Electronic Supporting Information

Chemoselective and stereoselective lithium

carbenoid mediated cyclopropanation of acyclic

allylic alcohols

M. J. Durán-Peña,,${ }^{a, \dagger}$ M. E. Flores-Giubi, ${ }^{a, \dagger}$ J. M. Botubol-Ares, ${ }^{a}$ L. M. Harwood, ${ }^{b}$ I. G. Collado, ${ }^{a}$ A. J. Macías-Sánchez ${ }^{a}$ and R. Hernández-Galán ${ }^{a}$
${ }^{a}$ Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Rio San Pedro s/n, Torre sur, 4° planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain. E-mail: rosario.hernandez@uca.es, antoniojose.macias@uca.es
${ }^{b}$ Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom

Table of contents:

\qquadPart A: Optimization data (Table S1)S2
Part B: Discussion of spectroscopic observations for compounds 10 and
\qquad
11 S3

Part C: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for compounds $\mathbf{3 b}, \mathbf{6 - 1 3}, 14 \mathbf{a}-\mathrm{c}, \mathbf{1 5 b} \mathbf{- c}$, 16b-c, 18a-c and 19a-c ; ${ }^{1} \mathrm{H}$-NMR spectra for compounds 4 and 5;

2D NMR experiments for compounds $\mathbf{9}$ and 10 S4-53

Part D: NOESY 1D spectra for compounds 7, 9, 12, 14b, 18b and 19b;
NOESY 2D spectra for compounds 6, $\mathbf{8}$ and $\mathbf{1 1}$. .S54-62

PART A: TABLE S1

Table S1. Optimization of cyclopropanation of compound 1 with 2,2dibromopropane

	Concentration ($n^{\mathbf{0}}$ equiv.)		
Entry	2,2-dibromopropane	$\boldsymbol{n - B u L i}$	Yield (\%)
$\mathbf{1}$	1	2	12
$\mathbf{2}$	2	4	21
$\mathbf{3}$	4	6	40
$\mathbf{4}$	4	8	50

PART B : Discussion of spectroscopic observations for compounds 10 and 11

Dichlorocyclopropanation compound $\mathbf{1 0}$ showed ions in its HRMS (APGC ${ }^{+}$) at $m / z=$ 237.0809, 219.0710, 201.1050 and 183.0941, consistent with formulae $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{OCl}_{2}$, $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{2}, \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{OCl}$ and $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Cl}$ respectively, that correspond to the protonated molecular ion, the loss of one molecule of water, the loss of a molecule of HCl and the loss of a molecule of water and another of HCl from a protonated ion of molecular formula $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{OCl}_{2}$. The presence of two chlorine atoms in the compound $\mathbf{1 0}$ was confirmed by a quaternary carbon resonance at δ c 72.0 (C-2') ppm in its ${ }^{13} \mathrm{C}$ NMR spectrum. On the other hand, spectroscopic data for compound 10 showed a homonuclear gCOSY correlation between signals at $\delta_{\mathrm{H}} 5.45(\mathrm{H}-2)$ and $4.16\left(\mathrm{CH}_{2}-1\right)$ ppm and gHMBC correlations between signal at δ c 72.0 (C-2’) ppm and gem-dimethyl group signals at $\delta_{\mathrm{H}} 1.33$ and 1.15 ppm . These data are consistent with a dichlorocyclopropanation on the distal double bond of geraniol, leading to (E)-5-(2,2-dichloro-3,3-dimethylcyclopropyl)-3-methylpent-2-en-1-ol (10).

Double cyclopropanation compound 11 showed ions in its HRMS (APGC ${ }^{+}$) at $m / z=$ $265.0302\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}\right]^{+}, 247.0611[\mathrm{M}+\mathrm{H}-2 \mathrm{HCl}]^{+}$and $229.0539\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\right.$ $2 \mathrm{HCl}]^{+}$, consistent with formulae $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{3}, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OCl}_{2}$ and $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{2}$ respectively, that correspond to the loss of one molecule of water and another of HCl , the loss of two molecules of HCl and the loss of one molecule of water and two of HCl from a protonated ion of molecular formula $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Cl}_{4} \mathrm{O}$. Furthermore, compound $\mathbf{1 1}$ presented signals in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum at $\delta \mathrm{c} 70.1$ and 71.7 ppm , corresponding to quaternary carbons substituted with chlorine atoms, consistent with a double cyclopropanation. NOESY 2D effects (Fig. S.1) between signals, at $\delta \mathrm{H} 3.78\left(\mathrm{CH}_{2}-1\right)$ and $1.23\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}-3\right.$ ') ppm and $\delta_{\mathrm{H}} 1.54$ ($\mathrm{H}-1^{\prime}$) ppm, were consistent with stereochemistry for this compound as $\left(1^{\prime} R^{*}, 3^{\prime} S^{*}, 1^{\prime \prime} S^{*}\right)$.

Fig. S1 Selected NOESY 2D correlations for compound 11.

-131.25

$\begin{array}{r}-140.37 \\ -138.56 \\ -135.22 \\ \Gamma_{-131.23}^{128.29} \\ -127.77 \\ =127.45 \\ -124.30 \\ -123.84 \\ \hline 120.80\end{array}$
$\begin{array}{r}77.32 \\ 77.00 \\ 76.68 \\ -71.93\end{array}$
-66.55
$<\begin{array}{r}39.68 \\ 39.58\end{array}$
26.70
$\sim \begin{array}{r}26.27 \\ 25.66\end{array}$

$\sim \begin{array}{r}17.64 \\ 16.47 \\ 15.98\end{array}$

-134.83
-131.33
$<_{124.34}^{124.58}$

-138.86
$\int_{-}^{134.57} 1.26$
$\left[\begin{array}{l}131.26 \\ 128.27 \\ -127.57 \\ 127.37 \\ \hline\end{array}\right.$
127.37
$<\begin{array}{r}124.67 \\ 124.37\end{array}$

-77.32
-77.00
76.68
72.36
-67.97

-38.18
-31.18
-25.68
-23.61
$-\begin{array}{r}22.93 \\ 22.47 \\ 21.38 \\ -17.05 \\ -12.69\end{array}$

PART D : SELECTED NOESY SPECTRA

