Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

A highly enantioselective Hg(II)-catalyzed Sakurai-Hosomi reaction of isatins with allyltrimethylsilanes

Zhong-Yan Cao,^a Jia-Sheng Jiang^c and Jian Zhou^{a,b,*}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China

Normal University, 3663N, Zhongshan Road, Shanghai 200062, China. E-mail: jzhou@chem.ecnu.edu.cn.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, P. R. China.

^c Mengcheng No.1 Middle School, Anhui, 233500, P. R. China.

Supporting Information

	Contents	Page
	General information	2
1)	Condition optimization based on reaction of allyltrimethylsilane $1a$ with isatin $2a$	3
2)	General procedure for the Sakurai-Hosomi reaction of isatin 2 with allylsilane 1	4-8
3)	General procedure for the one-pot asymmetric Sakurai-Hosomi reaction of isatin 4 with 1	9-10
4)	NMR spectra	11-41
5)	HPLC spectra	42-56

General information: Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. The $[\alpha]_D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H, ¹³C, and ¹⁹F NMR spectra were obtained using a Bruker DPX-300, 400 or 500 spectrometer. Chemical shifts are reported in ppm from CDCl₃ or (CD₃)₂CO with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

Anhydrous CH₂Cl₂ was prepared by first distillation over P₂O₅ and then from CaH₂. Anhydrous THF was prepared by distillation over sodium-benzophenone ketyl prior to use. Hg(OTf)₂ was purchased from J&K Company. Ligand difluorophos **C2** was purchased from Stream Company. Unprotected isatins were commercially available or easily prepared using literature procedures,^{1a} and *N*-DMTr isatins were synthesized according to the literature.^{1b} Allyltrimethylsilane was purchased from Accela ChemBio Co. Ltd and used without further purification.

¹ (a) For a review, see: J. F. M. da Silva, S. J. Garden, A. C. Pinto, *J. Braz. Chem. Soc.*, 2001, **12**, 273; (b) D. Tomita, K. Yamatsugu, M. Kanai and M. Shibasaki, *J. Am. Chem. Soc.*, 2009, **131**, 6946.

1) Condition optimization based on reaction of allyltrimethylsilane 1a with isatin 2a

Some commercially available chiral ligands were examined, and it was found that the nature of the ligands greatly influenced the reaction (Table S1). Although BINOL **C5** as ligand could catalyze the reaction, product **3a** was obtained in only 2% ee (entry 1). In sharp contrast, no reaction took place when BOX ligand **C6** or monophosphine ligand **C7** was employed (entries 2-3). Diphosphine ligands proved to be effective ligand in mercury catalysis (entries 4-6). A promising 74% ee of product **3a** was observed in the presence of 2.2 mol% of electron-deficient (*S*)-difluorophos **C2** (entry 6). Further screening of solvents suggested CH_2Cl_2 as the optimum solvent for this allylation reaction (entries 6-11).

Table S1. Studies of condition optimization

Entry	L	Solvent	Temp. (°C)	Time (h)	Isolated yield (%)	Ee (%) ^a
1	C5	THF	0	2.5	90	2
2	C6	THF	0	24	0	-
3	C7	THF	0	24	0	-
4	C1	THF	0	17	92	47
5	C4	THF	0	15	90	22
6	C2	THF	0	0.5	95	74
7	C2	CH_2Cl_2	0	1.0	94	90
8	C2	EtOAc	0	1.0	90	75
9	C2	CH ₃ CN	0	5.0	87	87
10	C2	toluene	0	2.0	85	59
11	C2	<i>n</i> -hexane	0	24	n.r.	-
12	C2	CH_2Cl_2	-10	1.0	90	92
13	C2	CH_2Cl_2	-30	3.0	n.r.	-
14 ^b	C2	CH_2Cl_2	-10	3.0	98	92

^a Determined by HPLC analysis; ^b 0.40 mmol scale using 1.0 mol% of C2/Hg(OTf)₂.

