH_2Cl_2 , and the organic layer was dried over anhydrous MgSO₄. The solid was filtered off, and the organic layer was concentrated under reduced pressure. After purification by silica gel chromatography (AcOEt : hexane = 10 : 90), 2-iodo-4-methoxybenzenamine **5i** was isolated as a yellow oil in 98% (12.2 g).

Spectroscopic data of iodoaniline derivatives and aryl acetylenes

4-bromo-2-iodobenzenamine 5c

4-chloro-2-iodobenzenamine 5d

The title product **5d** was obtained as a light yellow solid (811 mg, 64%) after column chromatography (AcOEt : hexane = 10 : 90) using method A. mp 39-40 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 4.08 (2H, br s), 6.66 (1H, d, *J* 8.3Hz), 7.11 (1H, dd, *J* 2.2Hz,

8.6Hz), 7.61 (1H, d, *J* 2.0Hz); δ_C (CDCl₃, 400 MHz) 83.4, 114.9, 123.1, 129.2, 137.7, 145.4; *m/z* (EI) 252.9164 (M⁺. C₆H₅ClIN requires 252.9155).

1-(4-amino-3-iodophenyl)ethanone 5e

The title product **5e** was obtained as a white solid (744 mg, 57%) after column chromatography (AcOEt : hexane = 30 : 70) using method A. mp 45-46 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.49 (3H, s), 4.60 (2H, br s), 6.71 (1H, d, *J* 8.7Hz), 7.77 (1H, dd, *J* 1.4Hz, 8.2Hz), 8.28 (1H, d, *J* 1.4Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 26.0, 82.5, 113.1, 129.3, 130.3, 140.3, 150.9, 195.1; *m/z* (EI) 260.9653 (M⁺. C₈H₈INO requires 260.9651).

ethyl 4-amino-3-iodobenzoate 5f

The title product **5f** was obtained as a white solid (1.22 g, 84%) after column chromatography (AcOEt : hexane = 30 : 70) using method A. mp 79-80 °C; $\delta_{\rm H}$ NH₂ (CDCl₃, 400 MHz) 1.36 (3H, t, *J* 7.3Hz), 4.32 (2H, q, *J* 7.2Hz), 4.51 (2H, br s),

6.70 (1H, d, *J* 8.3Hz), 7.83 (1H, dd, *J* 2.0Hz, 8.3Hz), 8.34 (1H, d, *J* 2.0Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 14.4, 60.7, 82.1, 113.0, 121.5, 131.0, 140.9, 150.5, 165.2; *m/z* (EI) 290.9762 (M⁺. C₉H₁₀INO₂ requires 290.9756).

2-iodo-4-nitrobenzene 5g

 O_2N The title product **5g** was obtained as a yellow solid (1.10 g, 84%) after column NH₂ chromatography (CH₂Cl₂ : hexane = 80 : 20) using method A. mp 106-107 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 4.85 (2H, br s), 6.71 (1H, d, *J* 8.8Hz), 8.06 (1H, dd, *J* 2.5Hz, 8.8Hz), 8.57 (1H, d, *J* 2.5Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 80.5, 112.2, 125.7, 135.4, 139.2, 152.2; *m/z* (EI) 263.9403 (M⁺. C₆H₅IN₂O₂ requires 263.9394).

2-iodo-4-methylbenzenamine 5h

NH₂

The title product **5h** was obtained as a light yellow solid (886 mg, 76%) after column chromatography (AcOEt : hexane = 5 : 95) using method B. mp 36-37 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.20 (3H, s), 3.93 (2H, br s), 6.66 (1H, d, *J* 8.2Hz), 6.94 (1H, dd,

J 1.8Hz, 8.2Hz), 7.47 (1H, d, *J* 1.8Hz); δ_C (CDCl₃, 400 MHz) 19.8, 84.3, 114.6, 129.5, 130.0, 139.0, 144.3; *m/z* (EI) 232.9704 (M⁺. C₇H₈IN requires 232.9701).

2-iodo-4-methoxybenzenamine 5i

,0,

The title product **5i** was obtained as a light yellow oil. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.73 (3H, s), 3.79 (2H, br s), 6.70 (1H, d, *J* 8.3Hz), 6.77 (1H, dd, *J* 2.9Hz, 8.8Hz), 7.22 (1H, d, *J* 2.9Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 56.0, 84.3, 115.3, 116.1, 123.5, 140.7,

152.6; *m/z* (EI) 248.9655 (M⁺. C₇H₈INO requires 248.9651).

