ELECTRONIC SUPPLEMENTARY INFORMATION

Synthesis of Inositol Phosphate-Based Competitive Antagonists of Inositol 1,4,5-Trisphosphate Receptors

Vera Konieczny,^a John. G. Stefanakis,^b Efstratios D. Sitsanidis,^b Natalia-Anastasia T. Ioannidou,^b Nikolaos V. Papadopoulos,^b Konstantina C. Fylaktakidou,^c Colin W. Taylor,^a* and Alexandros E. Koumbis^b*

^aDepartment of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom. Email: <u>cwt1000@cam.ac.uk</u>

^bLaboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece. E-mail: <u>akoumbis@chem.auth.gr</u>

^cLaboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece.

Table of contents

Table S1. Summary of dimerization reactions of 21 with malonic and succinic acid	S3
Table S2. Ca^{2+} release evoked by inositol phosphates and their binding to IP ₃ R1	S4
Table S3. $(1,2,3,4,6)$ IP ₅ (4) and a dimer of $(1,2,3,4,6)$ IP ₅ (6) are competitive	
antagonists of IP ₃ R	S4
Synthetic procedures and spectral data for the synthesized compounds	S5-S16
¹ H, ¹³ C and ³¹ P NMR spectra of 3	S17-S18
¹ H, ¹³ C and ³¹ P NMR spectra of 4	S19-S20
¹ H, ¹³ C and ³¹ P NMR spectra of 5	S21-S22
¹ H, ¹³ C and ³¹ P NMR spectra of 6	S23-S24
¹ H, ¹³ C and ³¹ P NMR spectra of 7	S25-S26
¹ H, ¹³ C and ³¹ P NMR spectra of 8	S27-S28
¹ H, ¹³ C and ³¹ P NMR spectra of 9	S29-S30
¹ H, ¹³ C and ³¹ P NMR spectra of 10	S31-S32
¹ H, ¹³ C and ³¹ P NMR spectra of 11	S33-S34
¹ H, ¹³ C and ³¹ P NMR spectra of 12	S35-S36
¹ H, ¹³ C and ³¹ P NMR spectra of 15b	S37-S38
¹ H and ¹³ C NMR spectra of 16a	S39
¹ H and ¹³ C NMR spectra of 16b	S40
¹ H and ¹³ C NMR spectra of 16c	S41
¹ H and ¹³ C NMR spectra of 16d	S42
¹ H and ¹³ C NMR spectra of 17a	S43
¹ H, ¹³ C and ³¹ P NMR spectra of 17b	S44-S45
¹ H and ¹³ C NMR spectra of 22	S46
¹ H and ¹³ C NMR spectra of 23a	S47
¹ H and ¹³ C NMR spectra of 23b	S48
¹ H and ¹³ C NMR spectra of 24a	S49

¹ H and ¹³ C NMR spectra of 24b	S50
¹ H and ¹³ C NMR spectra of 24c	S51
¹ H and ¹³ C NMR spectra of 25a	S52
¹ H and ¹³ C NMR spectra of 25b	S53
¹ H and ¹³ C NMR spectra of 28a	S54
¹ H and ¹³ C NMR spectra of 28b	S55
¹ H and ¹³ C NMR spectra of 28c	S56
¹ H and ¹³ C NMR spectra of 28d	S57
¹ H and ¹³ C NMR spectra of 29a	S58
¹ H and ¹³ C NMR spectra of 29b	S59
¹ H and ¹³ C NMR spectra of 29c	S60
¹ H and ¹³ C NMR spectra of 29d	S61
¹ H and ¹³ C NMR spectra of 30a	S62
¹ H and ¹³ C NMR spectra of 30b	S63
¹ H and ¹³ C NMR spectra of 30c	S64
¹ H and ¹³ C NMR spectra of 30d	S65
¹ H and ¹³ C NMR spectra of 30e	S66
¹ H and ¹³ C NMR spectra of 30f	S67
¹ H and ¹³ C NMR spectra of 30g	S68
¹ H and ¹³ C NMR spectra of 30h	S69
¹ H, ¹³ C and ³¹ P NMR spectra of 31a	S70-S71
¹ H, ¹³ C and ³¹ P NMR spectra of 31b	S72-S73
¹ H, ¹³ C and ³¹ P NMR spectra of 31c	S74-S75
¹ H, ¹³ C and ³¹ P NMR spectra of 31d	S76-S77
¹ H, ¹³ C and ³¹ P NMR spectra of 31e	S78-S79
¹ H, ¹³ C and ³¹ P NMR spectra of 31f	S80-S81
¹ H, ¹³ C and ³¹ P NMR spectra of 31g	S82-S83
¹ H, ¹³ C and ³¹ P NMR spectra of 31h	S84-S85

Entry	Acid	Reagents	Solvent	Products (yields %) ^a
1	Μ	DCC/DMAP ^b	CH_2CI_2	22 (37)
2	Μ	DCC/DMAP ^b	Et ₂ O	22 (12)
3	Μ	DIC/DMAP ^b	CH_2CI_2	22 (41)
4	Μ	DCC/DIPEA ^b	CH_2CI_2	24b (6)
5	Μ	DCC ^c	Et_2O	23a (62), 24b (12) ^d
6	Μ	DIC ^c	Et ₂ O	23 a (37), 24 a (7)
7	Μ	DIC ^c	CH_2CI_2	23a (39), 24a (7)
8	S	DCC ^c	Et_2O	recovered 21 (100)
9	S	DCC/DMAP ^b	CH_2CI_2	23b (56), 24c (28) ^d
10	S	EDC/DMAP ^b	CH_2CI_2	23b (55)

Table S1. Summary of dimerization reactions of 21 with malonic (M) and succinic acid (S).

^{*a*} Yields refer to pure products obtained after chromatographic purification, unless otherwise stated.

^b 4 equivalents of carbodiimide and 0.4 equivalents of base were used. ^c 4 equivalents of carbodiimide were used. ^d These compounds were obtained as an inseparable mixture and their ratio was determined from the ¹H NMR spectrum.

		Ca ²⁺ release		Binding	5		
Compound	pEC₅₀ ∕M	EC ₅₀ nM	Maximal release %	рК _d /М	K _d nM	pEC ₅₀ -pK _d /M	EC ₅₀ /K _d
(1,4,5)IP ₃ (1)	6.97 ± 0.04	107	68 ± 5	6.90 ± 0.19	127	0.07 ± 0.06	0.85
(1,3,4,6)IP ₄ (2)	5.64 ± 0.07*	2291	68 ± 5	5.35 ± 0.07*	4490	0.29 ± 0.08	0.51
2- <i>O</i> -butyryl (1,3,4,6)IP ₄ (3)	5.21 ± 0.01*	7934	49 ± 6*	5.32 ± 0.06*	4800	-	-
(1,2,3,4,6)IP ₅ (4)	-	-	0	4.46 ± 0.03*	22900	-	-

Table S2. Ca^{2+} release evoked by inositol phosphates **1-4** and their binding to IP₃R1.^{*a*}

^{*a*}Summary results from Fig. 2B, C show Ca²⁺ release evoked by maximally effective concentrations of each analog and pEC₅₀ values as means \pm s.e.m., and EC₅₀ values determined in Ca²⁺ release experiments (n = 3). pK_d (means \pm s.e.m.) and K_d values were derived from equilibrium-competition binding experiments (n = 3). pEC₅₀-pK_d values (means \pm s.e.m.) were calculated as described in the Experimental Section. Statistical differences were determined by one-way ANOVA and Tukey's post hoc test and refer to (1,4,5)IP₃ (1), **P* < 0.05. Hill coefficients were not significantly different.

Table S3. (1,2,3,4,6) IP₅ (4) and a dimer of (1,2,3,4,6) IP₅ (6) are competitive antagonists of IP₃R.^{*a*}

Compound	pEC ₅₀ /M	ΔpEC ₅₀ /M	EC ₅₀ nM	Maximal release %	n _H	K _d nM
control	7.33 ± 0.21	-	47	83 ± 1	1.74 ± 0.38	-
+(1,2,3,4,6)IP ₅ (4)	6.94 ± 0.22*	0.38 ± 0.04	115	78 ± 2	1.36 ± 0.13	69
+(1,2,3,4,6)IP₅ dimer (6)	6.01 ± 0.22*	1.32 ± 0.01	977	75 ± 3	1.36 ± 0.21	5

^{*a*} Summary results from Figure 3B. Ca^{2+} release evoked by maximally effective concentrations of (1,4,5)IP₃ alone (control) or the presence of 100 μ M of the indicated analogs, pEC₅₀ and Δ pEC₅₀s (pEC₅₀^{control} - pEC₅₀^{antagonist}) values and Hill coefficients (n_H) (means ± s.e.m.), and EC₅₀ values for (1,4,5)IP₃ (n = 3). K_d is the equilibrium dissociation constant for the antagonist calculated from the Ca²⁺ release experiments as described in the Experimetnal Section. Statistical differences were determined by one-way ANOVA and Tukey's post hoc test and refer to the control antagonist, **P* < 0.05.

1,6:3,4-bis-[*O*-(**2,3-dimethoxybutane-2,3-diyl**)]*-myo*-inositol (**14**). Diol **14** was prepared from *myo*-inositol (**13**) in 33% yield, following a known procedure.^{S1}

Tetrasodium 1,3,4,6-*myo***-inositol tetrakisphosphate (2)**. Phosphate **2** was prepared from diol **14**, following a known four-step reaction sequence.⁵²

2-O-benzyl-1,6:3,4-bis-[O-(2,3-dimethoxybutane-2,3-diyl)]-*myo*-inositol (15a). Pentaol 15a was prepared from *myo*-inositol (13), following a known three-step reaction sequence.^{S3}

Decabenzyl 1,2,3,4,6-(5-*O***-benzyl-***myo***-inosityl) pentakisphosphate (15b).** Benzyl phosphate **15b** was prepared from pentaol **15a** according to General Procedure E. Yield: 73%. Colorless thick oil. R_f = 0.15 (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 7.3 Hz, 2H, 2×ArH), 7.23–7.02 (m, 49H, 49×ArH), 6.84 (d, *J* = 7.1 Hz, 4H, 4×ArH), 5.56 (br d, ³*J*_{HP} = 8.7 Hz, 1H, H-2), 5.14–4.75 (m, 22H, 10×CH₂Ph & H-4 & H-6), 4.51 (dd, *J* = 11.7, 9.5 Hz, 2H, CH₂Ph), 4.32 (br t, ³*J*_{HP} = 9.3 Hz, 2H, H-1 & H-3), 3.46 (t, *J* = 9.4 Hz, 1H, H-5) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 137.7 (C-iAr), 135.8 (d, ³*J*_{CP} = 7.2 Hz, 2×C-iAr), 135.6 (d, ³*J*_{CP} = 9.0 Hz, 2×C-iAr), 135.54 (d, ³*J*_{CP} = 6.8 Hz, 4×C-iAr), 135.49 (d, ³*J*_{CP} = 7.2 Hz, 2×C-iAr), 128.4, 128.30, 128.28, 128.21, 128.16, 128.07, 128.06, 128.03, 127.96, 127.8, 127.7, 127.1 (C-oAr, C-mAr, C-pAr), 78.8 (C-5), 76.7 (t, ³*J*_{CP} = 6.1 Hz, C-4 & C-6), 76.0 (d, ³*J*_{CP} = 5.0 Hz, C-2), 74.6 (CH₂Ph), 73.7 (br s, C-1 & C-3), 70.02 (d, ²*J*_{CP} = 5.6 Hz, 2×CH₂Ph), 69.74 (d, ²*J*_{CP} = 6.6 Hz, 2×CH₂Ph) 69.69 (d, ²*J*_{CP} = 6.2 Hz, 2×CH₂Ph), 69.46 (d, ²*J*_{CP} = 5.7 Hz, 2×CH₂Ph), 69.25 (d, ²*J*_{CP} = 5.2 Hz, 2×CH₂Ph) ppm. ³¹P NMR (202 MHz, CDCl₃, ³¹P-¹H decoupled): -0.77 (2P), -1.53 (2P), -2.81 (1P) ppm. HRMS (ESI) calcd. for C₈₃H₈₃NaO₂₁P₅ [M+Na]⁺ 1593.4007; found 1593.4019.

Pentasodium 1,2,3,4,6-*myo***-inosityl pentakisphosphate (3).** Phosphate **3** was prepared from benzyl phosphate **15b**, according to General Procedure F. Reaction time: 48 h. Yield: 100%. White amorphous solid. ¹H NMR (500 MHz, D₂O) δ 4.72 (br d, ³*J*_{HP} = 8.8 Hz, 1H, H-2), 4.24 (q, ³*J*_{HP} = ³*J*_{HH} = 9.1 Hz, 2H, H-4 & H-6), 4.04 (br t, ³*J*_{HP} = 8.9 Hz, 2H, H-1 & H-3), 3.55 (t, *J* = 8.8 Hz, 1H, H-5) ppm. ¹³C NMR (126 MHz, D₂O) δ 76.5 (br t, ²*J*_{CP} = 5.9 Hz, C-4 & C-6), 75.3 (br d, ²*J*_{CP} = 5.7 Hz, C-2), 73.3 (br s, C-1 & C-3), 72.9 (br s, C-5) ppm. ³¹P NMR (202 MHz, D₂O) ³¹P- ¹H decoupled): 0.77 (2P), 0.63 (2P), -0.11 (1P) ppm. HRMS (ESI) calcd. for C₆H₁₂Na₄O₂₁P₅ [M–Na]⁻ 666.8155; found 666.8147.