2) General procedure for the Sakurai-Hosomi reaction of isatin 2 with allylsilane 1

To a 10-mL over-dried Schlenk tube were added $Hg(OTf)_2$ (2.0 mg, 0.0040 mmol), C2 (3.0 mg, 0.0044 mmol), 4 mL of anhydrous CH_2Cl_2 . After the reaction mixture was stirred at room temperature for 2 hours, 2 (0.40 mmol) was added, the mixture was stirred at -10 °C for half an hour, and 1 (0.80 mmol) was added. The resulting mixture was stirred at -10 °C till almost full conversion of 2 by TLC analysis. The reaction mixture was diluted with 20 mL of EtOAc and ten drops of conc. HCl. This solution was stirred for 10 minutes and washed successively with saturated aq. NaHCO₃ and brine. The organic layer was concentrated *in vacuo* and the residue was purified via flash chromatography (20% acetone/DCM) to afford the desired product.

Product $3a^2$ was obtained in 98% yield as white solid; HPLC analysis (Chiralcel AD-H, ⁱPrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 5.64 min, t_r (minor) = 7.08 min) gave the isomeric composition of the product: 92% ee, $[\alpha]^{25}_{D}$ = -9.2 (c = 1.82, MeOH); The absolute configuration is determined to be *S* by comparing with the reported rotation for (*R*)-3-allyl-3-hydroxyoxindole³ $[a]^{25}_{D}$ = +6.94 (c = 1.36, MeOH). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, br, 1H), 7.39-7.37 (m, 1H), 7.30-7.26 (m, 1H), 7.11-7.07 (m, 1H), 6.88-6.86 (m, 1H), 5.75-5.65 (m, 1H), 5.17-5.13 (m, 2H), 2.84 (s, 1H), 2.77-2.72 (m, 1H), 2.64-2.59 (m, 1H); ¹³C NMR (100 MHz, acetone-d₆): 179.61, 142.57, 132.55, 132.14, 129.96, 125.23, 122.69, 119.36, 110.50, 76.68, 43.39.

Product **3b**⁴ was obtained in 98% yield as a red solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 6.13 min, t_r (minor) = 8.52 min) gave the isomeric composition of the product: 86% ee, $[\alpha]^{25}_{D}$ = +8.6 (c = 2.08,

² Z.-Y. Cao, Y. Zhang, C.-B. Ji and J. Zhou, Org. Lett., 2011, 13, 6398.

³ D. Sano, K. Nagata and T. Itoh, *Org. Lett.*, 2008, **10**, 1593.

⁴ H. M. Meshram, P. Ramesh, B. C. Reddy and G. S. Kumar, *Chem. Lett.*, 2011, **40**, 357.

MeOH); ¹H NMR (300 MHz, CDCl₃): δ 8.21 (s, br, 1H), 7.18 (s, 1H), 7.05 (ABd, J = 7.8 Hz, 1H), 6.76 (ABd, J = 7.8 Hz, 1H), 5.74-5.60 (m, 1H), 5.16-5.10 (m, 2H), 3.29 (s, 1H), 2.76-2.70 (m, 1H), 2.65-2.57 (m, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, acetone-d₆): 179.73, 140.09, 132.64, 132.21, 131.93, 130.19, 125.89, 119.28, 110.26, 76.81, 43.42, 21.10.

Product $3c^4$ was obtained in 82% yield as a white solid; HPLC analysis (Chiralcel OD-H, ^{*i*}PrOH/hexane = 10/90, 1.0 mL/min, 230 nm; t_r (major) = 8.71 min, t_r (minor) = 11.83 min) gave the isomeric composition of the product: 88% ee, $[\alpha]^{25}_{D}$ = +12.1 (c = 1.80, MeOH); ¹H NMR (300 MHz, CDCl₃): δ 9.21 (s, br, 1H), 7.00 (s, 1H), 6.80 (s, 2H), 5.65-5.51 (m, 1H), 5.03-4.94 (m, 3H), 3.76 (s, 3H), 2.76-2.70 (m, 1H), 2.62-2.55 (m, 1H); ¹³C NMR (75 MHz, acetone-d₆): 179.61, 156.54, 135.72, 133.41, 132.63, 119.36, 114.61, 112.13, 110.92, 77.15, 56.00, 43.47.

