Pd-Catalyzed Regioselective Hydroesterification of 2-Allylphenols to

Seven-Membered Lactones without External CO

Wenju Chang,^{a†} Jingfu Li,^{a†} Wenlong Ren,^a and Yian Shi*^{a,b,c}

^aState Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); ^bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); ^cDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA).

Supporting Information

Table of Contents

Experimental procedures and characterization data	S-2
X-ray structure of 2k and 2n	S-11
HPLC data for determination of enantiomeric excess	S-31
NMR spectra	S-32

General Methods. All commercially available reagents were used without further purification. All solvents used for the reaction were purified with solvent purification system. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. All ligands were purchased from commercial suppliers. Olefins **1a**, **1c**, and **1f** were prepared by reacting the corresponding phenols with 3-bromo-2-methyl-1-propene and NaH in toluene at 0 °C.¹ Olefins **1d**, **1e** and **1g-1n** were prepared via allylation of the corresponding phenols with 3-bromo-2-methyl-1-propene and K₂CO₃ in acetone at reflux, followed by the Claisen rearrangement of the resulting allyl ethers in 1,3-dichlorobenzene at 190 °C.² Olefin **1b** was prepared by following the reported procedures.³ Olefin **1o** was purchased from commercial supplier. Phenyl formate was prepared from the corresponding phenols according to the reported procedure.⁴

- 1) R. M. Trend, Y. K. Ramtohul and B. M. Stoltz, J. Am. Chem. Soc., 2005, 127, 17778.
- 2) M. Amézquita-Valencia and H. Alper, Org. Lett., 2014, 16, 5827.
- G. T. Hoang, V. J. Reddy, H. H. K. Nguyen and C. J. Douglas, *Angew. Chem. Int. Ed.*, 2011, 50, 1882.
- 4) Y. Katafuchi, T. Fujihara, T. Iwai, J. Terao and Y. Tsuji, *Adv. Synth. Catal.*, 2011, 353, 475.

Representative procedure for hydroesterification (Table 2, 1a)

To a mixture of $Pd(OAc)_2$ (0.0056 g, 0.025 mmol), (±)-DTBM-SEGPHOS (0.015 g, 0.0125 mmol), and THF (0.20 mL) in a vial (4.0 mL) was sonicated for 30 seconds. To the resulting solution were added HCOOPh (0.073 g, 0.60 mmol), 2-(2-methylallyl)phenol (**1a**) (0.074 g, 0.50 mmol), and HCOOH (0.023 g, 0.50 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 50 °C for 24 h and purified by flash chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 30/1) to give lactone **2a** as a colorless oil (0.079 g, 90% yield).

Table 2, 2a

Colorless oil (0.079 g, 0.45 mmol, 90% yield); IR (film) 1756, 1454 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 1H), 7.21-7.13 (m, 2H), 7.10-7.06 (m, 1H), 2.97 (dd, J = 13.8, 6.3 Hz, 1H), 2.63-2.51 (m, 2H), 2.47 (dd, J = 13.8, 6.3 Hz, 1H), 2.17-2.07 (m, 1H), 1.09 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 152.0, 130.5, 129.2, 128.6, 125.8, 119.5, 38.8, 36.4, 33.9, 20.6; HRMS (ESI) Calcd for C₁₁H₁₃O₂ (M+H): 177.0910; Found: 177.0907.

- 1) B. E. Ali, K. Okuro, G. Vasapollo and H. Alper, J. Am. Chem. Soc., 1996, 118, 4264.
- 2) T. Matsuda, M. Shigeno and M. Murakami, J. Am. Chem. Soc., 2007, 129, 12086.

Table 2, 2b

Colorless oil (0.067 g, 0.35 mmol, 70% yield); IR (film) 1759, 1222 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 1H), 7.20-7.11 (m, 2H), 7.08 (d, *J* = 7.8 Hz, 1H), 2.95 (dd, *J* = 13.9, 6.7 Hz, 1H), 2.54 (dd, *J* = 11.8, 6.9 Hz, 1H), 2.53 (dd, *J* = 13.7, 6.4 Hz, 1H), 2.36-2.23 (m, 1H), 2.16 (dd, *J* = 12.0, 6.8 Hz, 1H), 1.52-1.33 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 151.9, 130.4, 129.3, 128.5, 125.8, 119.3, 40.6, 36.7, 34.2, 27.6, 11.8; HRMS (ESI) Calcd for C₁₂H₁₅O₂ (M+H): 191.1067; Found: 191.1068.

Table 2, 2c

Colorless oil (0.084 g, 0.44 mmol, 88% yield); IR (film) 1761, 1233 cm⁻¹; ¹H NMR (400

MHz, CDCl₃) δ 7.05 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.90 (s, 1H), 2.92 (dd, J = 13.8, 6.2 Hz, 1H), 2.60-2.49 (m, 2H), 2.41 (dd, J = 13.8, 6.2 Hz, 1H), 2.34 (s, 3H), 2.16-2.06 (m, 1H), 1.07 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 151.7, 138.6, 130.1, 126.3, 125.9, 119.9, 38.7, 35.9, 33.9, 21.1, 20.5; HRMS (ESI) Calcd for C₁₂H₁₅O₂ (M+H): 191.1067; Found: 191.1065.