2-bromo-6-iodobenzenamine 5j

The title product **5j** was obtained as a light yellow solid (655 mg, 44%) after column chromatography (AcOEt : hexane = 10 : 90) using method A. mp 83-84 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 4.17 (2H, br s), 6.58 (1H, d, *J* 8.3Hz), 7.41 (1H, dd, *J* 2.0Hz, 8.8Hz), 7.74

(1H, d, *J* 2.0Hz); δ_C (CDCl₃, 400 MHz) 78.3, 110.0, 117.2, 136.9, 139.9, 143.8; *m/z* (EI) 269.8648 (M⁺. C₆H₅BrIN requires 297.8650).

1-(2-amino-3-iodophenyl)ethanone 5k

The title product **5k** was obtained as a light yellow solid (1.25 g, 96%) after column chromatography (AcOEt : hexane = 10 : 90) using method A. mp 93-94 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.55 (3H, s), 6.30 (2H, br s), 6.45 (1H, d, *J* 8.8Hz), 7.47 (1H, dd, *J* 1.9Hz, 8.8Hz), 7.97 (1H, d, *J* 2.0Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 27.7, 75.1, 119.4, 120.5, 140.5, 142.5, 149.7, 199.7; *m/z* (EI) 260.9651 (M⁺. C₈H₈INO requires 260.9651).

ethyl 2-amino-3-iodobenzoate 51

The title product **51** was obtained as a white solid (1.19 g, 82%) after column chromatography (AcOEt : hexane = 10 : 90) using method A. mp 68-69 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.38 (3H, t, *J* 7.1Hz), 4.33 (2H, q, *J* 7.1Hz), 5.77 (2H, br s), 6.45 (1H, d, *J* 8.8Hz), 7.47 (dd, *J* 2.0Hz, 8.8Hz), 8.14 (1H, d, *J* 2.5Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 14.4, 60.4, 75.9, 113.1, 118.7, 139.3, 142.0, 149.7, 166.8; *m/z* (EI) 290.9760 (M⁺. C₉H₁₀INO₂ requires 290.9756). 2-iodo-6-nitrobenzenamine **5m**

The title product **5m** was obtained as a yellow solid (1.16 g, 88%) after column chromatography (AcOEt : hexane = 20 : 80) using method A. mp 124-125 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 6.09 (2H, br s), 6.61 (1H, d, *J* 8.7Hz), 7.57 (1H, dd, *J* 2.0Hz, 8.8Hz), 8.43 (1H, d, *J* 2.3Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 75.9, 120.5, 133.1, 134.3, 143.6, 143.9; *m/z* (EI) 263.9399 (M⁺. C₆H₅IN₂O₂ requires 263.9396).

2-iodo-6-methylbenzenamine 5n

The title product **5n** was obtained as a light yellow solid (746 mg, 64%) after column chromatography (AcOEt : hexane = 10 : 90) using method B. mp 86-87 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.11 (3H, s), 3.61 (2H, br s), 6.45 (1H, d, *J* 8.2Hz), 7.29 (1H, dd, *J* 1.8Hz, 8.2Hz), 7.34 (1H, d, *J* 1.8Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 17.0, 79.5, 116.8, 124.9, 135.5, 138.6, 144.3; *m/z* (EI) 232.9701 (M⁺. C₇H₈IN requires 232.9701).

4-bromo-2-ethynylbenzenamine 2c

 $\begin{array}{l} \mbox{Br} \\ \mbox{Br} \\ \mbox{NH}_2 \end{array} \begin{array}{l} \mbox{The title product $2c$ was obtained as a light yellow solid (892 mg, 91\% for 2 steps) after column chromatography (AcOEt : hexane = 10 : 90). mp 65-66 °C; \\ \mbox{$\delta_{\rm H}$ (CDCl_3, 400 MHz) 3.41 (1H, s), 4.26 (2H, br s), 6.58 (1H, d, J 8.8Hz), 7.22 (1H, dd, J 2.4Hz, 8.8Hz), 7.43 (1H, d, J 2.4Hz); \\ \mbox{$\delta_{\rm C}$ (CDCl_3, 400 MHz) 79.2, 83.5, 108.4, 108.7, 115.7, 132.9, 134.6, 147.4; m/z (EI) 196.9670 (M⁺. C_8H_6BrN requires 196.9684). \end{array}$