Product $3d^4$ was obtained in 88% yield as a white solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 7.49 min, t_r (minor) = 9.41 min) gave the isomeric composition of the product: 85% ee, $[\alpha]^{25}_{D}$ = -4.5 (c = 1.82, MeOH); ¹H NMR (300 MHz, CDCl₃): δ 8.25 (s, br, 1H), 7.13-7.10 (m, 1H), 7.00-6.93 (m, 1H), 6.83-6.79 (m, 1H), 5.74-5.60 (m, 1H), 5.16-5.11 (m, 2H), 3.39 (s, 1H), 2.76-2.70 (m, 1H), 2.63-2.56 (m, 1H); ¹³C NMR (100 MHz, acetone-d₆): 179.50, 159.62 (d, *J* = 236.0 Hz), 138.66 (d, *J* = 2.0 Hz), 133.98 (d, *J* = 7.0 Hz), 132.24, 119.72, 116.10 (d, *J* = 23.0 Hz), 112.94 (d, *J* = 24.0 Hz), 111.33 (d, *J* = 8.0 Hz), 77.05, 43.27; ¹⁹F NMR (282 MHZ, CDCl₃): δ -119.33.

Product $3e^2$ was obtained in 96% yield as a white solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 7.93 min, t_r (minor) = 10.57 min) gave the isomeric composition of the product: 88% ee, $[\alpha]^{25}_{D}$ = +16.4 (c = 2.19, MeOH); ¹H NMR (300 MHz, CDCl₃): δ 8.01 (s, br, 1H), 7.34 (ABd, J = 2.1 Hz, 1H), 7.23 (ABd, J = 2.1 Hz, 1H), 6.82-6.79 (m, 1H), 5.74-5.60 (m, 1H), 5.18-5.13 (m, 2H), 3.16 (s, 1H), 2.76-2.69 (m, 1H), 2.63-2.56 (m, 1H); ¹³C NMR (75 MHz, acetone-d₆): 179.15, 141.41, 134.16, 132.14, 129.84, 127.46, 125.51, 119.82, 111.91, 76.83, 43.16.

Me Ne Ne Ne Me 3f Product $3\mathbf{f}^2$ was obtained in 86% yield as a white solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 6.81 min, t_r (minor) = 8.35 min) gave the isomeric composition of the product: 79% ee, $[\alpha]^{25}_{D}$ = +6.0 (c =

1.86, MeOH); ¹H NMR (400 MHz, acetone-d₆): δ 9.30 (s, br, 1H), 7.00 (s, 1H), 6.87 (s, 1H), 5.62-5.49 (m, 1H), 5.02-4.88 (m, 3H), 2.72-2.66 (m, 1H), 2.60-2.53 (m, 1H), 2.26 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, acetone-d₆): 180.09, 138.57, 132.81, 131.93, 131.72, 123.27, 119.50, 119.15, 77.00, 43.53, 21.06, 16.53.

Product $3g^2$ was obtained in 92% yield as a white solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 6.70 min, t_r (minor) = 8.47 min) gave the isomeric composition of the product: 82% ee, $[\alpha]^{25}_{D}$ = +15.6 (c = 2.95, MeOH); ¹H NMR (400 MHz, acetone-d₆): δ 9.61 (s, br, 1H), 7.34 (ABd, J = 1.6 Hz, 1H), 7.06 (ABd, J = 1.6 Hz, 1H), 5.40-5.29 (m, 1H), 5.25 (s, 1H), 5.06-5.02 (m, 1H), 4.92-4.89 (m, 1H), 3.24-3.19 (m, 1H), 2.74-2.69 (m, 1H); ¹³C NMR (100 MHz, acetone-d₆): 178.11, 146.26, 131.55, 129.04, 128.72, 123.66, 120.88, 119.89, 113.07, 78.33, 40.21.