Table 2, 2d

Colorless oil (0.090 g, 0.44 mmol, 88% yield); IR (film) 1759, 1618 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.2 Hz, 1H), 6.70 (dd, J = 8.2, 2.6 Hz, 1H), 6.66 (d, J = 2.6 Hz, 1H), 3.80 (s, 3H), 2.90 (dd, J = 14.0, 6.0 Hz, 1H), 2.62-2.47 (m, 2H), 2.39 (dd, J = 14.0, 6.2 Hz, 1H), 2.16-2.05 (m, 1H), 1.06 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 159.8, 152.5, 130.7, 121.0, 111.1, 105.4, 55.6, 38.8, 35.5, 34.1, 20.4; HRMS (ESI) Calcd for C₁₂H₁₅O₃ (M+H): 207.1016; Found: 207.1014.

Table 2, 2e

Colorless oil (0.090 g, 0.47 mmol, 93% yield); IR (film) 1761, 1458 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 7.5 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 2.97-2.86 (m, 1H), 2.62-2.47 (m, 3H), 2.36 (s, 3H), 2.18-2.08 (m, 1H), 1.11 (d, J = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 152.1, 137.4, 127.8, 127.5, 127.4, 117.0, 38.6, 33.5, 31.4, 20.6, 19.7; HRMS (ESI) Calcd for C₁₂H₁₅O₂ (M+H): 191.1067; Found: 191.1066.

Table 2, 2f

Colorless oil (0.080 g, 0.42 mmol, 84% yield); IR (film) 1758, 1491 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (dd, J = 8.1, 1.8 Hz, 1H), 6.98 (d, J = 1.6 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 2.91 (dd, J = 13.8, 6.2 Hz, 1H), 2.60-2.48 (m, 2H), 2.41 (dd, J = 13.7, 6.2 Hz, 1H), 2.33 (s, 3H), 2.16-2.07 (m, 1H), 1.08 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 149.7, 135.3, 130.9, 128.8, 128.7, 119.0, 38.6, 36.2, 33.7, 20.8, 20.6; HRMS (ESI) Calcd for C₁₂H₁₅O₂ (M+H): 191.1067; Found: 191.1064.

Table 2, 2g

Colorless oil (0.087 g, 0.37 mmol, 75% yield); IR (film) 1764, 1494 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.4, 2.4 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 2.94 (dd, J = 13.7, 6.0 Hz, 1H), 2.62-2.51 (m, 2H), 2.45 (dd, J = 13.7, 6.5 Hz, 1H), 2.17-2.08 (m, 1H), 1.32 (s, 9H), 1.09 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 149.6, 148.8, 128.4, 127.3, 125.2, 118.7, 38.8, 36.7, 34.6, 33.9, 31.6, 20.7; HRMS (ESI) Calcd for C₁₅H₂₁O₂ (M+H): 233.1536; Found: 233.1534.

Table 2, 2h

Light yellow oil (0.089 g, 0.43 mmol, 86% yield); IR (film) 1756, 1488 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, J = 8.7 Hz, 1H), 6.77 (dd, J = 8.7, 3.0 Hz, 1H), 6.72 (d, J = 3.0 Hz, 1H), 3.80 (s, 3H), 2.92 (dd, J = 13.6, 6.2 Hz, 1H), 2.61-2.49 (m, 2H), 2.42 (dd, J = 13.7, 6.2 Hz, 1H), 2.16-2.07 (m, 1H), 1.09 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3,

157.1, 145.6, 130.2, 120.0, 115.9, 112.6, 55.7, 38.6, 36.5, 33.6, 20.7; HRMS (ESI) Calcd for C₁₂H₁₅O₃ (M+H): 207.1016; Found: 207.1014.

Table 2, 2i

Colorless oil (0.095 g, 0.45 mmol, 90% yield); IR (film) 1761, 1471 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (dd, J = 8.5, 2.5 Hz, 1H), 7.18 (d, J = 2.5 Hz, 1H), 7.02 (d, J = 8.5 Hz, 1H), 2.93 (dd, J = 13.8, 6.3 Hz, 1H), 2.64-2.52 (m, 2H), 2.44 (dd, J = 13.8, 6.3 Hz, 1H), 2.18-2.08 (m, 1H), 1.10 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 150.4, 131.0, 130.7, 130.2, 128.4, 120.7, 38.5, 36.1, 33.6, 20.5; HRMS (ESI) Calcd for C₁₁H₁₂ClO₂ (M+H): 211.0520; Found: 211.0519.