4-chloro-2-ethynylbenzenamine 2d

The title product **2d** was obtained as a light yellow solid (531 mg, 70% for 2 steps) after column chromatography (AcOEt : hexane = 10 : 90). mp 53-54 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.41 (1H, s), 4.24 (2H, br s), 6.62 (1H, d, *J* 8.8Hz), 7.09

(1H, dd, J 2.5Hz, 8.8Hz), 7.28 (1H, d, J 2.4Hz); δ_C (CDCl₃, 400 MHz) 79.4, 83.4, 107.9, 115.4, 122.0, 130.1, 131.8, 147.0; *m/z* (EI) 151.0180 (M⁺. C₈H₆ClN requires 151.0189).

1-(4-amino-3-ethynylphenyl)ethanone 2e

The title product **2e** was obtained as a white solid (661 mg, 83% for 2 steps) after column chromatography (AcOEt : hexane = 20 : 80). mp 76-77 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.50 (3H, s), 3.41 (1H, s), 4.74 (2H, br s), 6.69 (1H, d, J 8.6Hz), 7.80 (1H, dd, J 2.0Hz, 8.8Hz), 7.98 (1H, d, J 2.0Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 26.1, 79.5, 83.0, 105.6, 113.3, 127.4, 130.7, 134.2, 152.2, 195.5; *m/z* (EI) 159.0681 (M⁺. C₁₀H₉NO requires 159.0684).

ethyl 4-amino-3-ethynylbenzoate 2f

The title product **2f** was obtained as a white solid (870 mg, 92% for 2 steps) after column chromatography (AcOEt : hexane = 20 : 80). mp 105-106 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.36 (3H, t, *J* 7.3Hz), 3.40 (1H, s), 4.32 (2H, q, *J* 7.3Hz), 4.67 (2H, br s), 6.67 (1H, d, *J* 8.7Hz), 7.83 (1H, dd, *J* 1.8Hz, 8.7Hz), 8.04 (1H, d, *J* 2.3Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 14.4, 60.5, 79.6, 82.9, 105.7, 113.2, 119.7, 131.8, 134.8, 152.0, 166.0; *m/z* (EI) 189.0789 (M⁺. C₁₁H₁₁NO₂ requires 189.0790).

2-ethynyl-4-nitrobenzenamine 2g

 $\begin{array}{c} \mathsf{O}_{2}\mathsf{N} \\ \mathsf{N}\mathsf{H}_{2} \end{array} \mbox{ The title product 2g was obtained as a yellow solid (609 mg, 75% for 2 steps) after column chromatography (AcOEt : hexane = 30 : 70). mp 128-129 °C; <math>\delta_{\mathrm{H}} \\ (\mathrm{CDCl}_{3}, 400 \text{ MHz}) \ 3.47 \ (1\mathrm{H}, \mathrm{s}), \ 5.00 \ (2\mathrm{H}, \mathrm{br} \ \mathrm{s}), \ 6.69 \ (1\mathrm{H}, \mathrm{d}, J \ 8.7\mathrm{Hz}), \ 8.05 \\ (1\mathrm{H}, \mathrm{dd}, J \ 2.4\mathrm{Hz}, \ 8.8\mathrm{Hz}), \ 8.26 \ (1\mathrm{H}, \mathrm{d}, J \ 2.9\mathrm{Hz}); \ \delta_{\mathrm{C}} \ (\mathrm{CDCl}_{3}, 400 \ \mathrm{MHz}) \ 78.1, \ 84.2, \ 105.7, \ 112.9, \\ 126.3, \ 129.2, \ 138.3, \ 153.4; \ m/z \ (\mathrm{EI}) \ 162.0423 \ (\mathrm{M}^{+}. \ \mathrm{C}_{8}\mathrm{H}_{6}\mathrm{N}_{2}\mathrm{O}_{2} \ \mathrm{requires} \ 162.0429). \end{array}$

2-ethynyl-4-methylbenzenamine 2h

The title product **2h** was obtained as a light yellow solid (584 mg, 89% for 2 steps) after column chromatography (AcOEt : hexane = 5 : 95). mp 34-35 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.20 (3H, s), 3.35 (1H, s), 4.10 (2H, br s), 6.61 (1H, d, *J* 8.2Hz), 6.96 (1H, dd, *J* 1.8Hz, 8.2Hz), 7.13 (1H, d, *J* 1.6z); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 20.2, 80.8, 82.1, 106.6, 114.5, 127.1, 131.0, 132.6, 146.2; *m/z* (EI) 131.0730 (M⁺. C₉H₉N requires 131.0735).