Product **3h**⁵ was obtained in 83% yield as a white solid; HPLC analysis (Chiralcel OD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 7.34 min, t_r (minor) = 9.09 min) gave the isomeric composition of the product: 78% ee, $[\alpha]^{25}_{D}$ = +2.1 (c = 1.10, MeOH); ¹H NMR (400 MHz, acetone-d₆): δ 9.41 (s, br, 1H), 7.29 (ABd, *J* = 1.6 Hz, 1H), 7.19 (ABd, *J* = 1.6 Hz, 1H), 7.07-7.06 (m, 1H), 5.64-5.53 (m, 1H), 5.08-4.96 (m, 3H), 2.75-2.70 (m, 1H), 2.60-2.55 (m,1H); ¹³C NMR (100 MHz, acetone-d₆): 179.15, 144.33, 132.27, 131.49, 127.02, 125.44, 122.95, 119.73, 113.67, 76.41, 43.18.

⁵ H. -X. Wu, F. Xue, X. Xiao and Y. Qin, J. Am. Chem. Soc., 2010, **132**, 14052.

7.02-6.97 (m, 1H), 5.77-5.63 (m, 1H), 5.17-5.11 (m, 2H), 3.03 (s, 1H), 2.77-2.71 (m, 1H), 2.65-2.58 (m, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, acetone-d₆): 180.01, 141.03, 132.71, 131.82, 131.27, 122.73, 122.62, 119.82, 119.25, 76.89, 43.49, 16.59; IR (ATR): 3338, 2922, 1695, 1630, 1460, 1274, 1188, 1109; GC-MS: 203 (M⁺, 10), 162 (100), 77 (11), 116 (7), 104 (7), 144 (6), 134 (6), 177 (1); HRMS (EI): Exact mass calcd for $C_{12}H_{13}NO_2$ [M]⁺: 203.0946, Found: 203.0950.

Product $3j^2$ was obtained in 81% yield as a white solid; HPLC analysis (Chiralcel OD-H, ⁱPrOH/hexane = 10/90, 1.0 mL/min, 230 nm; t_r (major) = 8.71 min, t_r (minor) = 11.83 min) gave the isomeric composition of the product: 86% ee, $[\alpha]^{25}_{D}$ = -19.3 (c = 1.82, MeOH); ⁱH NMR (300 MHz, CDCl₃): δ 7.88 (s, br, 1H), 7.29-7.25 (m, 2H), 7.06-7.01 (m, 1H), 5.75-5.61 (m, 1H), 5.17-5.11 (m, 2H), 3.15 (s, 1H), 2.78-2.71 (m, 1H), 2.65-2.58 (m, 1H); ¹³C NMR (75 MHz, acetone-d₆): 179.17, 140.13, 133.95, 132.06, 129.91, 124.01, 123.80, 119.85, 115.24, 77.46, 43.23.

Product **3k** was obtained in 87% yield (m. p. 88-90 °C) as a white solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 7.93 min, t_r (minor) = 13.11 min) gave the isomeric composition of the product: 84% ee, $[\alpha]^{25}_{D}$ = -1.6 (c = 1.75, MeOH); ¹H NMR (400 MHz, acetone-d₆): δ 9.42 (s, br, 1H), 7.07 (ABd, J = 7.6 Hz, 1H), 6.83 (ABd, J = 7.2 Hz, 1H), 5.62-5.52 (m, 1H), 5.01-4.93 (m, 2H), 4.90 (s, 1H), 2.73-2.68 (m, 1H), 2.60-2.54 (m, 1H), 2.24 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, acetone-d₆): 180.52, 141.09, 138.61, 132.84, 129.55, 124.06, 122.35, 119.17, 118.56, 77.13, 43.48, 20.02, 13.24; IR (ATR): 3326, 1698, 1272, 1203, 1156, 1111; GC-MS: 217 (M⁺, 8), 176 (100), 103 (9), 91 (8), 158 (7), 130 (6), 118 (6), 77 (11); HRMS (EI): Exact mass calcd for C₁₃H₁₅NO₂ [M]⁺: 217.1103, Found: 217.1106.