Table 2, 2j

White solid (0.073 g, 0.31 mmol, 62% yield); mp. 112-113 °C; IR (film) 1767, 1716, 1286 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.4, 2.1 Hz, 1H), 7.90 (d, J = 2.0 Hz, 1H), 7.14 (d, J = 8.4 Hz 1H), 3.92 (s, 3H), 3.01 (dd, J = 13.6, 6.2 Hz, 1H), 2.67-2.48 (m, 3H), 2.17-2.09 (m, 1H), 1.11 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 166.4, 155.4, 132.1, 130.4, 129.4, 127.7, 119.6, 52.5, 38.8, 36.3, 33.8, 20.6; HRMS (ESI) Calcd for C₁₃H₁₄NaO₄ (M+Na): 257.0784; Found: 257.0784.

Table 2, 2k

White solid (0.070 g, 0.32 mmol, 64% yield); mp. 97-98 °C; IR (film) 1764, 1680, 1105 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.4, 2.2 Hz, 1H), 7.83 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 3.02 (dd, J = 13.6, 6.1 Hz, 1H), 2.67-2.50 (m, 3H), 2.61 (s, 3H), 2.18-2.10 (m, 1H), 1.11 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 169.6, 155.5, 134.7, 130.6, 129.6, 129.4, 119.7, 38.8, 36.4, 33.8, 26.8, 20.5; HRMS (ESI) Calcd for C₁₃H₁₅O₃ (M+H): 219.1016; Found: 219.1015.

Table 2, 21

Colorless oil (0.084 g, 0.41 mmol, 82% yield); IR (film) 1761, 1477 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 1H), 6.80 (s, 1H), 2.88 (dd, J = 13.6, 6.1 Hz, 1H), 2.60-2.46 (m, 2H), 2.39 (dd, J = 13.6, 6.4 Hz, 1H), 2.29 (s, 3H), 2.23 (s, 3H), 2.15-2.05 (m, 1H), 1.07 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 148.0, 134.8, 130.5, 128.5, 128.4, 128.0, 38.7, 36.3, 33.7, 20.8, 20.5, 16.2; HRMS (ESI) Calcd for C₁₃H₁₇O₂ (M+H): 205.1223; Found: 205.1222.

Table 2, 2m

White solid (0.073 g, 0.32 mmol, 63% yield); mp. 110-111 °C; IR (film) 1756, 1505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (ddd, J = 10.0, 6.2, 2.4 Hz, 1H), 3.00-2.89 (m, 1H), 2.69-2.53 (m, 3H), 2.21-2.09 (m, 1H), 1.11 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 149.7 (ddd, J = 248.3, 10.9, 5.2 Hz), 149.3 (ddd, J = 246.8, 10.9, 5.0 Hz), 146.9 (ddd, J = 11.5, 7.2, 4.2 Hz), 138.0 (ddd, J = 248.8, 16.0, 14.7 Hz), 114.7 (ddd, J = 17.5, 4.4, 1.0 Hz), 104.5 (dd, J = 20.6, 3.7 Hz), 38.6, 33.3, 27.9, 20.5; HRMS (ESI) Calcd for C₁₁H₁₀F₃O₂ (M+H): 231.0627; Found: 231.0626.

Table 2, 2n

White soild (0.105 g, 0.47 mmol, 93% yield); mp. 81-82 °C; IR (film) 1761, 1216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.6 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.61-7.54 (m, 1H), 7.52-7.46 (m, 1H), 7.28 (d, J = 8.8 Hz, 1H), 3.33 (dd, J = 14.3, 6.2 Hz, 1H), 3.02 (dd, J = 14.3, 6.6 Hz, 1H), 2.83-2.69 (m, 1H), 2.59 (dd, J = 12.2, 7.0 Hz, 1H), 2.18 (dd, J = 12.2, 6.8 Hz, 1H), 1.14 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 149.6, 132.6, 131.8, 128.9, 128.8, 127.2, 125.5, 123.7, 123.5, 119.1, 39.1, 34.7, 30.3, 21.1; HRMS (ESI) Calcd for C₁₅H₁₅O₂ (M+H): 227.1067; Found: 227.1066.

G. Vasapollo and G. Mele, Can. J. Chem., 2005, 83, 674.

Table 2, 20

Colorless oil (0.031 g, 0.19 mmol, 38% yield); IR (film) 1764, 1486 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 1H), 7.22-7.13 (m, 2H), 7.09 (dd, J = 8.0, 0.8 Hz, 1H), 2.83 (t, J = 7.3 Hz, 2H), 2.48 (t, J = 7.3 Hz, 2H), 2.25-2.14 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 152.0, 130.3, 129.8, 128.5, 126.1, 119.5, 31.3, 28.4, 26.7; HRMS (ESI) Calcd for C₁₀H₁₁O₂ (M+H): 163.0754; Found: 163.0752.