2-O-p-Methoxybenzyl-1,6:3,4-bis-[O-(2,3-dimethoxybutane-2,3-diyl)]-myo-inositol (16a). A solution of diol 14 (410 mg, 1 mmol) in dry DMF (10 mL) was cooled to 0 $^{\circ}$ C under an Ar atmosphere. 90% NaH (30 mg, 1.1 mmol) was added in one portion and the resulting slurry was stirred at the same temperature for 1 h. Then, PMBCI (150 mL, 1.1 mmol) was added dropwise and the mixture was stirred for 12 h, while it was left to warm up to room temperature. MeOH (0.2 mL) was added and the mixture was stirred at room temperature for 1 h. CH₂Cl₂ (10 mL) was added and the resulting solution was washed with H₂O (10 mL). The aqueous phase was back-extracted with CH₂Cl₂ (10 mL) and the combined organic phases were washed with saturated brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified with flash column chromatography (hexanes/EtOAc 7:1 to 2:1) to give PMB-ether **16a** (355 mg, 67%) as a white amorphous solid. $R_f = 0.18$ (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H, 2×ArH), 6.85 (d, J = 8.4 Hz, 2H, 2×ArH), 4.78 (s, 2H, CH₂Ar), 4.04 (t, J = 9.8 Hz, 2H, H-4 & H-6), 3.80 (s, 3H, CH₃OAr), 3.78 (t, J = 1.8 Hz, 1H, H-2), 3.65 (t, J = 9.4 Hz, 1H, H-5), 3.52 (dd, J = 10.3, 1.8 Hz, 2H, H-1 & H-3), 3.27 (s, 6H, 2×OCH₃), 3.22 (s, 6H, 2×OCH₃), 2.66 (br s, 1H, OH), 1.31 (s, 12H, 4×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 158.8 (*i*-C_{Ar}), 131.5 (*i*-C_{Ar}), 129.3 (*o*-C_{Ar}), 113.3(*m*-C_{Ar}), 99.6 (-OCO-), 99.1 (-OCO-), 75.7 (OCH₂), 73.4 (C-2), 70.6 (C-5), 69.4 (C-4 & C-6), 69.1 (C-1 & C-3), 55.2 (OCH_{3(PMB)}), 47.92 (2×OCH₃), 47.87 (2×OCH₃), 17.74 (2×CH₃), 17.67 (2×CH₃) ppm. HRMS (ESI) calcd. for C₂₆H₄₀NaO₁₁ [M+Na]⁺ 551.2463; found 551.2470.

5-O-Benzyl-2-O-p-methoxybenzyl-1,6:3,4-bis-[O-(2,3-dimethoxybutane-2,3-diyl)]-myo-

inositol (16b). A solution of alcohol **16a** (265 mg, 0.5 mmol) in dry DMF (5 mL) was cooled to 0 $^{\circ}$ C under an Ar atmosphere. 90% NaH (20 mg, 0.7 mmol) was added in one portion and the resulting slurry was stirred at the same temperature for 1 h. Then, BnBr (95 μ L, 0.8 mmol)

was added dropwise and the mixture was stirred for 12 h, while it was left to warm up to room temperature. MeOH (0.1 mL) was added and the mixture was stirred at room temperature for 1 h. CH₂Cl₂ (10 mL) was added and the resulting solution was washed with H_2O (10 mL). The aqueous phase was back-extracted with CH_2CI_2 (10 mL) and the combined organic phases were washed with saturated brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified with flash column chromatography (hexanes/EtOAc 10:1 to 7:1) to give benzyl ether **16b** (278 mg, 90%) as a colorless thick oil. R_f = 0.66 (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2H, 2×ArH_{PMB}), 7.41 (d, J = 7.4 Hz, 2H, 2×ArH_{Bn}), 7.31 (t, J = 7.4 Hz, 2H, 2×ArH_{Bn}), 7.24 (t, J = 7.4 Hz, 1H, 1×ArH_{Bn}), 6.86 (d, J = 8.4 Hz, 2H, 2×ArH_{PMB}), 4.87 (s, 2H, CH₂Ar_{Bn}), 4.79 (s, 2H, CH₂Ar_{PMB}), 4.19 (t, J = 9.8 Hz, 2H, H-4 & H-6), 3.81 (s, 3H, CH₃OAr), 3.80 (t, J = 1.7 Hz, 1H, H-2), 3.57 (dd, J = 10.5, 1.7 Hz, 2H, H-1 & H-3), 3.55 (t, J = 9.4 Hz, 1H, H-5), 3.27 (s, 6H, 2×OCH₃), 3.25 (s, 6H, 2×OCH₃), 1.34 (s, 6H, 2×CH₃), 1.33 (s, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 156.7 (*i*-C_{Ar(PMB)}), 139.6 (*i*-C_{Ar(Bn)}), 131.5 (*i*-C_{Ar(PMB)}), 129.4 (*o*-C_{Ar(PMB)}), 128.0 (*m*-C_{Ar(Bn)}), 127.4 (*o*-C_{Ar(Bn)}), 127.1 (*p*-C_{Ar(Bn)}), 113.2 (*m*-C_{Ar(PMB)}), 99.6 (-OCO-), 99.0 (-OCO-), 78.8 (C-5), 75.6 (OCH₂), 74.9 (OCH₂), 73.4 (C-2), 70.0 (C-4 & C-6), 69.3 (C-1 & C-3), 55.2 (OCH_{3(PMB)}), 47.9 (2×OCH₃), 47.8 (2×OCH₃), 17.9 (2×CH₃), 17.7 (2×CH₃) ppm. HRMS (ESI) calcd. for C₃₃H₄₆NaO₁₁ [M+Na]⁺ 641.2932; found 641.2945.

5-O-Benzyl-1,6:3,4-bis-[O-(2,3-dimethoxybutane-2,3-diyl)]-myo-inositol (16c). DDQ (135 mg, 0.6 mmol) was added to a solution of PMP-ether 16b (250 mg, 0.4 mmol) in CH₂Cl₂ (10 mL) and H₂O (1 mL). The mixture was stirred at 25 °C for 24 h. Then, CH₂Cl₂ (40 mL) and a saturated aqueous NaHCO₃ solution (20 mL) were added and the resulting slurry was vigorously stirred at 25 °C for 30 min. The organic phase was further washed with a saturated aqueous NaHCO₃ solution (10 mL) and saturated brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified with flash column chromatography (hexanes/EtOAc 7:1 to 4:1) to give alcohol 16c (140 mg, 71%) as a colorless thick oil. $R_f = 0.50$ (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.4 Hz, 2H, 2×o-ArH), 7.31 (t, J = 7.4 Hz, 2H, 2×m-ArH), 7.24 (t, J = 7.4 Hz, 1H, p-ArH), 4.86 (s, 2H, CH₂Ar), 4.12 (t, J = 9.9 Hz, 2H, H-4 & H-6), 4.02 (t, J = 2.4 Hz, 1H, H-2), 3.58 (dd, J = 10.4, 2.5 Hz, 2H, H-1 & H-3), 3.55 (t, J = 9.5 Hz, 1H, H-5), 3.27 (s, 6H, 2×OCH₃), 3.26 (s, 6H, 2×OCH₃), 2.43 (br s, 1H, OH), 1.34 (s, 6H, 2×CH₃), 1.33 (s, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 139.5 (*i*-C_{Ar}), 128.1 (*m*-C_{Ar}), 127.4 (o-C_{Ar}), 127.2 (p-C_{Ar}), 100.0 (-OCO-), 99.2 (-OCO-), 78.2 (C-5), 74.9 (OCH₂), 69.4 (C-4 & C-6), 68.9 (C-2), 68.7 (C-1 & C-3), 48.1 (2×OCH₃), 47.9 (2×OCH₃), 17.9 (2×CH₃), 17.6 (2×CH₃) ppm. HRMS (ESI) calcd. for C₂₅H₃₈NaO₁₀ [M+Na]⁺ 521.2357; found 521.2361.

5-O-Benzyl-2-O-butyryl-1,6:3,4-bis-[O-(2,3-dimethoxybutane-2,3-diyl)]-myo-inositol (16d). Dry Et₃N (85 µL, 0.6 mmol) and DMAP (12 mg, 0.1 mmol) were added to a solution of alcohol **16c** (150 mg, 0.3 mmol) in dry CH₂Cl₂ (3 mL) under an Ar atmosphere at room temperature. Butyric anhydride (65 μ L, 0.4 mmol) was added and the mixture was stirred at room temperature for 12 h. The reaction mixture was diluted with CH_2Cl_2 (10 mL) and successively washed with saturated aqueous sodium bicarbonate solution (3×3 mL) and saturated brine (5 mL). The aqueous phase was back-extracted with CH_2CI_2 (10 mL) and the combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified with flash column chromatography (hexanes/EtOAc 10:1 to 7:1) to give butyrate 16d (155 mg, 91%) as a white thick oil. $R_f = 0.69$ (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2H, 2×o-ArH), 7.31 (t, J = 7.4 Hz, 2H, 2×m-ArH), 7.26 (t, J = 7.2 Hz, 1H, p-ArH), 5.41 (t, J = 2.5 Hz, 1H, H-2), 4.86 (s, 2H, CH₂Ar), 4.03 (t, J = 9.9 Hz, 2H, H-4 & H-6), 3.66 (dd, J = 10.3, 2.6 Hz, 2H, H-1 & H-3), 3.58 (t, J = 9.4 Hz, 1H, H-5), 3.26 (s, 6H, 2×OCH₃), 3.24 (s, 6H, 2×OCH₃), 2.34 (t, J = 7.2 Hz, 2H, COCH₂), 1.77–1.65 (m, 2H, CH₂CH₃), 1.32 (s, 6H, 2×CH₃), 1.23 (s, 6H, 2×CH₃), 0.98 (t, J = 7.4 Hz, 3H, CH₂CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 172.9 (CO), 139.3 (*i*-C_{Ar}), 128.1 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 127.4 (*p*-C_{Ar}), 99.8 (-OCO-), 99.2 (-OCO-), 78.3 (C-5), 75.3 (OCH₂), 70.0 (C-4 & C-6), 68.9 (C-2), 67.2 (C-1 & C-3), 48.1 (2×OCH₃), 47.8 (2×OCH₃), 36.8 $(COCH_2)$, 18.9 (CH_2CH_3) , 17.8 $(2 \times CH_3)$, 17.4 $(2 \times CH_3)$, 13.5 (CH_2CH_3) ppm. HRMS (ESI) calcd. for $C_{29}H_{44}NaO_{11}$ [M+Na]⁺ 591.2776; found 591.2789.

5-O-Benzyl-2-O-butyryl-*myo***-inositol (17a).** Tetraol **17a** was prepared from bisacetal **16d**, according to General Procedure D. Yield: 100%. White amorphous solid. ¹H NMR (500 MHz, CD₃OD) δ 7.44 (d, *J* = 7.3 Hz, 2H, 2×o-ArH), 7.31 (t, *J* = 7.4 Hz, 2H, 2×*m*-ArH), 7.24 (t, *J* = 7.3 Hz, 1H, *p*-ArH), 5.43 (t, *J* = 2.8 Hz, 1H, H-2), 4.88 (s, 2H, CH₂Ar), 3.67 (t, *J* = 9.6 Hz, 2H, H-4 & H-6), 3.54 (dd, *J* = 9.9, 2.9 Hz, 2H, H-1 & H-3), 3.21 (t, *J* = 9.2 Hz, 1H, H-5), 2.36 (t, *J* = 7.4 Hz, 2H, COCH₂), 1.83–1.53 (m, 2H, CH₂CH₃), 0.97 (t, *J* = 7.4 Hz, 3H, CH₂CH₃) ppm. ¹³C NMR (126 MHz, CD₃OD) δ 175.1 (CO), 140.5 (*i*-C_{Ar}), 129.2 (*o*-C_{Ar} & *m*-C_{Ar}), 128.5 (*p*-C_{Ar}), 85.1 (C-5), 76.2 (OCH₂), 75.3 (C-2), 74.7 (C-4 & C-6), 71.8 (C-1 & C-2), 37.2 (COCH₂), 19.5 (CH₂CH₃), 14.04 (CH₂CH₃) ppm. HRMS (ESI) calcd. for C₁₇H₂₄NaO₇ [M+Na]⁺ 363.1414; found 363.1405.