Product **31** was obtained in 75% yield (m. p. 94-96 °C) as a white solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 6.72 min, t_r (minor) = 9.15 min) gave the isomeric composition of the product: 82% ee, $[\alpha]^{25}_{D}$ = -3.1 (c = 1.96, MeOH); ¹H NMR (400 MHz, acetone-d₆): δ 9.58 (s, br, 1H), 7.19 (ABd, *J* = 8.0 Hz, 1H), 7.07 (ABd, *J* = 8.0 Hz, 1H), 5.62-5.52 (m, 1H), 5.09 (s, 1H), 5.02-4.95 (m, 2H), 2.75-2.70 (m, 1H), 2.61-2.56 (m, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, acetone-d₆): 180.00, 142.55, 135.38, 132.32, 130.64, 123.77, 123.16, 119.64, 118.33, 76.95, 43.27, 14.07; IR (ATR): 3268, 1703, 1602, 1422, 1332, 1272, 1193, 1115; GC-MS: 237 (M^+ , 5, 2), 196 (100), 77 (16), 104 (12), 176 (11), 139 (8), 207 (7), 115 (3), 239 (2); HRMS (EI): Exact mass calcd for C₁₂H₁₂NO₂³⁵Cl [M]⁺: 237.0557, Found: 237.0556.

Product **3m** was obtained in 90% yield (m. p. 101-103 °C) as a red solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 254 nm; t_r (major) = 8.43 min, t_r (minor) = 11.60 min) gave the isomeric composition of the product: 86% ee, $[\alpha]^{25}_{D}$ = -5.8 (c = 1.21, MeOH); ¹H NMR (400 MHz, acetone-d₆): δ 9.30 (s, br, 1H), 7.37-7.35 (m, 1H), 7.24-7.20 (m, 1H), 7.02-6.98 (m, 1H), 6.89-6.87 (m, 1H), 4.92 (s, 1H), 4.68-4.66 (m, 1H), 4.57-4.56 (m, 1H), 2.70 (AB, *J* = 13.2 Hz, 1H), 2.68 (AB, *J* = 12.8 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (100 MHz, acetone-d₆): 179.80, 142.91, 140.80, 132.28, 130.02, 125.66, 122.54, 115.57, 110.53, 77.18, 46.49, 24.15; IR (ATR): 3193, 1692, 1624, 1472, 1349, 1181, 1113; GC-MS: 203 (M⁺, 7), 148 (100), 119 (23), 92 (23), 65 (9), 130 (6), 77 (6), 102 (5); HRMS (EI): Exact mass calcd for C₁₂H₁₃NO₂ [M]⁺: 203.0946, Found: 203.0944.

Product **3n** was obtained in 90% yield (m. p. 74-76 °C) as a red solid; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 11.76 min, t_r (minor) = 15.21 min) gave the isomeric composition of the product: 78% ee, $[\alpha]^{25}_{D}$ = -8.0 (c = 1.22, MeOH); ¹H NMR (400 MHz, CDCl₃): δ 9.02 (s, 1H), 7.34-7.32 (m, 1H), 7.21-7.18 (m, 1H), 7.04-7.00 (m, 1H), 6.85-6.83 (m, 1H), 5.04 (s, 1H), 4.84 (s, 1H), 4.40-4.26 (m, 3H), 2.77 (ABd, *J* = 13.6 Hz, 1H), 2.59 (AB, *J* = 13.6 Hz, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 180.40, 170.80, 140.40, 137.17, 130.00, 129.70, 124.58, 122.81, 117.74, 110.61, 76.65, 66.86, 41.12, 20.78; IR (ATR): 3343, 1702, 1621, 1251, 1040; GC-MS: 261 (M⁺, 4), 148 (100), 43 (21), 92 (11), 72 (11), 207 (9), 119 (8), 183 (2); HRMS (EI): Exact mass calcd for C₁₄H₁₅NO₄ [M]⁺: 261.1001, Found: 261.0998.