M. Amezquita-Valencia and H. Alper, Org. Lett., 2014, 16, 5827.

Table 2, 30

Colorless oil (0.033 g, 0.20 mmol, 40% yield); IR (film) 1802, 1460 cm⁻¹; ¹H NMR (400

MHz, CDCl₃) δ 7.33-7.24 (m, 2H), 7.15 (td, *J* = 7.5, 0.9 Hz, 1H), 7.10 (dd, *J* = 8.1, 0.3 Hz, 1H), 3.70 (t, *J* = 5.9 Hz, 1H), 2.10-2.01 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 154.1, 128.9, 127.4, 124.3, 124.2, 110.8, 44.8, 24.5, 10.4; HRMS (ESI) Calcd for C₁₀H₁₁O₂ (M+H): 163.0754; Found: 163.0756.

H. Wang, B. Dong, Y. Wang, J. Li and Y. Shi, Org. Lett., 2014, 16, 186.

Procedure for Scheme 2

Scheme 2

To a mixture of Pd(OAc)₂ (0.0056 g, 0.025 mmol), (±)-DTBM-SEGPHOS (0.015 g, 0.0125 mmol), and THF (0.20 mL) in a vial (4.0 mL) was sonicated for 30 seconds. To the resulting solution were added H¹³COOPh (0.074 g, 0.60 mmol), 2-(2-methylallyl)phenol (**1a**) (0.074 g, 0.50 mmol), and HCOOH (0.023 g, 0.50 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 50 °C for 24 h. The product was purified by flash chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 30/1) to give lactone **2a'** as a colorless oil (0.076 g, 86% yield). IR (film) 1718, 1480, 1222 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 1H), 7.21-7.12 (m, 2H), 7.08 (d, *J* = 7.9 Hz, 1H), 2.97 (dd, *J* = 13.6, 6.3 Hz, 1H), 2.64-2.50 (m, 2H), 2.46 (dd, *J* = 13.6, 6.3 Hz, 1H), 2.18-2.06 (m, 1H), 1.09 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 151.9 (d, *J* = 1.2 Hz), 130.4, 129.1, 128.4, 125.7, 119.3 (d, *J* = 2.2 Hz), 38.6 (d, *J* = 53.3 Hz), 36.2 (d, *J* = 1.2 Hz), 33.8 (d, *J* = 2.6 Hz), 20.5 (d, *J* = 3.3 Hz); HRMS (ESI) Calcd for C₁₀¹³CH₁₃O₂ (M+H): 178.0944; Found: 178.0942.

Procedure for Scheme 3

Scheme 3

To a mixture of Pd(OAc)₂ (0.0056 g, 0.025 mmol), (±)-DTBM-SEGPHOS (0.015 g, 0.0125 mmol), and THF (0.20 mL) in a vial (4.0 mL) was sonicated for 30 seconds. To the resulting solution were added HCOOPh (0.073 g, 0.60 mmol), 2-(2-methylallyl)phenol (**1a**) (0.074 g, 0.50 mmol), and H¹³COOH (0.024 g, 0.50 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 50 °C for 24 h. The product was purified by flash chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 30/1) to give lactone **2a** as a colorless oil (0.079 g, 90% yield).

The X-ray structure of compound $\mathbf{2k}$

Table S1. Crystal data and structure refinement for: 2k.

Identification code	2k
Empirical formula	$C_{13} H_{14} O_3$
Formula weight	218.24
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P21/c
Unit cell dimensions	a = 7.3630(15) A alpha = 90 deg.
	b = 17.941(4) A beta = 91.50(3) deg.
	c = 8.5680(17) A gamma = 90 deg.
Volume	1131.4(4) A ³
Z, Calculated density	4, 1.281 Mg/m ³
Absorption coefficient	0.090 mm^{-1}
F(000)	464
Crystal size	0.20 x 0.10 x 0.10 mm
Theta range for data collectio	n 2.27 to 25.37 deg.
Limiting indices	0<=h<=8, 0<=k<=21, -10<=l<=10
Reflections collected / unique	2245 / 1622 [R(int) = 0.0990]
Completeness to theta = 25.37	98.00%
Absorption correction	Psi-scan
Max. and min. transmission	0.9910 and 0.9821
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1622 / 1 / 145
Goodness-of-fit on F ²	1.002
Final R indices [I>2sigma(I)]	R1 = 0.0771, $wR2 = 0.1257$
R indices (all data)	R1 = 0.1981, $wR2 = 0.1561$
Largest diff. peak and hole	0.194 and -0.183 e.A ⁻³