Octabenzyl 1,3,4,6-(5-*O***-benzyl-2-***O***-butyryl-***myo***-inosityl) tetrakisphosphate (17b). Benzyl phosphate 17b was prepared from tetraol 17a, according to General Procedure E. Yield: 63%. Colorless thick oil. R_f = 0.57 (hexanes/EtOAc 1:2). ¹H NMR (500 MHz, CDCl₃) \delta 7.37 (d,** *J* **= 7.3 Hz, 2H, 2×ArH), 7.19–7.05 (m, 39H, 39×ArH), 6.88 (d,** *J* **= 7.2 Hz, 4H, 4×ArH), 6.07 (br s, 1H, H-2), 4.93–4.74 (m, 18H, 8×CH₂Ph & H-4 & H-6), 4.53 (dd,** *J* **= 11.6, 9.4 Hz, 2H, CH₂Ph), 4.34 (br t,** *J* **= 9.2 Hz, 2H, H-1 & H-3), 3.45 (t,** *J* **= 8.9 Hz, 1H, H-5), 2.23 (t,** *J* **= 7.4 Hz, 2H, COCH₂), 1.62–1.42 (m, 2H, CH₂CH₃), 0.83 (t,** *J* **= 7.1 Hz, 2×C-***i***Ar), 137.7–135.6 (m, 6×C-***i***Ar), 128.5, 128.4,3, 128.39, 128.32, 128.27, 128.20, 128.17, 128.13, 128.06, 128.00, 127.9, 127.8 (C-oAr, C-mAr, C-pAr), 78.9 (C-5), 77.1 (br s, C-4 & C-6), 74.4 (CH₂Ph), 73.6 (br s, C-1 & C-3), 67.0 (d, ²***J***_{CP} = 5.6 Hz, 2×CH₂Ph), 69.6 (d, ²***J***_{CP} = 4.9 Hz, 2×CH₂Ph), 69.5 (d, ²***J***_{CP} = 5.6 Hz, 2×CH₂Ph), 69.2 (C-2), 35.8 (COCH₂), 18.5 (CH₂CH₃), 13.5 (CH₂CH₃) ppm. ³¹P NMR (202 MHz, CDCl₃, ³¹P-¹H decoupled): -1.28 (2P), -1.83 (2P) ppm. HRMS (ESI) calcd. for C₇₃H₇₆NaO₁₉P₄ [M+Na]⁺ 1403.3823; found 1403.3819.**

Tetrasodium (2-*O***-butyryl-1,3,4,6-***myo***-inosityl) tetrakisphosphate (4). Phosphate 4 was prepared from benzyl phosphate 17b**, according to General Procedure F. Reaction time: 96 h. Yield: 100%. White amorphous solid. ¹H NMR (500 MHz, D₂O) δ 5.53 (br s, 1H, H-2), 4.19 (q, ${}^{3}J_{HP} = {}^{3}J_{HH} = 8.9$ Hz, 2H, H-4 & H-6), 4.03 (br t, ${}^{3}J_{HP} = {}^{3}J_{HH} = 8.9$ Hz, 2H, H-1 & H-3), 3.54 (t, J = 8.8 Hz, 1H, H-5), 2.39 (t, J = 7.6 Hz, 2H, COCH₂), 1.58–1.51 (m, 2H, CH₂CH₃), 0.83 (t, J = 7.4 Hz, 3H, CH₂CH₃) ppm. ¹³C NMR (126 MHz, D₂O) δ 176.0 (CO), 76.6 (C-4 & C-6), 74.0 (C-5), 73.5 (C-2), 71.9 (C-1 & C-3), 57.4 (COCH₂), 17.8 (CH₂CH₃), 13.0 (CH₂CH₃) ppm. ³¹P NMR (202 MHz, D₂O, ³¹P-¹H decoupled): 0.05 (2P), 0.00 (2P) ppm. HRMS (ESI) calcd. for C₁₀H₁₈Na₃O₁₉P₄ [M–Na]⁻ 634.9091; found 634.9101.

2-O-benzyl-1,6:3,4-bis-[O-(2,3-dimethoxybutane-2,3-diyl)]-*myo*-inositol (21). Benzyl ether **21** was prepared from diol **14** in 64% yield, following known procedures.^{S4,55}

5-O-Acetyl-2-O-benzyl-1,6:3,4-bis-[*O*-(**2,3-dimethoxybutane-2,3-diyl**)]-*myo*-inositol (**22**). This compound was isolated from the reaction of malonic acid with alcohol **21** in the presence of DIC/DMAP. Yield: 41%. Colorless thick oil. $R_f = 0.48$ (hexanes/EtOAc 1:1). FTIR (KBr): 1765 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 7.1 Hz, 2H, 2×*o*-ArH), 7.33 (t, *J* = 7.4 Hz, 2H, 2×*m*-ArH), 7.26 (t, *J* = 7.3 Hz, 1H, *p*-ArH), 5.09 (t, *J* = 9.8 Hz, 1H, H-5), 4.86 (s, 2H, CH₂Ph), 4.13 (t, *J* = 10.0 Hz, 2H, H-4 & H-6), 3.82 (t, *J* = 2.3 Hz, 1H, H-2), 3.61 (dd, *J* = 10.3, 2.4 Hz, 2H, H-1 & H-3), 3.21 (s, 6H, 2×OCH₃), 3.20 (s, 6H, 2×OCH₃), 2.06 (s, 3H, CH₃CO), 1.30 (s, 6H, 2×CH₃), 1.23 (s, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 169.7 (CO), 139.5 (*i*-C_{Ar}), 127.8 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 127.0 (*p*-C_{Ar}), 99.5 (-OCO-), 99.1 (-OCO-), 76.1 (C-2), 74.0 (CH₂Ph), 70.9 (C-5), 69.1 (C-1 & C-3), 67.6 (C-4 & C-6), 47.8 (OCH₃), 47.4 (OCH₃), 20.8 (CH₃CO), 17.7 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₂₇H₄₀NaO₁₁ [M+Na]⁺ 540.2571; found 540.2582.

5,5'-Bis[2-*O***-benzyl-1,6:3,4-bis-***O***-(2,3-dimethoxybutane-2,3-diyl)-***myo***-inositolyl] malonate (23a). Colorless thick oil. R_f = 0.68 (hexanes/EtOAc 1:1). FTIR (KBr): 1765 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) \delta 7.51 (d, J = 7.0 Hz, 4H, 4×***o***-ArH), 7.34–7.22 (m, 6H, 4×***m***-ArH & 2×***p***-ArH), 5.08**

(t, J = 9.8 Hz, 2H, H-5), 4.83 (s, 4H, 2×CH₂Ph), 4.12 (t, J = 9.8 Hz, 4H, H-4 & H-6), 3.79 (t, J = 2.3 Hz, 2H, H-2), 3.59 (dd, J = 10.2, 2.3 Hz, 4H, H-1 & H-3), 3.35 (s, 2H, COCH₂CO), 3.20 (s, 12H, 4×OCH₃), 3.16 (s, 12H, 4×OCH₃), 1.27 (s, 12H, 4×CH₃), 1.19 (s, 12H, 4×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 164.8 (CO), 139.5 (*i*-C_{Ar}), 127.9 (*m*-C_{Ar}), 127.8 (*o*-C_{Ar}), 127.0 (*p*-C_{Ar}), 99.7 (-OCO-), 99.1 (-OCO-), 76.2 (C-2), 74.0 (CH₂Ph), 72.1 (C-5), 69.1 (C-1 & C-3), 67.5 (C-4 & C-6), 47.8 (4×OCH₃), 47.7 (4×OCH₃), 41.3 (COCH₂CO), 17.6 (4×CH₃), 17.5 (4×CH₃) ppm. HRMS (ESI) calcd. for C₅₃H₇₆NaO₂₂ [M+Na]⁺ 1087.4720; found 1087.4738.

5-[2-O-benzyl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myo-inositolyl]-3-(1,3-

diisopropylureido)-3-oxopropanoate (24a). Colorless thick oil. $R_f = 0.40$ (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 7.1 Hz, 2H, 2×*o*-ArH), 7.35-7.23 (m, 3H, 2×*m*-ArH & *p*-ArH), 5.13 (t, J = 9.8 Hz, 1H, H-5), 4.85 (s, 2H, CH₂Ph), 4.43–4.34 (m, 1H, CHN), 4.18 (t, J = 10.0 Hz, 2H, H-4 & H-6), 3.94–3.89 (m, 1H, CHNH), 3.81 (t, J = 2.3 Hz, 1H, H-2), 3.61 (dd, J = 10.3, 2.3 Hz, 2H, H-1 & H-3), 3.51 (s, 2H, COCH₂), 3.21 (s, 12H, 4×OCH₃), 1.64 (br s, 1H, NH), 1.35 (d, J = 6.8 Hz, 6H, (CH₃)₂CHN), 1.29 (s, 6H, 2×CH₃), 1.22 (s, 6H, 2×CH₃), 1.17 (d, J = 6.6 Hz, 6H, (CH₃)₂CHNH) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 167.8 (OCO), 164.6 (NCO), 153.6 (NCONH), 139.5 (*i*-C_{Ar}), 127.9 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 127.1 (*p*-C_{Ar}), 99.7 (-OCO-), 99.2 (-OCO-), 76.1 (C-2), 74.1 (CH₂Ph), 72.8 (C-5), 69.1 (C-1 & C-3), 67.4 (C-4 & C-6), 48.3 (CHNH), 47.9 (OCH₃), 47.7 (OCH₃), 43.6 (CHN), 43.1 (COCH₂), 22.1 [(CH₃)₂CHNH], 20.5 [(CH₃)₂CHN], 17.7 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₃₅H₅₄N₂NaO₁₃ [M+Na]⁺ 733.3518; found 733.3521.

5-[2-O-benzyl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myo-inositolyl]-3-(1,3-

dicyclohexylureido)-3-oxopropanoate (24b). This compound was isolated from the reaction of malonic acid with alcohol **21** in the presence of DCC (12% yield). Colorless thick oil. R_f = 0.68 (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 2H, 2×o-ArH), 7.35–7.23 (m, 3H, 2×*m*-ArH & *p*-ArH), 5.11 (t, J = 9.7 Hz, 1H, H-5), 4.85 (s, 2H, CH₂Ph), 4.18 (t, J = 10.0 Hz, 2H, H-4 & H-6), 4.06–3.97 (m, 1H, CHN), 3.81 (t, J = 2.2 Hz, 1H, H-2), 3.67–3.58 (m, 1H, CHN), 3.60 (dd, J = 10.2, 2.3 Hz, 2H, H-1 & H-3), 3.48 (s, 2H, COCH₂), 3.21 (s, 12H, 4×OCH₃), 2.05–1.53 (m, 21H, 10×CH_{2cyclohex} & NH), 1.29 (s, 6H, 2×CH₃), 1.22 (s, 6H, 2×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 168.1 (OCO), 161.8 (NCO), 153.7 (NCONH), 139.5 (*i*-C_{Ar}), 127.9 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 127.1 (*p*-C_{Ar}), 99.7 (-OCO-), 99.2 (-OCO-), 76.1 (C-2), 74.0 (CH₂Ph), 72.9 (C-5), 69.1 (C-1 & C-3), 67.5 (C-4 & C-6), 50.2 (CHN), 47.9 (OCH₃), 47.8 (CHNH), 47.7 (OCH₃), 43.2 (COCH₂), 34.0, 32.8, 32.3, 30.6, 29.7, 26.5, 26.1, 25.4, 24.9, 24.7 (*C*_{cyclohex}), 17.7 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₄₁H₆₂N₂NaO₁₃ [M+Na]⁺ 813.4144; found 813.4131.

5,5'-Bis[2-*O***-benzyl-1,6:3,4-bis-***O***-(2,3-dimethoxybutane-2,3-diyl)-***myo***-inositolyl] succinate (23b). Colorless thick oil. R_f = 0.47 (hexanes/EtOAc 1:1). FTIR (KBr): 1754 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) \delta 7.52 (d, J = 7.0 Hz, 4H, 4×***o***-ArH), 7.35–7.22 (m, 6H, 4×***m***-ArH & 2×***p***-ArH), 5.08 (t, J = 9.8 Hz, 2H, H-5), 4.84 (s, 4H, 2×CH₂Ph), 4.12 (t, J = 10.0 Hz, 4H, H-4 & H-6), 3.80 (t, J = 2.3 Hz, 2H, H-2), 3.59 (dd, J = 10.3, 2.3 Hz, 4H, H-1 & H-3), 3.20 (s, 12H, 4×OCH₃), 3.17 (s, 12H, 4×OCH₃), 2.65 (s, 4H, COCH₂CH₂CO), 1.28 (s, 12H, 4×CH₃), 1.21 (s, 12H, 4×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) \delta 170.8 (CO), 139.6 (***i***-C_{Ar}), 127.9 (***m***-C_{Ar}), 127.7 (***o***-C_{Ar}), 127.0 (***p***-C_{Ar}), 99.7 (-OCO-), 99.1 (-OCO-), 76.3 (C-2), 74.0 (CH₂Ph), 71.4 (C-5), 69.2 (C-1 & C-3), 67.6 (C-4 & C-6), 47.8 (OCH₃), 47.5 (OCH₃), 29.4 (COCH₂), 17.7 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₅₄H₇₈NaO₂₂ [M+Na]⁺ 1101.4877; found 1101.4888.**

5-[2-O-benzyl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myo-inositolyl]-3-(1,3-

dicyclohexylureido)-4-oxobutanoate (24c). This compound was isolated from the reaction of succinic acid with alcohol **21** in the presence of DCC/DMAP. Yield: 28%. Colorless thick oil. $R_f = 0.47$ (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 2H, 2×o-ArH), 7.35–7.22 (m, 3H, 2×*m*-ArH & *p*-ArH), 5.07 (t, J = 9.0 Hz, 1H, H-5), 4.84 (s, 2H, CH₂Ph), 4.15 (t, J = 9.0 Hz, 2H, H-4 & H-6), 4.09–4.01 (m, 1H, CHN), 3.80 (t, J = 2.2 Hz, 1H, H-2), 3.59 (dd, J = 9.0, 3.0 Hz, 2H, H-1 & H-3), 3.52–3.45 (m, 1H, CHN), 3.22 (s, 6H, 2×OCH₃), 3.21 (s, 6H, 2×OCH₃), 2.74 (t, J = 6.0 Hz, 2H, COCH₂), 2.65 (t, J = 6.0 Hz, 2H, COCH₂), 1.96–1.92 (m, 4H,

4×CH $H_{cyclohex}$), 1.80-1.59 (m, 17H, 16×CH $H_{cyclohex}$ & NH), 1.29 (s, 6H, 2×CH₃), 1.23 (s, 6H, 2×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.5 (OCO), 154.2 (NCO), 149.1 (NCONH), 139.6 (*i*-C_{Ar}), 127.9 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 127.0 (*p*-C_{Ar}), 99.7 (-OCO-), 99.2 (-OCO-), 76.2 (C-2), 74.0 (CH₂Ph), 71.6 (C-5), 69.2 (C-1 & C-3), 67.6 (C-4 & C-6), 50.1 (CHN), 47.9 (OCH₃), 47.7 (OCH₃), 47.5 (CHNH), (COCH₂), 34.0, 32.5, 30.7, 29.6, 26.2, 25.7, 25.5, 25.4, 24.9, 24.8 ($C_{cyclohex}$ & 2×COCH₂), 17.7 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₄₂H₆₄N₂NaO₁₃ [M+Na]⁺ 827.4301; found 827.4309.

