Electronic Supporting Information

Chemoselective and stereoselective lithium carbenoid mediated cyclopropanation of acyclic allylic alcohols

M. J. Durán-Peña,^{*a*,†} M. E. Flores-Giubi,^{*a*,†} J. M. Botubol-Ares,^{*a*} L. M. Harwood,^{*b*} I. G.

Collado,^a A. J. Macías-Sánchez^a and R. Hernández-Galán^a

^aDepartamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4° planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain. E-mail: <u>rosario.hernandez@uca.es</u>, antoniojose.macias@uca.es

^bDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom

Table of contents:

Part A: (Optimization data (Table S1)S2	2
Part B:]	Discussion of spectroscopic observations for compounds 10 and	
	11S.	3

Part D: NOESY 1D spectra for compounds 7, 9, 12, 14b, 18b and 19b;

PART A: TABLE S1

Table S1. Optimization of cyclopropanation of compound 1 with 2,2-

dibromopropane

Concentration (nº equiv.)					
Entry	2,2-dibromopropane	n-BuLi	Yield (%)		
1	1	2	12		
2	2	4	21		
3	4	6	40		
4	4	8	50		

<u>PART B : Discussion of spectroscopic observations for</u> <u>compounds 10 and 11</u>

Dichlorocyclopropanation compound **10** showed ions in its HRMS (APGC⁺) at m/z= 237.0809, 219.0710, 201.1050 and 183.0941, consistent with formulae C₁₁H₁₉OCl₂, C₁₁H₁₇Cl₂, C₁₁H₈OCl and C₁₁H₁₆Cl respectively, that correspond to the protonated molecular ion, the loss of one molecule of water, the loss of a molecule of HCl and the loss of a molecule of water and another of HCl from a protonated ion of molecular formula C₁₁H₁₉OCl₂. The presence of two chlorine atoms in the compound **10** was confirmed by a quaternary carbon resonance at $\delta_{\rm C}$ 72.0 (C-2') ppm in its ¹³C NMR spectrum. On the other hand, spectroscopic data for compound **10** showed a homonuclear gCOSY correlation between signals at $\delta_{\rm H}$ 5.45 (H-2) and 4.16 (CH₂-1) ppm and gHMBC correlations between signal at $\delta_{\rm C}$ 72.0 (C-2') ppm and *gem*-dimethyl group signals at $\delta_{\rm H}$ 1.33 and 1.15 ppm. These data are consistent with a dichlorocyclopropanation on the distal double bond of geraniol, leading to (*E*)-5-(2,2-dichloro-3,3-dimethylcyclopropyl)-3-methylpent-2-en-1-ol (**10**).

Double cyclopropanation compound **11** showed ions in its HRMS (APGC⁺) at m/z= 265.0302 [M+H-H₂O-HCl]⁺, 247.0611 [M+H-2HCl]⁺ and 229.0539 [M+H-H₂O-2HCl]⁺, consistent with formulae C₁₂H₁₆Cl₃, C₁₂H₁₇OCl₂ and C₁₂H₁₅Cl₂ respectively, that correspond to the loss of one molecule of water and another of HCl, the loss of two molecules of HCl and the loss of one molecule of water and two of HCl from a protonated ion of molecular formula C₁₂H₁₉Cl₄O. Furthermore, compound **11** presented signals in its ¹³C-NMR spectrum at $\delta_{\rm C}$ 70.1 and 71.7 ppm, corresponding to quaternary carbons substituted with chlorine atoms, consistent with a double cyclopropanation. NOESY 2D effects (Fig. S.1) between signals, at $\delta_{\rm H}$ 3.78 (CH₂-1) and 1.23 ((CH₃)C-3') ppm and $\delta_{\rm H}$ 1.54 (H-1') ppm, were consistent with stereochemistry for this compound as (1'*R**,3'*S**,1'''*S**).

Fig. S1 Selected NOESY 2D correlations for compound 11.

PART C: ¹H,¹³C-NMR and selected 2D NMR spectra

-138.90

77.25 77.00 76.75 72.37 -67.97

√77.32
 √77.00
 √76.68
 √71.93
 ─66.55

39.68
39.58

26.7026.2725.6617.6416.4715.98

PART D : SELECTED NOESY SPECTRA