	x	у	Z	U(eq)
O(1)	13623(6)	1/85(3)	9870(5)	109(2)
C(1)	12805(9)	1574(4)	12454(7)	102(2)
O(2)	6065(5)	320(2)	8067(5)	70(1)
C(2)	12432(9)	1546(4)	10741(7)	73(2)
O(3)	3727(5)	321(2)	6383(4)	88(2)
C(3)	10790(7)	1220(3)	10046(7)	54(2)
C(4)	9451(8)	931(3)	10953(6)	62(2)
C(5)	7836(8)	648(3)	10295(7)	63(2)
C(6)	7651(8)	653(3)	8700(7)	54(2)
C(7)	4998(8)	660(4)	6909(7)	65(2)
C(8)	5577(6)	1417(3)	6434(6)	60(2)
C(9)	7213(8)	1412(4)	5354(7)	72(2)
C(10)	8687(7)	874(3)	5980(6)	62(2)
C(11)	8972(8)	910(3)	7708(6)	49(1)
C(12)	10511(7)	1205(3)	8432(6)	55(2)
C(13)	7971(8)	2161(3)	5190(8)	111(3)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for: **2k**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

O(1)-C(2)	1.243(6)
C(1)-C(2)	1.487(7)
C(1)-H(1A)	0.96
C(1)-H(1B)	0.96
C(1)-H(1C)	0.96
O(2)-C(7)	1.390(6)
O(2)-C(6)	1.407(6)
C(2)-C(3)	1.455(7)
O(3)-C(7)	1.194(6)
C(3)-C(4)	1.374(6)
C(3)-C(12)	1.392(6)
C(4)-C(5)	1.397(6)
C(4)-H(4A)	0.93
C(5)-C(6)	1.370(7)
C(5)-H(5A)	0.93
C(6)-C(11)	1.387(7)
C(7)-C(8)	1.484(7)
C(8)-C(9)	1.538(6)
C(8)-H(8A)	0.97
C(8)-H(8B)	0.97
C(9)-C(13)	1.464(7)
C(9)-C(10)	1.539(7)
C(9)-H(9A)	0.98
C(10)-C(11)	1.491(6)
C(10)-H(10A)	0.97
C(10)-H(10B)	0.97
C(11)-C(12)	1.383(6)
C(12)-H(12A)	0.93
C(13)-H(13A)	0.96
C(13)-H(13B)	0.96
C(13)-H(13C)	0.96
C(2)-C(1)-H(1A)	10950.00%
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(7)-O(2)-C(6)	122.5(5)
O(1)-C(2)-C(3)	119.0(6)
O(1)-C(2)-C(1)	117.8(6)

Table S3. Bond lengths [A] and angles [deg] for: 2k.

C(3)-C(2)-C(1)	123.2(6)
C(4)-C(3)-C(12)	117.7(6)
C(4)-C(3)-C(2)	121.4(6)
C(12)-C(3)-C(2)	120.9(5)
C(3)-C(4)-C(5)	121.6(5)
C(3)-C(4)-H(4A)	119.2
C(5)-C(4)-H(4A)	119.2
C(6)-C(5)-C(4)	117.5(5)
C(6)-C(5)-H(5A)	121.2
C(4)-C(5)-H(5A)	121.2
C(5)-C(6)-C(11)	124.1(5)
C(5)-C(6)-O(2)	116.2(5)
C(11)-C(6)-O(2)	119.5(5)
O(3)-C(7)-O(2)	118.0(6)
O(3)-C(7)-C(8)	126.2(6)
O(2)-C(7)-C(8)	115.8(5)
C(7)-C(8)-C(9)	113.2(5)
C(7)-C(8)-H(8A)	108.9
C(9)-C(8)-H(8A)	108.9
C(7)-C(8)-H(8B)	108.9
C(9)-C(8)-H(8B)	108.9
H(8A)-C(8)-H(8B)	107.7
C(13)-C(9)-C(8)	111.0(5)
C(13)-C(9)-C(10)	110.0(5)
C(8)-C(9)-C(10)	110.5(5)
С(13)-С(9)-Н(9А)	108.4
C(8)-C(9)-H(9A)	108.4
С(10)-С(9)-Н(9А)	108.4
C(11)-C(10)-C(9)	113.5(5)
С(11)-С(10)-Н(10А)	108.9
C(9)-C(10)-H(10A)	108.9
С(11)-С(10)-Н(10В)	108.9
C(9)-C(10)-H(10B)	108.9
H(10A)-C(10)-H(10B)	107.7
C(12)-C(11)-C(6)	115.6(5)
C(12)-C(11)-C(10)	123.7(5)
C(6)-C(11)-C(10)	120.8(5)
C(11)-C(12)-C(3)	123.4(5)
C(11)-C(12)-H(12A)	118.3
C(3)-C(12)-H(12A)	118.3
C(9)-C(13)-H(13A)	109.5
C(9)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5