50,5'O-(Butane-1,4-diyl)bis[2-O-benzyl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)*-myo***inositol] (25a).** Prepared from alcohol **21** and **26**^{S6} according to General Procedure A. Yield: 45%. White thick oil. $R_f = 0.24$ (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 7.0 Hz, 4H, 4×*o*-ArH), 7.32–7.20 (m, 6H, 4×*m*-ArH & 2×*p*-ArH), 4.82 (s, 4H, 2×CH₂Ph), 4.05 (t, J = 9.8 Hz, 4H, H-4 & H-6), 3.78–3.75 (m, 6H, H-2 & 2×OCH₂CH₂), 3.51 (dd, J = 10.3, 2.3 Hz, 4H, H-1 & H-3), 3.28 (t, J = 9.3 Hz, 2H, H-5), 3.23 (s, 12H, 4×OCH₃), 3.21 (s, 12H, 4×OCH₃), 1.63 (m, 4H, 2×OCH₂CH₂), 1.29 (s, 12H, 4×CH₃), 1.26 (s, 12H, 4×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 139.7 (*i*-C_{Ar}), 127.8 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 126.8 (*p*-C_{Ar}), 99.6 (-OCO-), 98.9 (-OCO-), 78.4 (C-5), 76.3 (C-2), 73.7 (CH₂Ph), 72.6 (OCH₂CH₂), 69.9 (C-4 & C-6), 69.4 (C-1 & C-3), 47.8 (OCH₃), 47.7 (OCH₃), 26.8 (OCH₂CH₂), 17.8 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₅₄H₈₂NaO₂₀ [M+Na]⁺ 1073.5292; found 1073.5294.

50,5'O-(Pentane-1,5-diyl)bis[2-O-benzyl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)*myo*-inositol] (25b). Prepared from alcohol **21** and **27**^{S7} according to General Procedure A. Yield: 62%. White thick oil. $R_f = 0.21$ (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 7.0 Hz, 4H, 4×o-ArH), 7.32–7.22 (m, 6H, 4×m-ArH & 2×p-ArH), 4.83 (s, 4H, 2×CH₂Ph), 4.05 (t, J = 9.9 Hz, 4H, H-4 & H-6), 3.75 (t, J = 2.2 Hz, 2H, H-2), 3.73 (t, J = 6.3 Hz, 4H, 2×OCH₂CH₂), 3.51 (dd, J = 10.4, 2.3 Hz, 4H, H-1 & H-3), 3.28 (t, J = 9.3 Hz, 2H, H-5), 3.24 (s, 12H, 4×OCH₃), 3.21 (s, 12H, 4×OCH₃), 1.61–1.51 (m, 4H, 2×OCH₂CH₂), 1.47–1.40 (m, 2H, OCH₂CH₂CH₂), 1.29 (s, 12H, 4×CH₃), 1.26 (s, 12H, 4×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 139.5 (*i*-C_{Ar}), 127.8 (*m*-C_{Ar}), 127.7 (*o*-C_{Ar}), 126.8 (*p*-C_{Ar}), 99.5 (-OCO-), 98.9 (-OCO-), 78.3 (C-5), 76.1 (C-2), 73.7 (CH₂Ph), 72.8 (OCH₂CH₂), 69.8 (C-4 & C-6), 69.3 (C-1 & C-3), 47.8 (OCH₃), 47.7 (OCH₃), 29.9 (OCH₂CH₂), 22.2 (OCH₂CH₂CH₂), 17.8 (CH₃), 17.6 (CH₃) ppm. HRMS (ESI) calcd. for C₅₅H₈₄NaO₂₀ [M+Na]⁺ 1087.5448; found 1087.5459.

5,5'-Bis[**1,6:3,4-bis**-*O*-(**2,3-dimethoxybutane-2,3-diyl**)-*myo*-inositolyl] malonate (**28a**). Prepared from dibenzyl ether **23a** according to General Procedure B. Yield: 100%. White amorphous solid. $R_f = 0.15$ (hexanes/EtOAc 1:2). FTIR (KBr): 3441, 1800 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 5.11 (t, J = 9.9 Hz, 2H, H-5), 4.10 (t, J = 10.0 Hz, 4H, H-4 & H-6), 4.03 (t, J = 2.5 Hz, 2H, H-2), 3.62 (dd, J = 10.2, 2.5 Hz, 4H, H-1 & H-3), 3.39 (s, 2H, CH₂), 3.23 (s, 12H, 4×OCH₃), 3.20 (s, 12H, 4×OCH₃), 2.33 (br s, 2H, 2×OH), 1.31 (s, 12H, 4×CH₃), 1.23 (s, 12H, 4×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 164.8 (CO), 100.1 (-OCO-), 99.3 (-OCO-), 71.6 (C-5), 68.9 (C-2), 68.5 (C-1 & C-3), 66.9 (C-4 & C-6), 47.9 (4×OCH₃), 47.7 (4×OCH₃), 41.2 (COCH₂CO), 17.63 (4×CH₃), 17.56 (4×CH₃) ppm. HRMS (ESI) calcd. for C₃₉H₆₄NaO₂₂ [M+Na]⁺ 907.3781; found 907.3788.

5,5'-Bis[**1,6:3,4-bis**-*O*-(**2,3-dimethoxybutane-2,3-diyl**)-*myo*-inositolyl] succinate (**28b**). Prepared from dibenzyl ether **23b** according to General Procedure B. Yield: 100%. White amorphous solid. $R_f = 0.09$ (hexanes/EtOAc 1:1). FTIR (KBr): 3483, 1754 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 5.10 (t, J = 9.9 Hz, 2H, H-5), 4.09 (t, J = 10.0 Hz, 4H, H-4 & H-6), 4.03 (t, J = 2.5 Hz, 2H, H-2), 3.62 (dd, J = 10.2, 2.6 Hz, 4H, H-1 & H-3), 3.23 (s, 12H, 4×OCH₃), 3.20 (s, 12H, 4×OCH₃), 2.68 (s, 4H, 2×CH₂), 2.38 (s, 2H, 2×OH), 1.31 (s, 12H, 4×CH₃), 1.23 (s, 12H, 4×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 170.8 (CO), 100.1 (-OCO-), 99.3 (-OCO-), 70.8 (C-5), 68.9 (C-2), 68.6 (C-1 & C-3), 67.0 (C-4 & C-6), 47.9 (4×OCH₃), 47.6 (4×OCH₃), 29.2 (COCH₂), 17.63 (4×CH₃), 17.56 (4×CH₃) ppm. HRMS (ESI) calcd. for C₄₀H₆₆NaO₂₂ [M+Na]⁺ 921.3938; found 921.3928.

50,5'O-(Butane-1,4-diyl)bis[1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myo-inositol]

(28c). Prepared from dibenzyl ether 25a according to General Procedure B. Yield: 93%. White amorphous solid. $R_f = 0.08$ (hexanes/EtOAc 1:1). FTIR (KBr): 3448, 1038 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 3.98 (t, 4H, H-4 & H-6), 3.98 (2H, H-2, obscured), 3.77 (br s, 4H, 2×OCH₂), 3.53 (dd, J = 10.3, 2.5 Hz, 4H, H-1 & H-3), 3.31 (t, J = 9.4 Hz, 2H, H-5), 3.25 (s, 24H, 8×OCH₃), 2.32 (br s, 2H, 2×OH), 1.64 (br s, 4H, 2×OCH₂CH₂), 1.32 (s, 12H, 4×CH₃), 1.28 (s, 12H, 4×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 100.0 (-OCO-), 99.1 (-OCO-), 77.7 (C-5), 72.5 (OCH₂), 69.4 (C-4 & C-6), 69.0 (C-2), 68.7 (C-1 & C-3), 48.0 (4×OCH₃), 47.7 (4×OCH₃), 26.7 (OCH₂CH₂), 17.8 (4×CH₃), 17.6 (4×CH₃) ppm. HRMS (ESI) calcd. for C₄₀H₇₀NaO₂₀ [M+Na]⁺ 893.4353; found 893.4348.

50,5'O-(Pentane-1,5-diyl)bis[1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myo-inositol]

(28d). Prepared from dibenzyl ether 25b according to General Procedure B. Yield: 96%. White amorphous solid. $R_f = 0.08$ (hexanes/EtOAc 1:1). FTIR (KBr): 3450, 1037 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 3.99 (t, J = 9.9 Hz, 4H, H-4 & H-6), 3.99 (2H, H-2, obscured), 3.72 (t, J = 6.3 Hz, 4H, 2×OCH₂), 3.52 (dd, J = 10.3, 2.5 Hz, 4H, H-1 & H-3), 3.30 (t, J = 9.5 Hz, 2H, H-5), 3.25 (s, 12H, 4×OCH₃), 3.24 (s, 12H, 4×OCH₃), 1.80 (br s, 2H, 2×OH), 1.57–1.52 (m, 4H, 2×OCH₂CH₂), 1.46–1.41 (m, 2H, OCH₂CH₂CH₂), 1.31 (s, 12H, 4×CH₃), 1.27 (s, 12H, 4×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 99.9 (-OCO-), 99.1 (-OCO-), 77.7 (C-5), 72.8 (OCH₂), 69.3 (C-4 & C-6), 68.9 (C-2), 68.7 (C-1 & C-3), 48.0 (4×OCH₃), 47.7 (4×OCH₃), 29.9 (OCH₂CH₂), 22.2 (OCH₂CH₂CH₂), 17.8 (4×CH₃), 17.6 (4×CH₃) ppm. HRMS (ESI) calcd. for C₄₁H₇₂NaO₂₀ [M+Na]⁺ 907.4509; found 907.4500.

5,5'-Bis[2-*O***-butyryl-1,6:3,4-bis-***O***-(2,3-dimethoxybutane-2,3-diyl)-***myo***-inositolyl] malonate (29a). Prepared from diol 28a according to General Procedure C. Yield: 79%. White solid. m.p. 170.2-172.2 °C. R_f = 0.39 (hexanes/EtOAc 1:1). FTIR (KBr): 1752 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) \delta 5.43 (t,** *J* **= 2.6 Hz, 2H, H-2), 5.12 (t,** *J* **= 9.9 Hz, 2H, H-5), 3.99 (t,** *J* **= 10.1 Hz, 4H, H-4 & H-6), 3.70 (dd,** *J* **= 10.2, 2.7 Hz, 4H, H-1 & H-3), 3.42 (s, 2H, COCH₂CO), 3.21 (s, 12H, 4×OCH₃), 3.20 (s, 12H, 4×OCH₃), 2.37 (t,** *J* **= 7.2 Hz, 4H, 2×COCH₂), 1.77–1.64 (m, 4H, 2×COCH₂CH₂), 1.22 (s, 12H, 4×CH₃), 1.20 (s, 12H, 4×CH₃), 1.00 (t,** *J* **= 7.4 Hz, 6H, 2×CH₂CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) \delta 172.6 (CO_{but}), 164.7 (CO_{mal}), 99.9 (-OCO-), 99.3 (-OCO-), 71.6 (C-5), 68.6 (C-2), 67.5 (C-4 & C-6), 67.0 (C-1 & C-3), 48.0 (4×OCH₃), 47.6 (4×OCH₃), 41.1 (COCH₂CO), 36.7 (COCH₂), 18.8 (COCH₂CH₂), 17.6 (4×CH₃), 17.4 (4×CH₃), 13.5 (CH₂CH₃) ppm. HRMS (ESI) calcd. for C₄₇H₇₆NaO₂₄ [M+Na]⁺ 1047.4619; found 1047.4601.**