3) General procedure for the one-pot asymmetric Sakurai-Hosomi reaction of isatin 4 with 1

After the completion of the allylation reaction using THF at -30 °C, which was conducted similar to the general procedure described above, the crude reaction mixture was subjected to a mixture of anisole (0.9 mL), 10% TFA in CH₂Cl₂ (2 mL) at room temperature. The mixture was stirred at rt overnight, and then the solvent was evaporated. Purification of the resulting crude mixture through silica gel column chromatography (DCM/acetone = 20:1) afforded the deprotected product **3**. The spectra of them were in accordance with previous ones.

This compound was obtained without deprotection procedure using TFA/anisole, and product **5a** was obtained in 91% yield as a colorless oil; HPLC analysis (Chiralcel OD-H, ⁱPrOH/hexane = 10/90, 1.0 mL/min, 230 nm; t_r (minor) = 10.63 min, t_r (major) = 16.19 min) gave the isomeric composition of the product: 97% ee, $[\alpha]^{25}{}_{D}$ = +32.2 (c = 1.75, MeOH); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.31 (m, 7H), 7.29-7.17 (m, 3H), 6.96-6.88 (m, 2H), 6.77-6.74 (m, 4H), 6.30-6.28 (m, 1H), 5.72-5.62 (m, 1H), 5.19-5.14 (m, 2H), 3.74 (s, 6H), 2.82-2.75 (m, 2H), 2.71-2.62 (m, 1H); ¹³C NMR (100 MHz, acetone-d₆): 179.70, 158.11, 143.14, 142.47, 134.03, 133.83, 130.93, 130.54, 130.53, 129.72, 128.97, 128.04, 127.53, 126.63, 123.20, 122.40, 120.28, 116.21, 112.87, 112.82, 75.57, 73.77, 55.06, 44.04; IR (ATR): 3257, 1710, 1620, 1471, 1230, 1048; MS (EI): 491 (M⁺, 1), 303 (100), 148 (34), 227 (11), 288 (10), 215 (7), 273 (7), 146 (6); HRMS (EI): Exact mass calcd for C₃₂H₂₉NO₄ [M]⁺: 491.2097, Found: 491.2099.

Product **3a** was obtained in 89% yield as a red solid; HPLC analysis (Chiralcel OD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 7.68 min, t_r (minor) = 9.49 min) gave the isomeric composition of the product: 97% ee, $[\alpha]^{25}_{D}$ = -4.6 (c = 1.12, MeOH).

Product **3b** was obtained in 95% yield as a red solid, and 95% ee by HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 6.36 min, t_r (minor) = 8.87 min); $[\alpha]^{25}_{D}$ = +8.6 (c = 2.00, MeOH).

Product **3c** was obtained in 93% yield as a white solid and 94% ee by HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 11.05 min, t_r (minor) = 17.13 min); $[\alpha]^{25}_{D}$ = +18.0 (c = 0.69, MeOH).

Product **3d** was obtained in 87% yield as a white solid and 96% ee by HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 5.77 min, t_r (minor) = 7.09 min); $[\alpha]^{25}_{D}$ = -8.8 (c = 1.28, MeOH).

Product **3e** was obtained in 90% yield as a white solid and 94% ee by HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 11.05 min, t_r (minor) = 17.13 min); $[\alpha]_{D}^{25}$ = +20.1 (c = 1.61, MeOH).

Product **3h** was obtained in 56% yield as a white solid and 95% ee by HPLC analysis (Chiralcel OD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 7.29 min, t_r (minor) = 9.07 min); $[\alpha]^{25}_{D}$ = +3.1 (c = 0.80, MeOH).