C(9)-C(13)-H(13C)	109.5	
H(13A)-C(13)-H(13C)	109.5	
H(13B)-C(13)-H(13C)	109.5	

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
O(1)	87(3)	160(5)	80(3)	7(3)	-2(3)	-40(3)
C(1)	129(7)	111(6)	66(5)	10(5)	-7(4)	-12(5)
O(2)	79(3)	58(3)	74(3)	5(2)	12(2)	-9(2)
C(2)	76(5)	72(5)	71(5)	7(4)	18(4)	-2(4)
O(3)	72(3)	107(4)	84(3)	-19(3)	-3(2)	-23(3)
C(3)	52(4)	44(3)	66(4)	1(3)	15(3)	-5(3)
C(4)	63(4)	60(4)	61(4)	8(3)	3(3)	5(3)
C(5)	80(5)	55(4)	54(4)	17(3)	24(3)	7(4)
C(6)	61(4)	34(3)	69(4)	-5(3)	-3(3)	-1(3)
C(7)	65(5)	79(5)	53(4)	-16(4)	27(3)	-21(4)
C(8)	47(4)	69(4)	64(4)	8(3)	16(3)	-6(3)
C(9)	78(5)	70(5)	68(4)	-4(4)	19(3)	-31(4)
C(10)	59(4)	64(4)	64(4)	-5(3)	16(3)	-3(3)
C(11)	61(4)	49(4)	38(3)	-2(3)	12(3)	9(3)
C(12)	60(4)	50(4)	54(4)	3(3)	9(3)	5(3)
C(13)	115(6)	74(5)	147(7)	29(5)	36(5)	-3(5)

Table S4. Anisotropic displacement parameters $(A^2 \times 10^3)$ for: **2k**. The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	Х	У	Z	U(eq)
H(1A)	13938	1824	12659	153
H(1B)	12871	1075	12861	153
H(1C)	11845	1839	12948	153
H(4A)	9622	922	12032	74
H(5A)	6922	464	10916	75
H(8A)	5889	1704	7362	72
H(8B)	4565	1665	5903	72
H(9A)	6799	1238	4321	86
H(10A)	8351	369	5690	75
H(10B)	9824	989	5486	75
H(12A)	11407	1404	7809	66
H(13A)	7041	2494	4807	167
H(13B)	8945	2148	4467	167
H(13C)	8425	2333	6187	167

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 x \ 10^3$) for: **2k**.

Table S6. Torsion angles [deg] for: 2k.

O(1)-C(2)-C(3)-C(4)	178.4(6)
C(1)-C(2)-C(3)-C(4)	1.5(9)
O(1)-C(2)-C(3)-C(12)	-2.8(9)
C(1)-C(2)-C(3)-C(12)	-179.7(6)
C(12)-C(3)-C(4)-C(5)	-1.8(8)
C(2)-C(3)-C(4)-C(5)	177.1(6)
C(3)-C(4)-C(5)-C(6)	1.6(8)
C(4)-C(5)-C(6)-C(11)	1.0(8)
C(4)-C(5)-C(6)-O(2)	175.9(5)
C(7)-O(2)-C(6)-C(5)	133.1(5)
C(7)-O(2)-C(6)-C(11)	-51.7(7)
C(6)-O(2)-C(7)-O(3)	176.3(5)
C(6)-O(2)-C(7)-C(8)	-3.1(7)
O(3)-C(7)-C(8)-C(9)	-102.1(7)
O(2)-C(7)-C(8)-C(9)	77.3(6)
C(7)-C(8)-C(9)-C(13)	-167.9(5)
C(7)-C(8)-C(9)-C(10)	-45.5(6)
C(13)-C(9)-C(10)-C(11)	81.7(6)
C(8)-C(9)-C(10)-C(11)	-41.3(6)
C(5)-C(6)-C(11)-C(12)	-3.1(8)
O(2)-C(6)-C(11)-C(12)	-177.9(5)
C(5)-C(6)-C(11)-C(10)	178.0(5)
O(2)-C(6)-C(11)-C(10)	3.3(8)
C(9)-C(10)-C(11)-C(12)	-109.7(6)
C(9)-C(10)-C(11)-C(6)	69.0(7)
C(6)-C(11)-C(12)-C(3)	2.9(8)
C(10)-C(11)-C(12)-C(3)	-178.3(5)
C(4)-C(3)-C(12)-C(11)	-0.5(8)
C(2)-C(3)-C(12)-C(11)	-179.4(5)

Symmetry transformations used to generate equivalent atoms:

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

The X-ray structure of compound $\mathbf{2n}$

Table S1. Crystal data and structure refinement for: 2n.