5,5'-Bis[2-O-butyryl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myo-inositolyl]

succinate (29b). Prepared from diol 28b according to General Procedure C. Yield: 97%. White solid. m.p. 242.4-243.5 °C. R_f = 0.64 (hexanes/EtOAc 1:1). FTIR (KBr): 1753, 1742 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 5.43 (t, J = 2.7 Hz, 2H, H-2), 5.11 (t, J = 9.9 Hz, 2H, H-5), 3.97 (t, J = 10.1 Hz, 4H, H-4 & H-6), 3.69 (dd, J = 10.2, 2.7 Hz, 4H, H-1 & H-3), 3.21 (s, 12H, 4×OCH₃), 3.20 (s, 12H, 4×OCH₃), 2.69 (s, 4H, COCH₂CH₂CO), 2.38 (t, J = 7.2 Hz, 4H, 2×COCH₂), 1.78–1.66 (m, 4H, 2×COCH₂CH₂), 1.20 (s, 12H, 4×CH₃), 1.20 (s, 12H, 4×CH₃), 1.01 (t, J = 7.4 Hz, 6H, 2×CH₂CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.6 (CO_{but}), 170.8 (CO_{suc}), 99.8 (-OCO-), 99.3 (-OCO-), 70.8 (C-5), 68.6 (C-2), 67.6 (C-4 & C-6), 67.1 (C-1 & C-3), 47.9 (4×OCH₃), 47.5 (4×OCH₃), 36.7 (COCH₂), 29.1 (COCH₂CH₂CO, 18.8 (COCH₂CH₂), 17.6 (4×CH₃), 17.4 (4×CH₃), 13.5 (CH₂CH₃) ppm. HRMS (ESI) calcd. for C₄₈H₇₈NaO₂₄ [M+Na]⁺ 1061.4775; found 1061.4786. 50,5'O-(Butane-1,4-diyl)bis[2-O-butyryl-1,6:3,4-bis-O-(2,3-dimethoxybutane-2,3-diyl)-myoinositol] (29c). Prepared from diol 28c according to General Procedure C. Yield: 87%. White solid. m.p. 195.3 °C. R_f = 0.66 (hexanes/EtOAc 1:1). FTIR (KBr): 1740, 1039 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 5.38 (t, J = 2.7 Hz, 2H, H-2), 3.88 (t, J = 9.9 Hz, 4H, H-4 & H-6), 3.79 (br s, 4H, 2×OCH₂), 3.60 (dd, J = 10.3, 2.7 Hz, 4H, H-1 & H-3), 3.33 (t, J = 9.4 Hz, 2H, H-5), 3.23 (s, 12H, 4×OCH₃), 3.22 (s, 12H, 4×OCH₃), 2.34 (t, J = 7.2 Hz, 4H, 2×COCH₂), 1.73–1.67 (m, 4H, 2×COCH₂CH₂), 1.66 (br s, 4H, 2×OCH₂CH₂), 1.25 (s, 12H, 4×CH₃), 1.20 (s, 12H, 4×CH₃), 0.98 (t, J = 7.4 Hz, 6H, 2×CH₂CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 172.9 (CO), 99.7 (-OCO-), 99.1 (- OCO-), 77.6 (C-5), 72.6 (OCH₂), 69.9 (C-4 & C-6), 68.9 (C-2), 67.2 (C-1 & C-3), 48.0 (4×OCH₃), 47.7 (4×OCH₃), 36.8 (COCH₂), 26.6 (OCH₂CH₂), 18.9 (COCH₂CH₂), 17.8 (4×CH₃), 17.4 (4×CH₃), 13.5 (CH₂CH₃) ppm. HRMS (ESI) calcd. for $C_{48}H_{82}NaO_{22}$ [M+Na]⁺ 1033.5190; found 1033.5203.

50,5'0-(Pentane-1,5-diyl)bis[2-0-butyryl-1,6:3,4-bis-0-(2,3-dimethoxybutane-2,3-diyl)-

myo-inositol] (29d). Prepared from diol 28d according to General Procedure C. Yield: 79%. White solid. m.p. 213-214 °C. $R_f = 0.59$ (hexanes/EtOAc 1:1). FTIR (KBr): 1754, 1039 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 5.39 (t, J = 2.7 Hz, 2H, H-2), 3.90 (t, J = 9.9 Hz, 4H, H-4 & H-6), 3.76 (t, J = 6.4 Hz, 4H, 2×OCH₂), 3.62 (dd, J = 10.3, 2.7 Hz, 4H, H-1 & H-3), 3.34 (t, J = 9.4 Hz, 2H, H-5), 3.25 (s, 12H, 4×OCH₃), 3.23 (s, 12H, 4×OCH₃), 2.35 (t, J = 7.2 Hz, 4H, 2×COCH₂), 1.74–1.66 (m, 4H, 2×COCH₂CH₂), 1.61–1.55 (m, 4H, 2×OCH₂CH₂), 1.50–1.44 (m, 2H, OCH₂CH₂CH₂), 1.26 (s, 12H, 4×CH₃), 1.21 (s, 12H, 4×CH₃), 0.99 (t, J=7.4 Hz, 6H, 2×CH₂CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 172.9 (CO), 99.7 (-OCO-), 99.0 (-OCO-), 77.8 (C-5), 72.9 (OCH₂), 69.9 (C-4 & C-6), 68.9 (C-2), 67.1 (C-1 & C-3), 48.0 (4×OCH₃), 47.7 (4×OCH₃), 36.8 (COCH₂), 29.9 (OCH₂CH₂), 22.1 (OCH₂CH₂CH₂), 18.9 (COCH₂CH₂), 17.8 (4×CH₃), 17.4 (4×CH₃), 13.5 (CH₂CH₃) ppm. HRMS (ESI) calcd. for C₄₉H₈₄NaO₂₂ [M+Na]⁺ 1047.5346; found 1047.5333.

5,5'-Bis(2-O-butyryl-*myo***-inositolyl) malonate (30a).** Prepared from tetrakisacetal **29a** according to General Procedure D. Yield: 100%. White solid. ¹H NMR (500 MHz, CD₃OD) δ 5.46 (t, J = 2.6 Hz, 2H, H-2), 4.85 (t, J = 9.1 Hz, 2H, H-5), 3.67 (t, J = 9.9 Hz, 4H, H-4 & H-6), 3.63 (dd, J = 9.9, 2.8 Hz, 4H, H-1 & H-3), 3.61 (s, 2H, COCH₂CO), 2.38 (t, J = 7.4 Hz, 4H, 2×COCH₂), 1.70–1.62 (m, 4H, 2×COCH₂CH₂), 0.98 (t, J = 7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CD₃OD) δ 174.8 (CO_{but}), 168.0 (CO_{mal}), 78.9 (C-5), 75.0 (C-2), 72.5 (C-4 & C-6), 71.3 (C-1 & C-3), 42.9 (COCH₂CO), 37.1 (COCH₂), 19.4 (COCH₂CH₂), 14.0 (CH₃) ppm. HRMS (ESI) calcd. for C₂₃H₃₆NaO₁₆ [M+Na]⁺ 591.1896; found 591.1891.

5,5'-Bis(*myo*-inositolyl) malonate (30b). Prepared from tetrakisacetal **28a** according to General Procedure D. Yield: 100%. White solid. ¹H NMR (500 MHz, D₂O) δ 4.85 (t, *J* = 9.6 Hz, 2H, H-5), 4.09 (br s, 2H, H-2), 3.80 (t, *J* = 9.9 Hz, 4H, H-4 & H-6), 3.76 (s, 2H, CH₂), 3.64 (dd, *J* = 10.1, 2.9 Hz, 4H, H-1 & H-3) ppm. ¹³C NMR (126 MHz, D₂O) δ 168.0 (CO), 77.3 (C-5), 71.8 (C-2), 70.8 (C-4 & C-6), 70.3 (C-1 & C-3), 41.2 (CH₂) ppm. HRMS (ESI) calcd. for C₁₅H₂₄NaO₁₄ [M+Na]⁺ 451.1058; found 451.1060.

5,5'-Bis(2-O-butyryl-*myo***-inositolyl) succinate (30c).** Prepared from tetrakisacetal **29b** according to General Procedure D. Yield: 100%. White solid. ¹H NMR (500 MHz, CD₃OD) δ 5.46 (t, J = 2.8 Hz, 2H, H-2), 4.82 (t, J = 9.3 Hz, 2H, H-5), 3.66 (t, J = 9.8 Hz, 4H, H-4 & H-6), 3.61 (dd, J = 9.9, 2.8 Hz, 4H, H-1 & H-3), 2.78 (s, 4H, COCH₂CH₂CO), 2.39 (t, J = 7.4 Hz, 4H, 2×COCH₂), 1.70–1.63 (m, 4H, 2×COCH₂CH₂), 0.99 (t, J = 7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CD₃OD) δ 174.9 (CO_{but}), 174.0 (CO_{suc}), 78.1 (C-5), 75.1 (C-2), 72.7 (C-4 & C-6), 71.5 (C-1 & C-3), 37.1 (COCH₂), 30.5 (COCH₂CH₂CO), 19.4 (COCH₂CH₂), 14.0 (CH₃) ppm. HRMS (ESI) calcd. for C₂₄H₃₈NaO₁₆ [M+Na]⁺ 605.2052; found 605.2041.

5,5'-Bis(*myo*-inositolyl) succinate (30d). Prepared from tetrakisacetal **28b** according to General Procedure D. Yield: 98%. White solid. ¹H NMR (500 MHz, D₂O) δ 4.78 (2H, H-5, obscured), 4.05 (t, *J* = 2.7 Hz, 2H, H-2), 3.75 (t, *J* = 9.9 Hz, 4H, H-4 & H-6), 3.59 (dd, *J*=10.1, 2.8 Hz, 4H, H-1 & H-3), 2.81 (s, 4H, COCH₂CH₂CO) ppm. ¹³C NMR (126 MHz, D₂O) δ 174.4 (CO), 76.5 (C-5), 71.9 (C-2), 70.9 (C-1 & C-3), 70.5 (C-4 & C-6), 28.9 (COCH₂) ppm. HRMS (ESI) calcd. for C₁₆H₂₆NaO₁₄ [M+Na]⁺ 465.1215; found 465.1227.

50,5'O-(Butane-1,4-diyl)bis(2-O-butyryl-*myo*-inositol) (**30e).** Prepared from tetrakisacetal **29c** according to General Procedure D. Yield: 99%. White solid. ¹H NMR (500 MHz, D₂O) δ 5.38 (t, *J* = 2.6 Hz, 2H, H-2), 3.79 (br s, 4H, 2×OCH₂), 3.66 (dd, *J* = 10.0, 2.7 Hz, 4H, H-1 & H-3), 3.62 (t, *J* = 10.0 Hz, 4H, H-4 & H-6), 3.14 (t, *J* = 9.0 Hz, 2H, H-5), 2.40 (t, *J* = 7.4 Hz, 4H, 2×COCH₂), 1.66 (br s, 4H, 2×OCH₂CH₂), 1.62–1.55 (m, 4H, 2×COCH₂CH₂), 0.88 (t, *J* = 7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (75 MHz, D₂O) δ 176.3 (CO), 82.9 (C-5), 73.9 (C-2), 72.8 (OCH₂), 72.3 (C-1 & C-3), 69.7 (C-4 & C-6), 35.8 (COCH₂), 25.9 (OCH₂CH₂), 17.9 (COCH₂CH₂), 12.8 (CH₃) ppm. HRMS (ESI) calcd. for C₂₄H₄₂NaO₁₄ [M+Na]⁺ 577.2467; found 577.2477.

50,5'O-(Butane-1,4-diyl)bis(*myo***-inositol) (30f).** Prepared from tetrakisacetal **28c** according to General Procedure D. Yield: 98%. White solid. ¹H NMR (500 MHz, D₂O) δ 3.99 (t, *J* = 2.8 Hz, 2H, H-2), 3.78 (br t, *J* = 6.1 Hz, 4H, 2×OCH₂), 3.63 (t, *J* = 9.8 Hz, 4H, H-4 & H-6), 3.48 (dd, *J* = 10.0, 2.9 Hz, 4H, H-1 & H-3), 3.09 (t, *J* = 9.5 Hz, 2H, H-5), 1.65 (br t, *J* = 6.2 Hz, 4H, 2×OCH₂CH₂) ppm. ¹³C NMR (126 MHz, D₂O) δ 82.9 (C-5), 72.6 (OCH₂), 71.8 (C-4 & C-6), 71.7 (C-2), 71.0 (C-1 & C-3), 25.7 (OCH₂CH₂) ppm. HRMS (ESI) calcd. for C₁₆H₃₀NaO₁₂ [M+Na]⁺ 437.1629; found 437.1641.

50,5'O-(Pentane-1,5-diyl)bis(2-O-butyryl-*myo*-inositol) (**30g).** Prepared from tetrakisacetal **29d** according to General Procedure D. Yield: 99%. White solid. ¹H NMR (500 MHz, D₂O) δ 5.45 (t, *J* = 2.6 Hz, 2H, H-2), 3.84 (t, *J* = 6.6 Hz, 4H, 2×OCH₂), 3.73 (dd, *J* = 10.0, 2.5 Hz, 4H, H-1 & H-3), 3.68 (t, *J* = 10.0 Hz, 4H, H-4 & H-6), 2.47 (t, *J* = 7.4 Hz, 4H, 2×COCH₂), 1.70–1.62 (m, 8H, 2×COCH₂CH₂ & 2×OCH₂CH₂), 1.50–1.43 (m, 2H, OCH₂CH₂CH₂), 1.19 (t, *J* = 7.1 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (75 MHz, D₂O) δ 176.3 (CO), 82.8 (C-5), 73.9 (C-2), 73.0 (OCH₂), 72.3 (C-1 & C-3), 69.7 (C-4 & C-6), 35.8 (COCH₂), 29.0 (OCH₂CH₂), 21.6 (OCH₂CH₂CH₂), 17.9 (COCH₂CH₂), 12.8 (CH₃) ppm. HRMS (ESI) calcd. for C₂₅H₄₄NaO₁₄ [M+Na]⁺ 591.2623; found 591.2626.