2-ethynyl-4-methoxybenzenamine 2i

.H

 NH_2

0,

The title product **2i** was obtained as a light yellow oil (623 mg, 94% for 2 steps) after column chromatography (AcOEt : hexane = 10 : 90). $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.38 (1H, s), 3.73 (3H, s), 3.98 (2H, br s), 6.65 (1H, d, *J* 8.8Hz), 6.79 (1H,

dd, J 2.9Hz, 8.8Hz), 6.88 (1H, d, J 2.9Hz); δ_C (CDCl₃, 400 MHz) 55.7, 80.6, 82.4, 107.1, 115.8, 116.2, 117.8, 142.7, 151.6; *m/z* (EI) 147.0687 (M⁺. C₉H₉NO requires 141.684).

2-bromo-6-ethynylbenzenamine 2j

The title product 2j was obtained as a light yellow solid (882 mg, 90% for 2 steps) after column chromatography (AcOEt : hexane = 20 : 80). mp 46-47 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.97 (1H, s), 4.25 (2H, br s), 6.67 (1H, d, J 8.3Hz), 7.24 (1H, dd, J 1.5Hz, 8.3Hz), 7.57 (1H, d, J 1.9Hz); δ_C (CDCl₃, 400 MHz) 75.8, 82.8, 108.1, 112.5, 114.9,

132.3, 136.2, 144.7; m/z (EI) 196.9666 (M⁺. C₈H₆BrN requires 196.9684).

1-(2-amino-3-ethynylphenyl)ethanone 2k

The title product 2k was obtained as a light yellow solid (788 mg, 99% for 2 steps) after column chromatography (AcOEt : hexane = 20 : 80). mp 50-51 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.57 (3H,s), 2.97 (1H, s), 6.47 (2H, br s), 6.58 (1H, d, J 8.8Hz), 7.36 (1H, dd, J 1.9Hz, 8.3Hz), 7.89 (1H, d, J 1.9Hz); δ_C (CDCl₃, 400 MHz) 27.6, 74.9, 83.6,

109.0, 117.3, 117.9, 136.6, 137.6, 150.5, 200.2; m/z (EI) 159.0688 (M⁺. C₁₀H₉NO requires 159.0684).

ethyl 2-amino-3-ethynylbenzoate 21

The title product 21 was obtained as a white solid (539 mg, 57% for 2 steps) after column chromatography (AcOEt : hexane = 5 : 95). mp 65-66 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.39 (3H, t, J 7.3Hz), 2.95 (1H, s), 4.33 (2H, q, J 7.3Hz), 5.93 (2H, br s), 6.59 (1H, d, J 8.7Hz), 7.36 (1H, dd, J 1.8Hz, 8.7Hz), 8.05 (1H, d, J 1.8Hz); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 14.3, 60.6, 74.8, 83.7, 109.3, 110.7, 116.6, 135.7, 137.2, 150.6, 167.4; m/z (EI) 189.0782

(M⁺. C₁₁H₁₁NO₂ requires 189.0790).

2-ethynyl-6-methylbenzenamine 2m

The title product 2m was obtained as a yellow solid (800 mg, 99% for 2 steps) after column chromatography (AcOEt : hexane = 20 : 80). mp 119-120 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.00 (1H, s), 6.22 (2H, br s), 6.77 (1H, d, J 8.6Hz), 7.44 (1H, dd, J 2.0Hz, 8.8Hz), 8.29 (1H, d, J 2.0Hz) ; δ_C (CDCl₃, 400 MHz) 76.5, 81.8, 110.9, 118.9, 130.4,

131.9, 138.6, 144.6; *m/z* (EI) 162.0427(M⁺. C₈H₆N₂O₂ requires 162.0429).