Product **3m** was obtained in 95% yield (m. p. 101-103 °C) as a red solid and 93% ee by HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 8.13 min, t_r (minor) = 11.16 min); $[\alpha]^{25}_{D}$ = -7.7 (c = 1.81, MeOH).

Product **3n** was obtained in 76% yield (m. p. 74-76 °C) as a red solid and 86% ee by HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 12.11 min, t_r (minor) = 15.68 min); $[\alpha]^{25}{}_{D}$ = -12.0 (c = 1.60, MeOH).

No.	Ret.Time	Peak Na	me Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.66	n.a.	134.432	37.503	49.92	n.a.	BMB*
2	9.40	n.a.	100.060	37.616	50.08	n.a.	BMB*
Total:			234.493	75.118	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.68	n.a.	269.426	75.582	98.35	n.a.	BM *
2	9.49	n.a.	3.510	1.271	1.65	n.a.	BMB*
Total:			272.936	76.853	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.14	n.a.	30.668	4.941	49.86	n.a.	BMB*
2	8.54	n.a.	22.803	4.970	50.14	n.a.	BMB*
Total:			53.470	9.911	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.36	n.a.	405.114	66.972	97.49	n.a.	BMB*
2	8.87	n.a.	7.490	1.727	2.51	n.a.	BMB*
Total:			412.604	68.699	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	11.01	n.a.	21.491	6.304	49.35	n.a.	MB*
2	17.18	n.a.	13.759	6.469	50.65	n.a.	BM *
Total:			35.250	12.773	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	11.05	n.a.	268.842	77.421	96.84	n.a.	BMB*
2	17.13	n.a.	4.930	2.529	3.16	n.a.	BMB*
Total:			273.772	79.950	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	5.76	n.a.	34.348	5.253	50.91	n.a.	MB*
2	7.07	n.a.	27.707	5.064	49.09	n.a.	BMB*
Total:			62.055	10.317	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	5.77	n.a.	323.115	48.014	97.77	n.a.	BMB*
2	7.09	n.a.	6.337	1.093	2.23	n.a.	BMB*
Total:			329.452	49.107	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	11.01	n.a.	21.491	6.304	49.35	n.a.	MB*
2	17.18	n.a.	13.759	6.469	50.65	n.a.	BM *
Total:			35.250	12.773	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	11.05	n.a.	268.842	77.421	96.84	n.a.	BMB*
2	17.13	n.a.	4.930	2.529	3.16	n.a.	BMB*
Total:			273.772	79.950	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.80	n.a.	67.277	11.336	50.89	n.a.	BMB*
2	8.35	n.a.	53.299	10.938	49.11	n.a.	BMB*
Total:			120.576	22.274	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.81	n.a.	489.977	82.913	89.44	n.a.	BMB*
2	8.35	n.a.	47.921	9.787	10.56	n.a.	BMB*
Total:			537.897	92.701	100.00	0.000	

No.	Ret.Time	Peak Nam	e Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.68	n.a.	615.671	115.152	49.97	n.a.	BMB*
2	8.44	n.a.	488.636	115.300	50.03	n.a.	BMB*
Total:			1104.307	230.452	100.00	0.000	

No	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
	6.70	n.a.	347.459	64.338	90.97	n.a.	BMB*
1	2 8.47	n.a.	29.064	6.385	9.03	n.a.	BMB*
Tota	1:		376.524	70.723	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.46	n.a.	365.883	115.524	49.85	n.a.	BMB*
2	9.19	n.a.	290.431	116.212	50.15	n.a.	BMB*
Total:			656.314	231.736	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.29	n.a.	1272.301	414.779	97.61	n.a.	BM *
2	9.07	n.a.	28.521	10.148	2.39	n.a.	BMB*
Total:			1300.822	424.927	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.97	n.a.	67.081	13.136	49.74	n.a.	BMB*
2	9.85	n.a.	54.015	13.271	50.26	n.a.	BMB*
Total:			121.097	26.407	100.00	0.000	