50,5'O-(Pentane-1,5-diyl)bis(*myo*-inositol) (**30**h). Prepared from tetrakisacetal **28d** according to General Procedure D. Yield: 99%. White solid. ¹H NMR (500 MHz, D₂O) δ 4.02 (t, J = 2.9 Hz, 2H, H-2), 3.78 (t, J = 6.8 Hz, 4H, 2×OCH₂), 3.65 (t, J = 9.7 Hz, 4H, H-4 & H-6), 3.51 (dd, J = 10.0, 2.9 Hz, 4H, H-1 & H-3), 3.11 (t, J = 9.5 Hz, 2H, H-5), 1.66–1.60 (m, 4H, 2×OCH₂CH₂), 1.45–1.39 (m, 2H, OCH₂CH₂CH₂) ppm. ¹³C NMR (126 MHz, D₂O) δ 82.9 (C-5), 72.9 (OCH₂), 71.9 (C-4 & C-6), 71.8 (C-2), 71.0 (C-1 & C-3), 28.9 (OCH₂CH₂), 21.6 (OCH₂CH₂CH₂) ppm. HRMS (ESI) calcd. for C₁₇H₃₂NaO₁₂ [M+Na]⁺ 451.1786; found 451.1799.

5,5'-Bis[2-O-butyryl-1,3,4,6-O-tetrakis(bis(benzyloxy)phosphoryl)*-myo*-inositolyl) malonate (**31a).** Prepared from decaol **30a** according to General Procedure E. Yield: 61%. Colorless thick oil. R_f = 0.18 (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.25–7.13 (m, 80H, 16×CH₂Ph), 6.12 (br s, 2H, H-2), 5.23 (t, *J* = 9.5 Hz, 2H, H-5), 5.11–4.88 (m, 32H, 16×CH₂Ph), 4.78 (q, ³_{JHP} = ³_{JHH} = 9.6 Hz, 4H, H-4 & H-6), 4.33 (br td, ³_{JHH} = ³_{JHP} = 9.7 Hz, ³_{JHH} = 2.2 Hz, 4H, H-1 & H-3), 4.10 (s, 2H, COCH₂CO), 2.24 (t, *J* = 7.4 Hz, 4H, 2×COCH₂), 1.63–1.50 (m, 4H, 2×COCH₂CH₂), 0.88 (t, *J*=7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 171.4 (CO_{but}), 166.0 (CO_{mal}), 135.9 (d, ³_{JCP} = 6.0 Hz, 4×C-*i*Ar), 135.7 (d, ³_{JCP} = 7.5 Hz, 4×C-*i*Ar), 135.5 (d, ³_{JCP} = 7.3 Hz, 4×C-*i*Ar), 135.4 (d, ³_{JCP} = 6.9 Hz, 4×C-*i*Ar), 128.35, 128.29, 128.28, 128.22, 128.14, 128.12, 128.0, 127.9, 127.8, 127.7 (C-oAr, C-mAr, C-pAr), 75.0 (br t, ²_{JCP} = 6.3 Hz, C-4 & C-6), 73.3 (t, ²_{JCP} = 4.6 Hz, C-1 & C-3), 70.9 (br s, C-5), 69.8 (d, ²_{JCP} = 5.6 Hz, 4×CH₂Ph), 69.7 (d, ²_{JCP} = 5.6 Hz, 4×CH₂Ph), 69.4 (d, ²_{JCP} = 5.3 Hz, 4×CH₂Ph), 69.3 (d, ²_{JCP} = 5.5 Hz, 4×CH₂Ph), 69.1 (br s, C-2), 39.6 (COCH₂CO), 35.6 (COCH₂), 18.3 (COCH₂CH₂), 13.4 (CH₃) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H decoupled): –1.25 (4P), –1.78 (4P) ppm. HRMS (ESI) calcd. for C₁₃₅H₁₄₀NaO₄₀P₈ [M+Na]⁺ 2671.6714; found 2671.6699.

5,5'-Bis[**1,2,3,4,6-***O*-pentakis(bis(benzyloxy)phosphoryl)-*myo*-inositolyl) malonate (**31b**). Prepared from decaol **30b** according to General Procedure E. Yield: 78%. White thick oil. $R_f = 0.50$ (hexanes/EtOAc 1:2). ¹H NMR (500 MHz, CDCl₃) δ 7.26–7.01 (m, 100H, 20×CH₂*Ph*), 5.59 (br d, ³*J*_{HP} = 8.8 Hz, 2H, H-2), 5.26 (t, *J* = 9.6 Hz, 2H, H-5), 5.15 (dd, ²*J*_{HH} = 11.7 Hz, ³*J*_{HP} = 6.3 Hz, 4H, 2×CH₂Ph), 5.07–4.79 (m, 40H, H-4 & H-6 & 18×CH₂Ph), 4.32 (br t, ³*J*_{HP} = ³*J*_{HH} = 9.5 Hz, 4H, H-1 & H-3), 4.06 (s, 2H, CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 166.0 (CO), 135.9 (d, ³*J*_{CP} = 5.8 Hz, 4×C-*i*Ar), 135.7 (d, ³*J*_{CP} = 7.2 Hz, 4×C-*i*Ar), 135.64 (d, ³*J*_{CP} = 8.1 Hz, 4×C-*i*Ar), 135.58 (d, ³*J*_{CP} = 6.7 Hz, 4×C-*i*Ar), 135.5 (d, ³*J*_{CP} = 6.8 Hz, 4×C-*i*Ar), 128.42, 128.38, 128.33, 128.31, 128.24, 128.19, 128.1, 128.0, 127.9 (C-*o*Ar, C-*m*Ar, C-*p*Ar), 76.1 (br d, ²*J*_{CP} = 4.7 Hz, C-2), 74.6 (br t, ²*J*_{CP} = 5.7 Hz, C-4 & C-6), 73.6 (br s, C-1 & C-3), 70.9 (br s, C-5), 70.0 (d, ²*J*_{CP} = 5.6 Hz, 4×CH₂Ph), 69.8 (d, ²*J*_{CP} = 5.6 Hz, 4×CH₂Ph), 69.7 (d, ²*J*_{CP} = 5.8 Hz, 4×CH₂Ph), 69.8 (d, ²*J*_{CP} = 6.2 Hz, 4×CH₂Ph), 69.7 (CH₂) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H

decoupled): -0.91 (4P), -1.58 (4P), -2.30 (2P) ppm. HRMS (ESI) calcd. for $C_{155}H_{154}NaO_{44}P_{10}$ [M+Na]⁺ 3051.7081; found 3051.7102.

5,5'-Bis[2-O-butyryl-1,3,4,6-O-tetrakis(bis(benzyloxy)phosphoryl)*-myo*-inositolyl) succinate **(31c).** Prepared from decaol **30c** according to General Procedure E. Yield: 75%. Colorless thick oil. R_f = 0.18 (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.26–7.12 (m, 80H, 16×CH₂Ph), 6.12 (br s, 2H, H-2), 5.14 (t, *J* = 9.4 Hz, 2H, H-5), 4.99–4.89 (m, 32H, 16×CH₂Ph), 4.79 (q, ³_{J_{HP}} = ³_{J_{HH}} = 9.4 Hz, 4H, H-4 & H-6), 4.33 (td, ³_{J_{HP}} = ³_{J_{HH}} = 9.3 Hz, ³_{J_{HH}} = 2.5 Hz, 4H, H-1 & H-3), 2.92 (s, 4H, COCH₂CH₂CO), 2.24 (t, *J* = 7.4 Hz, 4H, 2×COCH₂), 1.60–1.52 (m, 4H, 2×COCH₂CH₂), 0.88 (t, *J* = 7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 171.8 (CO_{but}), 171.5 (CO_{suc}), 135.72 (d, ³_{J_{CP}} = 7.2 Hz, 4×C-*i*Ar), 135.66 (d, ³_{J_{CP}} = 6.3 Hz, 4×C-*i*Ar), 135.49 (d, ³_{J_{CP}} = 7.2 Hz, 4×C-*i*Ar), 135.48 (d, ³_{J_{CP}} = 6.9 Hz, 4×C-*i*Ar), 128.39, 128.33, 128.28, 128.24, 128.22, 128.10, 128.06, 127.94, 127.86, 127.76 (C-oAr, C-mAr, C-pAr), 75.2 (br t, ²_{J_{CP}} = 6.5 Hz, 4×CH₂Ph), 69.67 (d, ²_{J_{CP}} = 5.7 Hz, 4×CH₂Ph), 69.5 (d, ²_{J_{CP}} = 5.4 Hz, 4×CH₂Ph), 69.4 (d, ²_{J_{CP}} = 5.7 Hz, 4×CH₂Ph), 69.1 (br s, C-2), 35.7 (COCH₂), 28.8 (COCH₂CH₂CO) 18.4 (COCH₂CH₂), 13.4 (CH₃) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H decoupled): -1.50 (4P), -1.76 (4P) ppm. HRMS (ESI) calcd. for C₁₃₆H₁₄₂NaO₄₀P₈ [M+Na]⁺ 2685.6871; found 2685.6876.

5,5'-Bis[1,2,3,4,6-O-pentakis(bis(benzyloxy)phosphoryl)-*myo*-inositolyl) succinate (**31d**). Prepared from decaol **30d** according to General Procedure E. Yield: 72%. White thick oil. $R_f = 0.11$ (hexanes/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.07 (m, 100H, 20×CH₂Ph), 5.60 (br d, ³J_{HP} = 8.0 Hz, 2H, H-2), 5.15 (dd, ²J_{HH} = 11.3 Hz, ³J_{HP} = 4.9 Hz, 4H, 2×CH₂Ph), 5.15 (2H, H-5, obscured), 5.06–4.89 (m, 36H, 18×CH₂Ph), 4.86 (q, ³J_{HP} = ³J_{HH} = 9.5 Hz, 4H, H-4 & H-6), 4.34 (t, ³J_{HP} = ³J_{HH} = 9.0 Hz, 4H, H-1 & H-3), 2.88 (s, 4H, COCH₂CH₂CO) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 171.8 (CO), 135.68 (d, ³J_{CP} = 5.0 Hz, 4×C-*i*Ar), 135.68 (d, ³J_{CP} = 5.0 Hz, 4×C-*i*Ar), 135.62 (d, ³J_{CP} = 6.0 Hz, 4×C-*i*Ar), 135.54 (d, ³J_{CP} = 7.3 Hz, 4×C-*i*Ar), 135.52 (d, ³J_{CP} = 6.9 Hz, 4×C-*i*Ar), 128.42, 128.39, 128.36, 128.31, 128.30, 128.28, 128.18, 128.12, 128.11, 128.09, 128.06, 127.84, 127.80 (C-oAr, C-mAr, C-pAr), 76.1 (br d, ³J_{CP} = 5.0 Hz, 4×CH₂Ph), 69.8 (d, ²J_{CP} = 5.3 Hz, 8×CH₂Ph), 69.7 (d, ²J_{CP} = 5.7 Hz, 4×CH₂Ph), 69.6 (d, ²J_{CP} = 5.6 Hz, 4×CH₂Ph), 28.8 (CH₂) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H decoupled): -1.07 (4P), -1.54 (4P), -2.38 (2P) ppm. HRMS (ESI) calcd. for C₁₅₆H₁₅₆NaO₄₄P₁₀ [M+Na]⁺ 3065.7238; found 3065.7221.

50,5'O-(Butane-1,4-diyl)bis[2-O-butyryl-1,2,3,4,6-O-

tetrakis(bis(benzyloxy)phosphoryl)*myo*-inositol] (**31e).** Prepared from decaol **30e** according to General Procedure E. Yield: 76%. Colorless thick oil. R_f = 0.14 (hexanes/EtOAc 1:2). ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.20 (m, 80H, 16×CH₂*Ph*), 6.10 (br s, 2H, H-2), 5.05–4.92 (m, 32H, 16×CH₂Ph), 4.70 (q, ³*J*_{HP} = ³*J*_{HH} = 9.5 Hz, 4H, H-4 & H-6), 4.27 (td, ³*J*_{HP} = ³*J*_{HH} = 9.2 Hz, ³*J*_{HH} = 2.3 Hz, 4H, H-1 & H-3), 3.48 (br s, 4H, 2×OCH₂), 2.97 (t, *J* = 9.4 Hz, 2H, H-5), 2.19 (t, *J* = 7.4 Hz, 4H, 2×COCH₂), 1.59–1.47 (m, 4H, 2×COCH₂*CH*₂), 1.47 (br s, 4H, 2×OCH₂*CH*₂), 0.86 (t, *J*=7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.7 (CO), 136.0 (d, ³*J*_{CP} = 7.3 Hz, 4×C-*i*Ar), 135.9 (d, ³*J*_{CP} = 6.8 Hz, 4×C-*i*Ar), 135.7 (d, ³*J*_{CP} = 5.6 Hz, 4×C-*i*Ar), 135.6 (d, ³*J*_{CP} = 5.9 Hz, 4×C-*i*Ar), 128.55, 128.49, 128.44, 128.39, 128.28, 128.11, 128.05, 127.9 (C-OAr, C-mAr, C-pAr), 78.9 (br s, C-5), 77.3 (br t, ²*J*_{CP} = 6.3 Hz, C-4 & C-6), 74.0 (OCH₂), 73.6 (br s, C-1 & C-3), 69.9 (d, ²*J*_{CP} = 5.7 Hz, 4×CH₂Ph), 69.5 (d, ²*J*_{CP} = 5.3 Hz, 4×CH₂Ph), 69.5 (d, ²*J*_{CP} = 5.5 Hz, 4×CH₂Ph), 69.3 (d, ²*J*_{CP} = 5.2 Hz, 4×CH₂Ph), 69.2 (br s, C-2), 35.8 (COCH₂), 25.4 (OCH₂CH₂), 18.5 (COCH₂CH₂), 13.5 (CH₃) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H decoupled): -1.13 (4P), -1.65 (4P) ppm. HRMS (ESI) calcd. for C₁₃₆H₁₄₆NaO₃₈P₈ [M+Na]⁺ 2657.7285; found 2657.7302.