2-ethynyl-6-methylbenzenamine 2n

The title product 2n was obtained as a yellow oil (151 mg, 23% for 2 steps) after column chromatography (AcOEt : hexane = 5 : 95). $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.13 (3H, s), 2.94 (1H, s), 3.76 (2H, br s), 6.58 (1H, d, J 8.2Hz), 7.18 (1H, dd, J 1.8Hz, 8.2Hz), 7.21 (1H, d, J 1.8Hz); δ_C (CDCl₃, 400 MHz) 17.1, 74.6, 84.6, 111.3, 114.4, 121.9,

131.2, 134.3, 145.3; m/z (EI) 131.0728 (M⁺. C₉H₉N requires 131.0735).

2-ethynylpyridine 20

The title product **20** was obtained as a light yellow oil (382 mg, 74% for 2 steps) after column chromatography (AcOEt : hexane = 30 : 70). $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.16 (1H, s), 7.25-7.29 (1H, m), 7.49 (1H, d, J 7.8Hz), 7.64-7.69 (1H, m), 8.60 (1H, d, *J* 4.9Hz); δ_C (CDCl₃, 400 MHz) 77.1, 82.7, 123.3, 127.3, 136.0, 142.2, 149.9; *m/z* (EI) 103.0420 (M⁺. C₇H₅N requires 103.0422).

5-ethynyl-1H-indole 2p

H The title product **2p** was obtained as a light yellow solid (536 mg, 76% for 2 steps) after column chromatography (AcOEt : hexane = 10 : 90). mp 66-67 °C; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.00 (1H, s), 6.53-6.55 (1H, m), 7.21-7.23 (1H, m), 7.32 (2H, s), 7.84 (1H, s), 8.20 (1H, br s); $\delta_{\rm C}$ (CDCl₃, 400 MHz) 74.6, 85.3, 102.9, 111.0, 113.1, 125.1, 125.3, 125.9, 127.6, 135.6; *m/z* (EI) 141.0579 (M⁺. C₁₀H₇N requires 141.0578).

References:

- C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid, P. Knochel, *Tetrahedron*, 2003, 59, 1571; A. J. B. Lapierre, S. J. Geib, D. P. Curran, *J. Am. Chem. Soc.*, 2007, 129, 494; N. Charrier, E. Demont, R. Dunsdon, G. Maile, A. Naylor, A. O'Brien, S. Redshaw, P. Theobald, D. Vesey, D. Walter, *Synthesis*, 2006, 20, 3467.
- M. Layek, U. Lakshmi, D. Kalita, D. K. Barange, A. Islam, K. Mukkanti, M. Pal, *Beilstein J. Org. Chem.*, 2009, 5, No. 46; D. Rambabu, G. Raja, B. Yogi Sreenivas, G. P. K. Seerapu, K. Lalith Kumar, G. S. Deora, D. Haldar, M. V. B. Devyani, M. Pal, *Bioorg. Med. Chem. Lett.*, 2013, 23, 1351.
- B. Zhou, H. Chen and C. Wang, J. Am. Chem. Soc., 2013, 135, 1264; S. Thorand and N. Krause, J. Org. Chem., 1998, 63, 8551; S. Loeb and R. Ziessel, Org. Lett., 2007, 9, 737.
- A. Molad, I. Goldberg, A. Vigalok, J. Am. Chem. Soc., 2012, 134, 7290; A. J. Lennox and G. C. Lloyd-Jones, J. Am. Chem. Soc., 2012, 134, 7431; A. Pearson and J. B. Kim, Tetrahedron Lett., 2003, 44, 8525.
- 5. Y. Kobayashi, J. Igarashi, C. Feng, T. Tojo, Tetrahedron Lett., 2012, 53, 3742.
- Y. Kondo, S. Kojima, T. Sakamoto, J. Org. Chem., 1997, 62, 6507; C. R. Edwankar, R. V. Edwankar, O. A. Namjoshi, X. Liao, J. M. Cook, J. Org. Chem., 2013, 78, 6471; T. Ozawa, M. Kanematsu, H. Yokoe, M. Yoshida, K. Shishido, *Heterocycles*, 2012, 85, 2927.
- D. E. Lizos, J. A. Murphy, Org. Biomol. Chem., 2003, 1, 117; P. P. Sharp, M. G. Banwell, J. Renner, K. Lohmann, A. C. Willis, Org. Lett., 2013, 15, 2616.