Γ	No.	Ret.Time	Peak I	Name Height	Area	Rel.Area	Amount	Type
L		min		mAU	mAU*min	%		
Γ	1	7.91	n.a.	192.83	6 37.745	91.51	n.a.	BMB*
L	2	9.77	n.a.	14.82	3 3.502	8.49	n.a.	BMB*
E	Total:			207.65	9 41.247	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	8.67	n.a.	21.665	7.220	50.38	n.a.	BMB*
2	11.64	n.a.	15.293	7.112	49.62	n.a.	BM *
Total:			36.958	14.333	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	8.71	n.a.	100.785	34.120	92.82	n.a.	BMB*
2	11.83	n.a.	5.894	2.641	7.18	n.a.	BMB*
Total:			106.679	36.761	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.93	n.a.	188.009	37.476	50.27	n.a.	BMB*
2	13.09	n.a.	113.281	37.076	49.73	n.a.	BMB*
Total:			301.290	74.552	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.93	n.a.	344.265	67.983	92.15	n.a.	BMB*
2	13.11	n.a.	18.867	5.794	7.85	n.a.	BMB*
Total:			363.132	73.777	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.71	n.a.	110.616	18.265	49.63	n.a.	BMB*
2	9.15	n.a.	82.111	18.536	50.37	n.a.	BMB*
Total:			192.727	36.801	100.00	0.000	

No.	Ret.Time	Peak Name	e Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	6.72	n.a.	498.232	85.665	90.96	n.a.	BMB*
2	9.15	n.a.	40.301	8.509	9.04	n.a.	BMB*
Total:			538.533	94.174	100.00	0.000	

Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Type
min			mAU	mAU*min	%		
8.15	n.a.		42.093	8.841	50.07	n.a.	MB*
11.20	n.a.		30.399	8.816	49.93	n.a.	BMB*
			72.492	17.657	100.00	0.000	
	Ret.Time min 8.15 11.20	Ret.Time min 8.15 n.a. 11.20 n.a.	Ret.Time Peak Name min	Ret.Time Peak Name Height min mAU 8.15 n.a. 42.093 11.20 n.a. 30.399 72.492	Ret.Time min Peak Name mAU Height mAU*min Area mAU*min 8.15 n.a. 42.093 8.841 11.20 n.a. 30.399 8.816 72.492 17.657	Ret.Time min Peak Name MAU Height MAU*min Area % Rel.Area % 8.15 n.a. 42.093 8.841 50.07 11.20 n.a. 30.399 8.816 49.93 72.492 17.657 100.00	Ret.Time min Peak Name MAU Height MAU*min Area % Rel.Area % Amount 8.15 n.a. 42.093 8.841 50.07 n.a. 11.20 n.a. 30.399 8.816 49.93 n.a. 72.492 17.657 100.00 0.000

Г	No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Type
L		min			mAU	mAU*min	%		
Г	1	8.13	n.a.		383.517	81.122	96.46	n.a.	BMB*
L	2	11.16	n.a.		10.349	2.977	3.54	n.a.	BMB*
٦	fotal:				393.866	84.099	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	12.11	n.a.	93.812	30.712	49.68	n.a.	BMB*
2	15.67	n.a.	71.019	31.108	50.32	n.a.	BMB*
Total:			164.830	61.820	100.00	0.000	

No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Type
	min			mAU	mAU*min	%		
1	12.11	n.a.		436.039	142.959	93.00	n.a.	BMB*
2	15.68	n.a.		25.900	10.759	7.00	n.a.	BMB*
Total:				461.938	153.719	100.00	0.000	

<Chromatogram> mV

<Peak Table>

Detect	Detector A Channel 2 230nm								
Peak#	Ret. Time	Area	Height	Conc.					
1	10.606	10461895	233841	50.127					
2	16.277	10408905	141740	49.873					
Total		20870800	375581						

Detector A Channel 2 230nm

Peak#	Ret. Time	Area	Height	Conc.
1	10.630	716635	18117	1.629
2	16.194	43273533	597251	98.371
Total		43990168	615368	