50,5'O-(Butane-1,4-diyl)bis[1,2,3,4,6-O-pentakis(bis(benzyloxy)phosphoryl)*myo*-inositol] **(31f).** Prepared from decaol **30f** according to General Procedure E. Yield: 60%. Colorless thick oil. R_f = 0.17 (hexanes/EtOAc 1:2). ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.11 (m, 100H, 20×CH₂Ph), 5.61 (br d, ³J_{HP} = 8.8 Hz, 2H, H-2), 5.16 (dd, ²J_{HH} = 11.7 Hz, ³J_{HP} = 5.8 Hz, 4H, 2×CH₂Ph), 5.07–4.92 (m, 36H, 18×CH₂Ph), 4.87 (q, ³J_{HP} = ³J_{HH} = 9.6 Hz, 4H, H-4 & H-6), 4.30 (br

t, ${}^{3}J_{HP} = {}^{3}J_{HH} = 9.4$ Hz, 4H, H-1 & H-3), 3.48 (br s, 4H, 2×OCH₂), 2.97 (t, J = 9.4 Hz, 2H, H-5), 1.45 (br s, 4H, 2×OCH₂CH₂) ppm. 13 C NMR (126 MHz, CDCl₃) δ 135.8 (d, ${}^{3}J_{CP} = 6.1$ Hz, 4×C-*i*Ar), 135.7 (d, ${}^{3}J_{CP} = 5.5$ Hz, 4×C-*i*Ar), 135.6 (d, ${}^{3}J_{CP} = 9.0$ Hz, 4×C-*i*Ar), 135.52 (d, ${}^{3}J_{CP} = 7.4$ Hz, 4×C-*i*Ar), 135.46 (d, ${}^{3}J_{CP} = 7.6$ Hz, 4×C-*i*Ar), 128.38, 128.34, 128.27, 128.24, 128.19, 128.18, 128.09, 128.02, 127.92, 127.85, 127.73, 127.67 (C-*o*Ar, C-*m*Ar, C-*p*Ar), 78.7 (br s, C-5), 76.7 (br t, ${}^{2}J_{CP} = 5.9$ Hz, C-4 & C-6), 76.0 (br d, ${}^{2}J_{CP} = 5.4$ Hz, C-2), 74.0 (OCH₂), 73.6 (br s, C-1 & C-3), 69.9 (d, ${}^{2}J_{CP} = 5.6$ Hz, 4×CH₂Ph), 69.7 (d, ${}^{2}J_{CP} = 5.2$ Hz, 4×CH₂Ph), 69.5 (d, ${}^{2}J_{CP} = 6.0$ Hz, 4×CH₂Ph), 69.4 (d, ${}^{2}J_{CP} = 5.6$ Hz, 4×CH₂Ph), 69.2 (d, ${}^{2}J_{CP} = 5.2$ Hz, 4×CH₂Ph), 25.2 (OCH₂CH₂) ppm. 31 P NMR (202 MHz, CDCl₃, 31 P-¹H decoupled): -0.55 (4P), -1.39 (4P), -2.86 (2P) ppm. HRMS (ESI) calcd. for C₁₅₆H₁₆₀NaO₄₂P₁₀ [M+Na]⁺ 3037.7653; found 3037.7640.

50,5'0-(Pentane-1,5-diyl)bis[2-0-butyryl-1,2,3,4,6-0-

tetrakis(bis(benzyloxy)phosphoryl)*myo*-inositol] (**31g).** Prepared from decaol **30g** according to General Procedure E. Yield: 69%. Colorless thick oil. R_f = 0.17 (hexanes/EtOAc 1:2). ¹H NMR (500 MHz, CDCl₃) δ 7.24–7.16 (m, 80H, $16\times CH_2Ph$), 6.11 (t, *J* = 2.3 Hz, 2H, H-2), 5.04–4.88 (m, 32H, $16\times CH_2Ph$), 4.75 (q, ³*J*_{HP} = ³*J*_{HH} = 9.5 Hz, 4H, H-4 & H-6), 4.32 (td, ³*J*_{HP} = ³*J*_{HH} = 10.0 Hz, ³*J*_{HH} = 2.5 Hz, 4H, H-1 & H-3), 3.53 (t, *J* = 7.5 Hz, 4H, 2×OCH₂), 3.20 (t, *J* = 9.4 Hz, 2H, H-5), 2.22 (t, *J* = 7.4 Hz, 4H, 2×COCH₂), 1.58–1.51 (m, 4H, 2×COCH₂CH₂), 1.47–1.41 (m, 4H, 2×OCH₂CH₂), 0.87 (t, *J* = 7.4 Hz, 6H, 2×CH₃), 0.89 – 0.81 (m, 2H, OCH₂CH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 171.5 (CO), 135.8 (d, ³*J*_{CP} = 7.2 Hz, 4×C-*i*Ar), 135.7 (d, ³*J*_{CP} = 7.0 Hz, 4×C-*i*Ar), 135.6 (d, ³*J*_{CP} = 7.0 Hz, 4×C-*i*Ar), 135.5 (d, ³*J*_{CP} = 7.1 Hz, 4×C-*i*Ar), 128.35, 128.32, 128.29, 128.27, 128.25, 128.23, 128.19, 128.09, 127.9, 127.8, 127.7 (C-oAr, C-mAr, C-pAr), 79.0 (br s, C-5), 76.9 (br t, ²*J*_{CP} = 6.5 Hz, C-4 & C-6), 73.7 (OCH₂), 73.5 (br s, C-1 & C-3), 69.7 (d, ²*J*_{CP} = 5.6 Hz, 4×CH₂Ph), 69.4 (d, ²*J*_{CP} = 5.6 Hz, 4×CH₂Ph), 69.3 (d, ²*J*_{CP} = 6.0 Hz, 4×CH₂Ph), 69.2 (d, ²*J*_{CP} = 5.3 Hz, 4×CH₂Ph), 69.1 (br s, C-2), 35.7 (COCH₂), 29.3 (OCH₂CH₂), 21.5 (OCH₂CH₂CH₂), 18.3 (COCH₂CH₂), 13.4 (CH₃) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H decoupled): -1.46 (4P), -1.69 (4P) ppm. HRMS (ESI) calcd. for C₁₃₇H₁₄₈NaO₃₈P₈ [M+Na]⁺ 2671.7442; found 2671.7456.

50,5'O-(Pentane-1,5-diyl)bis[1,2,3,4,6-O-pentakis(bis(benzyloxy)phosphoryl)*myo*-inositol] **(31h).** Prepared from decaol **30h** according to General Procedure E. Yield: 67%. Colorless thick oil. $R_f = 0.18$ (hexanes/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.14 (m, 100H, 20×CH₂Ph), 5.61 (br d, ³J_{HP} = 8.8 Hz, 2H, H-2), 5.16 (dd, ²J_{HH} = 11.7 Hz, ³J_{HP} = 6.1 Hz, 4H, 2×CH₂Ph), 5.06–4.85 (m, 40H, H-4 & H-6 & 18×CH₂Ph), 4.32 (br t, ³J_{HP} = ³J_{HH} = 9.4 Hz, 4H, H-1 & H-3), 3.54 (br t, J = 7.4 Hz, 4H, 2×OCH₂), 3.21 (t, J = 9.3 Hz, 2H, H-5), 1.47–1.37 (m, 4H, 2×OCH₂CH₂), 1.32–1.23 (m, 2H, OCH₂CH₂CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 136.1–135.7 (m, 20C, 20×C-*i*Ar), 128.45, 128.36, 128.30, 128.26, 128.17, 128.15, 128.12, 128.07, 127.98, 127.86, 127.82 (C-OAr, C-*m*Ar, C-*p*Ar), 79.2 (br s, C-5), 76. 8 (br t, ²J_{CP} = 6.4 Hz, C-4 & C-6) 76.2 (br d, ²J_{CP} = 5.0 Hz, C-2), 74.1 (OCH₂), 73.9 (br s, C-1 & C-3), 70.0 (d, ²J_{CP} = 5.7 Hz, 4×CH₂Ph), 69.8 (d, ²J_{CP} = 6.7 Hz, 4×CH₂Ph), 69.6 (d, ²J_{CP} = 5.6 Hz, 4×CH₂Ph), 69.4 (d, ²J_{CP} = 5.3 Hz, 4×CH₂Ph), 29.5 (OCH₂CH₂), 21.6 (OCH₂CH₂CH₂) ppm. ³¹P NMR (121 MHz, CDCl₃, ³¹P-¹H decoupled): -0.89 (4P), -1.45 (4P), -2.77 (2P) ppm. HRMS (ESI) calcd. for C₁₅₇H₁₆₂NaO₄₂P₁₀ [M+Na]⁺ 3051.7809; found 3051.7827.

5,5'-Bis(tetrasodium 2-O-butyryl-1,3,4,6-O-tetrakisphosphono-*myo*-inositolyl) malonate **(5).** Prepared from decaol **31a** according to General Procedure F. Reaction time: 72 h. Yield: 100%. White amorphous solid. FTIR (KBr): 1742, 1647 cm⁻¹. ¹H NMR (500 MHz, D₂O)^{S8} δ 5.75 (s, 2H, H-2), 5.24 (t, *J* = 9.6 Hz, 2H, H-5), 4.53 (q, ³_{JHP} = ³_{JHH} = 9.3 Hz, 4H, H-4 & H-6), 4.35 (br t, ³_{JHP} = 9.1 Hz, 2H, H-1 & H-3), 2.50 (t, *J* = 7.3 Hz, 4H, 2×COCH₂), 1.71–1.64 (m, 4H, 2×COCH₂CH₂), 0.95 (t, *J*=7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, D₂O)^{S8} δ 175.7 (CO_{but}), 168.4 (CO_{mal}), 75.0 (br t, ²_{JCP} = 5.1 Hz, C-4 & C-6), 73.8 (br s, C-5), 72.6 (br s, C-1 & C-3), 72.2 (br s, C-2), 39.2 (quintet, *J*_{CD} = 18.0 Hz, CD₂), 36.2 (COCH₂), 18.3 (COCH₂CH₂), 13.2 (CH₃) ppm. ³¹P NMR (202 MHz, D₂O, ³¹P-¹H decoupled): -0.12 (4P), -0.17 (4P) ppm. HRMS (ESI) calcd. for C₂₃H₃₆Na₇O₄₀P₈ [M–Na]⁻ 1360.7973; found 1360.7986.

5,5'-Bis(pentasodium 1,2,3,4,6-*O***-pentakisphosphono***-myo***-inositolyl) malonate (6).** Prepared from decaol **31b** according to General Procedure F. Reaction time: 48 h. Yield: 100%. White amorphous solid. FTIR (KBr): 1769, 1211 cm⁻¹. ¹H NMR (500 MHz, D₂O)^{S8} δ 5.17 (t, *J* = 9.6 Hz, 2H, H-5), 4.86 (br s, 2H, H-2), 4.48 (q, ³*J*_{HP} = ³*J*_{HH} = 9.5 Hz, 4H, H-4 & H-6), 4.22 (br t, ³*J*_{HP} = ³*J*_{HH} = 8.8 Hz, 4H, H-1 & H-3) ppm. ¹³C NMR (126 MHz, D₂O)^{S8} δ 168.1 (CO), 75.0 (d, ²*J*_{CP} = 5.2 Hz, C-2), 74.2 (br t, ²*J*_{CP} = 5.9 Hz, C-4 & C-6), 73.5 (br s, C-5), 73.2 (br s, C-1 & C-3), 39.8 (quintet, *J*_{CD} = 18.3 Hz, CD₂) ppm. ³¹P NMR (121 MHz, D₂O, ³¹P-¹H decoupled): 0.24 (4P), -0.14 (6P) ppm. HRMS (ESI) calcd. for C₁₅H₂₄Na₉O₄₄P₁₀ [M–Na]⁻ 1424.6101; found 1424.6112.