Identification code	2n
Empirical formula	$C_{15}H_{14}O_2$
Formula weight	226.26
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P21/N
Unit cell dimensions	a = 5.3480(11) A alpha = 90 deg.
	b = 12.242(2) A beta = 93.89(3) deg.
	c = 17.786(4) A gamma = 90 deg.
Volume	$1161.8(4) A^3$
Z, Calculated density	4, 1.294 Mg/m^3
Absorption coefficient	0.085 mm ⁻¹
F(000)	480
Crystal size	0.30 x 0.20 x 0.10 mm
Theta range for data collection	2.02 to 25.39 deg.
Limiting indices	0<=h<=6, 0<=k<=14, -21<=l<=21
Reflections collected / unique	2386 / 2147 [R(int) = 0.0643]
Completeness to theta $= 25.39$	100.00%
Absorption correction	Psi-scan
Max. and min. transmission	0.9916 and 0.9750
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2147 / 0 / 154
Goodness-of-fit on F ²	1.002
Final R indices [I>2sigma(I)]	R1 = 0.0680, wR2 = 0.1693
R indices (all data)	R1 = 0.1251, wR2 = 0.2067
Largest diff. peak and hole	0.215 and -0.257 e.A ⁻³

	Х	У	Z	U(eq)
O(1)	-869(4)	8585(2)	5503(1)	59(1)
C(2)	546(6)	6756(3)	5191(2)	52(1)
O(2)	-3282(5)	7607(3)	4720(2)	76(1)
C(3)	-1361(6)	7643(3)	5103(2)	53(1)
C(4)	1172(6)	8648(3)	6044(2)	47(1)
C(5)	2671(7)	9578(3)	6001(2)	58(1)
C(6)	4610(7)	9723(3)	6527(2)	57(1)
C(7)	5108(6)	8958(3)	7110(2)	47(1)
C(8)	7157(6)	9090(3)	7647(2)	59(1)
C(9)	7648(7)	8352(3)	8206(2)	62(1)
C(10)	6091(7)	7445(3)	8259(2)	59(1)
C(12)	3556(6)	8029(3)	7150(2)	42(1)
C(11)	4098(6)	7280(3)	7752(2)	50(1)
C(13)	1515(6)	7876(3)	6594(2)	42(1)
C(14)	-197(6)	6898(3)	6573(2)	47(1)
C(1)	343(6)	6119(3)	5925(2)	45(1)
C(15)	2693(7)	5437(3)	6101(2)	59(1)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for: **2n**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S3. Bond lengths [A] and angles [deg] for: **2n**.

O(1)-C(3)	1.371(4)
O(1)-C(4)	1.407(4)
C(2)-C(3)	1.491(5)
C(2)-C(1)	1.530(4)
C(2)-H(2A)	0.97
C(2)-H(2B)	0.97
O(2)-C(3)	1.195(4)
C(4)-C(13)	1.363(4)
C(4)-C(5)	1.397(5)
C(5)-C(6)	1.360(5)
C(5)-H(5A)	0.93
C(6)-C(7)	1.409(5)
C(6)-H(6A)	0.93
C(7)-C(12)	1.413(4)
C(7)-C(8)	1.413(5)
C(8)-C(9)	1.356(5)
C(8)-H(8A)	0.93
C(9)-C(10)	1.395(5)
C(9)-H(9A)	0.93
C(10)-C(11)	1.364(4)
C(10)-H(10A)	0.93
C(12)-C(11)	1.424(4)
C(12)-C(13)	1.435(4)
C(11)-H(11A)	0.93
C(13)-C(14)	1.506(4)
C(14)-C(1)	1.538(4)
C(14)-H(14A)	0.97
C(14)-H(14B)	0.97
C(1)-C(15)	1.524(4)
C(1)-H(1A)	0.98
C(15)-H(15A)	0.96
C(15)-H(15B)	0.96
C(15)-H(15C)	0.96
C(3)-O(1)-C(4)	120.9(3)
C(3)-C(2)-C(1)	111.9(3)
C(3)-C(2)-H(2A)	109.2
C(1)-C(2)-H(2A)	109.2
C(3)-C(2)-H(2B)	109.2
C(1)-C(2)-H(2B)	109.2
H(2A)-C(2)-H(2B)	107.9
O(2)-C(3)-O(1)	117.0(4)

_

O(2)-C(3)-C(2)	126.0(4)
O(1)-C(3)-C(2)	116.9(3)
C(13)-C(4)-C(5)	123.7(3)
C(13)-C(4)-O(1)	120.8(3)
C(5)-C(4)-O(1)	115.4(3)
C(6)-C(5)-C(4)	118.9(3)
C(6)-C(5)-H(5A)	120.6
C(4)-C(5)-H(5A)	120.6
C(5)-C(6)-C(7)	121.1(3)
C(5)-C(6)-H(6A)	119.5
C(7)-C(6)-H(6A)	119.5
C(6)-C(7)-C(12)	119.3(3)
C(6)-C(7)-C(8)	121.4(3)
C(12)-C(7)-C(8)	119.3(3)
C(9)-C(8)-C(7)	121.5(4)
C(9)-C(8)-H(8A)	119.3
C(7)-C(8)-H(8A)	119.3
C(8)-C(9)-C(10)	119.6(3)
C(8)-C(9)-H(9A)	120.2
C(10)-C(9)-H(9A)	120.2
C(11)-C(10)-C(9)	121.1(4)
С(11)-С(10)-Н(10А)	119.5
C(9)-C(10)-H(10A)	119.5
C(7)-C(12)-C(11)	117.8(3)
C(7)-C(12)-C(13)	119.5(3)
C(11)-C(12)-C(13)	122.7(3)
C(10)-C(11)-C(12)	120.7(3)
C(10)-C(11)-H(11A)	119.6
C(12)-C(11)-H(11A)	119.6
C(4)-C(13)-C(12)	117.5(3)
C(4)-C(13)-C(14)	118.8(3)
C(12)-C(13)-C(14)	123.6(3)
C(13)-C(14)-C(1)	111.5(3)
C(13)-C(14)-H(14A)	109.3
C(1)-C(14)-H(14A)	109.3
C(13)-C(14)-H(14B)	109.3
C(1)-C(14)-H(14B)	109.3
H(14A)-C(14)-H(14B)	108
C(15)-C(1)-C(2)	110.4(3)
C(15)-C(1)-C(14)	112.3(3)
C(2)-C(1)-C(14)	110.5(3)
C(15)-C(1)-H(1A)	107.8
C(2)-C(1)-H(1A)	107.8