¹H and ¹³C NMR Charts:

4-bromo-2-iodobenzenamine 5c

Br∖ NH_2

4-chloro-2-iodobenzenamine 5d

CI NH_2

<u>1-(4-amino-3-iodophenyl)</u>ethanone **5**e

¹H NMR spectrum

¹³C NMR spectrum

ethyl 4-amino-3-iodobenzoate 5f

Ö NH₂

¹H NMR spectrum

2-iodo-4-methylbenzenamine 5h

NH₂

¹³C NMR spectrum

tert-butyl 4-methoxyphenylcarbamate 6i

tert-butyl 2-iodo-4-methoxyphenlcarbamate 7i

¹H NMR spectrum

2-iodo-4-methoxybenzenamine 5i

_0 NH₂

¹H NMR spectrum

2-bromo-6-iodobenzenamine 5j

NH₂

<u>1-(2-amino-3-iodophenyl)</u>ethanone **5**k

ethyl 2-amino-3-iodobenzoate 51

NH₂ 0 O

¹H NMR spectrum

2-iodo-6-nitrobenzenamine 5m

2-iodo-6-methylbenzenamine 5n

¹³C NMR spectrum

4-bromo-2-ethynylbenzenamine 2c

4-chloro-2-ethynylbenzenamine 2d

CI NH₂

¹H NMR spectrum

¹³C NMR spectrum

<u>1-(4-amino-3-ethynylphenyl)ethanone **2e**</u>

NH₂

¹H NMR spectrum

ethyl 4-amino-3-ethynylbenzoate 2f

 NH_2

¹H NMR spectrum

¹³C NMR spectrum

¹H NMR spectrum

2-ethynyl-4-methylbenzenamine 2h

¹³C NMR spectrum

2-ethynyl-4-methoxybenzenamine 2i

O NH₂

2-bromo-6-ethynylbenzenamine 2j

<u>1-(2-amino-3-ethynylphenyl)ethanone **2k**</u>

ethyl 2-amino-3-ethynylbenzoate 21

¹³C NMR spectrum

2-ethynyl-6-methylbenzenamine 2m

2-ethynyl-6-methylbenzenamine 2n

2-ethynylpyridine 20

5-ethynyl-1*H*-indole **2p**

_Н // N

(E)-4-bromo-2-(5,5,5-trifluoropent-3-en-1-ynel)benzenamine 3c

¹³C NMR spectrum

¹³C NMR spectrum

¹³C NMR spectrum

(E)-ethyl 4-amino-3-(5,5,5-trifluoropent-3-en-1-ynyl)benzoate 3f

¹³C NMR spectrum

(E)-4-methyl-2-(5,5,5-trifluoropent-3-en-1-ynyl)benzenamine 3h

¹³C NMR spectrum

(E)-4-methoxy-2-(5,5,5-trifluoropent-3-en-1-ynyl)benzenamine 3i

(E)-2-bromo-6-(5,5,5-trifluoropent-3-en-1-ynel)benzenamine 3j

CF₃ NH₂ Br

(E)-1-(2-amino-3-(5,5,5-trifluoropent-3-en-1-ynyl)phenyl)ethanone 3k

CF₃ NH₂

(E)-ethyl 2-amino-3-(5,5,5-trifluoropent-3-en-1-ynyl)benzoate 31

NH₂

¹³C NMR spectrum

(E)-2-methyl-2-(5,5,5-trifluoropent-3-en-1-ynyl)benzenamine 3n

_CF₃ > NH₂

¹³C NMR spectrum

(E)-2-(5,5,5-trifluoropent-3-en-1-ynyl)pyridine **30**

CF₃

(*E*)-5-(5,5,5-trifluoropent-3-en-1-ynyl)-1*H*-indole **3p**

(*E*)-2-(3,3,3-trifluoroprop-1-enyl)-1*H*-indole **4b**

CF3

¹³C NMR spectrum

(*E*)-5-bromo-2-(3,3,3-trifluoroprop-1-enyl)-1*H*-indole **4c**

Br

¹³C NMR spectrum

¹³C NMR spectrum

¹³C NMR spectrum

¹³C NMR spectrum

(E)-5-methoxy-2-(3,3,3-trifluoroprop-1-enyl)-1H-indole 4i

(*E*)-1-(2-(3,3,3-trifluoroprop-1-enyl)-1*H*-indol-7-yl)ethanone **4**k

¹H NMR spectrum

¹³C NMR spectrum