5,5'-Bis(tetrasodium 2-O-butyryl-1,3,4,6-O-tetrakisphosphono-*myo***-inositolyl) succinate (7).** Prepared from decaol **31c** according to General Procedure F. Reaction time: 72 h. Yield: 99%. White amorphous solid. FTIR (KBr): 1735, 1183 cm⁻¹. ¹H NMR (500 MHz, D₂O) δ 5.67 (br s, 2H, H-2), 5.12 (t, J = 9.6 Hz, 2H, H-5), 4.47 (q, ${}^{3}J_{HP} = {}^{3}J_{HH} = 9.5$ Hz, 4H, H-4 & H-6), 4.28 (td, ${}^{3}J_{HP} = {}^{3}J_{HH} = 9.7$ Hz, ${}^{3}J_{HH} = 1.7$ Hz, 4H, H-1 & H-3), 2.83 (s, 4H, COCH₂CH₂CO), 2.46 (t, J = 7.3 Hz, 4H, 2×COCH₂), 1.67–1.59 (m, 4H, 2×COCH₂CH₂), 0.91 (t, J = 7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, D₂O) δ 175.5 (CO_{but}), 174.3 (CO_{suc}), 74.7 (br t, ${}^{2}J_{CP} = 5.3$ Hz, C-4 & C-6), 73.1 (br s, C-5), 72.2 (br s, C-1 & C-3), 72.0 (br s, C-2), 35.8 (COCH₂), 28.8 (COCH₂CH₂CO), 18.0 (COCH₂CH₂), 12.9 (CH₃) ppm. ³¹P NMR (121 MHz, D₂O, ${}^{31}P^{-1}H$ decoupled): 0.42 (4P), -0.13 (4P) ppm. HRMS (ESI) calcd. for C₂₄H₃₈Na₇O₄₀P₈ [M–Na]⁻ 1374.8130; found 1374.8126.

5,5'-Bis(pentasodium 1,2,3,4,6-O-pentakisphosphono-*myo*-inositolyl) succinate **(8).** Prepared from decaol **31d** according to General Procedure F. Reaction time: 72 h. Yield: 95%. White amorphous solid. FTIR (KBr): 1732, 1196 cm⁻¹. ¹H NMR (500 MHz, D₂O) δ 5.14 (br t, J = 9.5 Hz, 2H, H-5), 4.89 (br s, 2H, H-2), 4.50 (br q, ${}^{3}J_{HP} = {}^{3}J_{HH} = 9.2$ Hz, 4H, H-4 & H-6), 4.25 (br t, ${}^{3}J_{HP} = {}^{3}J_{HH} = 8.2$ Hz, 4H, H-1 & H-3), 2.83 (s, 4H, 2×COCH₂) ppm. ¹³C NMR (126 MHz, D₂O) δ 174.3 (CO), 75.2 (br s, C-2), 74.3 (br t, ${}^{2}J_{CP} = 5.9$ Hz, C-4 & C-6), 73.2 (br s, C-1 & C-3), 73.1 (br s, C-5), 28.9 (COCH₂) ppm. ³¹P NMR (202 MHz, D₂O, ${}^{31}P^{-1}H$ decoupled): 0.60 (4P), 0.05 (2P), -0.20 (4P) ppm. HRMS (ESI) calcd. for C₁₆H₂₆Na₉O₄₄P₁₀ [M–Na]⁻ 1438.6258; found 1438.6242.

50,5'**O**-(**Butane-1**,4-diyl)**bis**[**tetrasodium 2-O**-**butyryl-1**,3,4,6-**O**-**tetrakisphosphono**-*myo***inositol**] (9). Prepared from decaol **31e** according to General Procedure F. Reaction time: 72 h. Yield: 98%. White amorphous solid. FTIR (KBr): 1739, 1203, 1050 cm⁻¹. ¹H NMR (500 MHz, D₂O) δ 5.61 (br s, 2H, H-2), 4.37 (q, ³J_{HP} = ³J_{HH} = 9.4 Hz, 4H, H-4₄ & H-6), 4.21 (td, ³J_{HP} = ³J_{HH} = 9.8 Hz, ³J_{HH} = 2.4 Hz, 4H, H-1 & H-3), 3.77 (br s, 4H, 2×OCH₂), 3.46 (t, *J* = 9.4 Hz, 2H, H-5), 2.44 (t, *J* = 7.3 Hz, 4H, 2×COCH₂), 1.65–1.58 (m, 8H, 2×COCH₂CH₂ & 2×OCH₂CH₂), 0.90 (t, *J* = 7.4 Hz, 6H, 2×CH₃) ppm. ¹³C NMR (126 MHz, D₂O) δ 175.5 (CO), 80.1 (br s, C-5), 76.5 (br t, ²J_{CP} = 5.5 Hz, C-4 & C-6), 73.3 (OCH₂), 72.6 (br d, ²J_{CP} = 4.3 Hz, C-1 & C-3), 71.9 (br s, C-2), 35.8 (COCH₂), 25.5 (OCH₂CH₂), 18.0 (COCH₂CH₂), 12.9 (CH₃) ppm. ³¹P NMR (202 MHz, D₂O, ³¹P-¹H decoupled): 0.08 (4P), -0.59 (4P) ppm. HRMS (ESI) calcd. for C₂₄H₄₂Na₇O₃₈P₈ [M–Na]⁻ 1346.8544; found 1346.8546.

50,5'O-(Butane-1,4-diyl)bis[pentasodium 1,2,3,4,6-O-pentakisphosphono*-myo*-inositol] **(10).** Prepared from decaol **31f** according to General Procedure F. Reaction time: 72 h. Yield: 99%. White amorphous solid. FTIR (KBr): 1203, 1062 cm⁻¹. ¹H NMR (500 MHz, D₂O) δ 4.79 (2H, H-2, obscured), 4.41 (q, ³J_{HP} = ³J_{HH} = 9.2 Hz, 4H, H-4 & H-6), 4.15 (br t, ³J_{HP} = 8.8 Hz, 4H, H-1 & H-3), 3.80 (br s, 4H, 2×OCH₂), 3.47 (br t, *J* = 9.3 Hz, 2H, H-5), 1.65 (br s, 4H, 2×OCH₂CH₂) ppm. ¹³C NMR (126 MHz, D₂O) δ 80.3 (m, C-5), 76.2 (br t, ²J_{CP} = 6.2 Hz, C-4 & C-6), 75.6–75.5 (m, C-2), 73.52 (m, C-1 & C-3), 73.48 (OCH₂), 25.5 (OCH₂CH₂) ppm. ³¹P NMR (202 MHz, D₂O, ³¹P-¹H decoupled): 0.52 (4P), -0.49 (6P) ppm. HRMS (ESI) calcd. for C₁₆H₃₀Na₉O₄₂P₁₀ [M–Na]⁻ 1410.6673; found 1410.6653.

50,5'O-(Pentane-1,5-diyl)bis[tetrasodium 2-O-butyryl-1,3,4,6-O-tetrakisphosphono-*myo***inositol] (11).** Prepared from decaol **31g** according to General Procedure F. Reaction time: 72 h. Yield: 100%. White amorphous solid. FTIR (KBr): 1742, 1200, 1055 cm⁻¹. ¹H NMR (500

MHz, D₂O) δ 5.61 (s, 2H, H-2), 4.37 (q, ³J_{HP} = ³J_{HH} = 9.3 Hz, 4H, H-4 & H-6), 4.20 (t, ³J_{HP} = ³J_{HH} = 9.7 Hz, 4H, H-1 & H-3), 3.75 (br t, *J* = 6.9 Hz, 4H, 2×OCH₂), 3.46 (t, *J* = 9.4 Hz, 2H, H-5), 2.45 (t, *J* = 7.2 Hz, 4H, 2×COCH₂), 1.65–1.60 (m, 8H, 2×COCH₂CH₂ & 2×OCH₂CH₂), 1.30–1.25 (m, 2H, OCH₂CH₂CH₂), 0.91 (t, *J* = 7.4 Hz, 6H, 2×OCH₃) ppm. ¹³C NMR (126 MHz, D₂O) δ 175.5 (CO), 80.1 (br s, C-5), 76.6 (br t, ²J_{CP} = 5.3 Hz, C-4 & C-6), 73.4 (OCH₂), 72.6 (br d, ²J_{CP} = 4.6 Hz, C-1 & C-3), 72.0 (br s, C-2), 35.9 (COCH₂), 29.1 (OCH₂CH₂), 21.2 (OCH₂CH₂CH₂), 18.0 (COCH₂CH₂), 13.0 (CH₃) ppm. ³¹P NMR (121 MHz, D₂O, ³¹P-¹H decoupled): 0.43 (4P), –0.33 (4P) ppm. HRMS (ESI) calcd. for C₂₅H₄₄Na₇O₃₈P₈ [M–Na]⁻ 1360.8701; found 1360.8693.

50,5'O-(Pentane-1,5-diyl)bis[pentasodium 1,2,3,4,6-O-pentakisphosphono*-myo*-inositol] **(12).** Prepared from decaol **31h** according to General Procedure F. Reaction time: 48 h. Yield: 98%. White amorphous solid. FTIR (KBr): 1200, 1055 cm⁻¹. ¹H NMR (500 MHz, D₂O) δ 4.79 (2H, H-2, obscured), 4.35 (q, ³J_{HP} = ³J_{HH} = 7.8 Hz, 4H, H-4 & H-6), 4.08 (br t, ³J_{HP} = 8.7 Hz, 4H, H-1 & H-3), 3.75 (t, *J* = 5.0 Hz, 4H, 2×OCH₂), 3.41 (t, *J* = 9.2 Hz, 2H, H-5), 1.65–1.59 (m, 4H, 2×OCH₂CH₂), 1.28–1.22 (m, 2H, OCH₂CH₂CH₂) ppm. ¹³C NMR (126 MHz, D₂O) δ 80.5 (br s, C-5), 76.3 (br s, C-4 & C-6), 75.5 (br s, C-2), 73.6 (OCH₂), 73.5 (br s, C-1 & C-3), 29.2 (OCH₂CH₂), 21.2 (OCH₂CH₂CH₂) ppm. ³¹P NMR (202 MHz, D₂O, ³¹P-¹H decoupled): 1.37 (4P), 0.09 (2P), – 0.38 (4P) ppm. HRMS (ESI) calcd. for C₁₇H₃₂Na₉O₄₂P₁₀ [M–Na]⁻ 1424.6829; found 1424.6851.

- S1 S. J. Mills, A. M. Riley, C. Liu, M. F. Mahon and B. V. L. Potter, *Chem. Eur. J.*, 2003, **9**, 6207.
- S2 A. E. Koumbis, C. D. Duarte, C. Nicolau and J.-M. Lehn, *ChemMedChem*, 2011, 6, 169.
- S3 M. T. Rudolf, T. Kaiser, A. H. Guse, G. W. Mayr and C. Schultz, Liebigs Ann./Recueil, 1997, 1861.
- S4 A. M. Riley, H. Wang, J. D. Weaver, S. B. Shears and B. V. L. Potter, Chem. Commun., 2012, 48, 11292.
- S5 H. Wang, H. Y. Godage, A. M. Riley, J. D. Weaver, S. B. Shears and B. V.L. Potter, *Chem. Biol.*, 2014, **21**, 689.
- S6 A. E. Martin, T. M. Ford and J. E. Bulkowski, J. Org. Chem., 1982, 47, 412.
- S7 D. H. Bus, D. J. Olszanski, J. C. Stevens, W. P. Schammel, M. Kojima, N. Herron, L. . Zimmer, K. A. Holter and J. Mocak, J. Am. Chem. Soc., 1981, 103, 1472.
- S8 For compounds **5** and **6** a rapid H-D exchange of malonic protons in the NMR solvent (D_2O) occurs. Therefore, these protons disappear in the ¹H NMR spectrum, whereas a quintet is observed in the ¹³C NMR spectrum for the CD_2 group (around 40 ppm). The complete insolubility of these compounds in non-protic solvents did not allow us to run other NMR experiments. The provided data (NMR and HRMS) are consisted with the given structures.

 1		1					· · · ·										
45	4	10	3	5	30	25	20	15	10	, 5	0	-5	-10	-15	-20	-25	-30
									TI	(ppm)							

														-
40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	
						i	f1 (ppm)							

28	26	24	22	20	18	16	14	12	10	8	6	4	2	0 f1 (p	-2 pm)	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30

S25

-							_					-									· · ·	-		 - · ·	_ ,		 		
32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	0) -	2	-4	-6	-8		-12	-16		-20	-24	-	28
															f	1 (pp	m)												

																														_
0	28	26	24	22	20	18	16	14	12	10	8	6	4	2	0	-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-
														f1	(ppm)															

S29

			· ·																	· ·										· · ·	
30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	0		-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30
															f1 (p	pm)															

2 0 f1 (ppm)

_	-	· ·																				 			- · ·						
32	1	80	28	26	24	22	20	18	16	14	12	10	8	6	4	2	0	-2	-4	-6	-8	-12	-	16	-	20	-24	4	-2	8	
																f1	(ppm	ו)													

S37

S43

S48

7.5274 7.5274 7.5274 7.5274 7.22710 7.227110 7.227110 7.227110 7.22710 7.22710 7.22710 7.22710 7.22710 7.22710 7.22710 7.22710 7.22710 7.22710 7.22710 7.22720 7.22720 7.22720 7.22720 7.22720 7.22720 7.22720

110 100 f1 (ppm) -10 -20

f1 (ppm)

60 150 140 130 120 110 100 90 80 70 60 f1 (ppm)

7, 2632 7, 2532 7, 2530 7, 1950 7, 1050 7, 100

100 f1 (ppm) 200 190 180 170 160 150 140 130 120 110 90 80 70 60 50 40 30 20 10 0

28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 f1 (ppm)

	-																_															
30		28	26	24	22	20	18	16	14	12	10	8	6	4	2 f) f1 (pp	D Dm)	-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30

S84