C(14)-C(1)-H(1A)	107.8
C(1)-C(15)-H(15A)	109.5
C(1)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(1)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5

Symmetry transformations used to generate equivalent atoms:

					-	
	U11	U22	U33	U23	U13	U12
O(1)	57(2)	57(2)	60(2)	1(1)	-8(1)	8(1)
C(2)	50(2)	64(2)	43(2)	-10(2)	7(2)	-9(2)
O(2)	54(2)	105(2)	65(2)	1(2)	-16(1)	-4(2)
C(3)	47(2)	67(3)	44(2)	5(2)	3(2)	-8(2)
C(4)	44(2)	49(2)	46(2)	-4(2)	2(2)	3(2)
C(5)	72(2)	43(2)	59(2)	5(2)	5(2)	1(2)
C(6)	59(2)	44(2)	68(2)	-6(2)	10(2)	-13(2)
C(7)	49(2)	47(2)	48(2)	-15(2)	8(2)	0(2)
C(8)	48(2)	63(2)	67(3)	-24(2)	5(2)	-5(2)
C(9)	52(2)	82(3)	52(2)	-22(2)	-7(2)	7(2)
C(10)	59(2)	77(3)	39(2)	-11(2)	2(2)	16(2)
C(12)	40(2)	49(2)	38(2)	-7(2)	9(1)	5(2)
C(11)	54(2)	59(2)	39(2)	-5(2)	9(2)	1(2)
C(13)	40(2)	42(2)	43(2)	-2(2)	11(1)	-1(1)
C(14)	44(2)	53(2)	44(2)	-2(2)	7(2)	-3(2)
C(1)	37(2)	46(2)	51(2)	-4(2)	7(2)	-8(2)

70(2)

-7(2)

1(2)

2(2)

52(2)

C(15)

55(2)

Table S4. Anisotropic displacement parameters $(A^2 \times 10^3)$ for: **2n**. The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	х	У	Z	U(eq)
H(2A)	2208	7071	5186	62
H(2B)	322	6257	4768	62
H(5A)	2348	10088	5620	70
H(6A)	5623	10337	6501	69
H(8A)	8192	9697	7616	71
H(9A)	9013	8450	8551	75
H(10A)	6417	6945	8647	70
H(11A)	3081	6671	7799	60
H(14A)	-1924	7142	6511	56
H(14B)	23	6509	7048	56
H(1A)	-1080	5617	5851	53
H(15A)	2957	4964	5682	89
H(15B)	2492	5004	6543	89
H(15C)	4113	5911	6187	89

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 x \ 10^3$) for: **2n**.

Table S6. Torsion angles [deg] for: 2n.

C(4)-O(1)-C(3)-O(2)	171.4(3)
C(4)-O(1)-C(3)-C(2)	-8.2(5)
C(1)-C(2)-C(3)-O(2)	-100.7(4)
C(1)-C(2)-C(3)-O(1)	78.8(4)
C(3)-O(1)-C(4)-C(13)	-51.1(4)
C(3)-O(1)-C(4)-C(5)	132.9(3)
C(13)-C(4)-C(5)-C(6)	1.0(5)
O(1)-C(4)-C(5)-C(6)	176.9(3)
C(4)-C(5)-C(6)-C(7)	-0.4(5)
C(5)-C(6)-C(7)-C(12)	-0.4(5)
C(5)-C(6)-C(7)-C(8)	178.4(3)
C(6)-C(7)-C(8)-C(9)	-179.6(3)
C(12)-C(7)-C(8)-C(9)	-0.9(5)
C(7)-C(8)-C(9)-C(10)	-0.5(5)
C(8)-C(9)-C(10)-C(11)	0.9(5)
C(6)-C(7)-C(12)-C(11)	-179.3(3)
C(8)-C(7)-C(12)-C(11)	1.9(4)
C(6)-C(7)-C(12)-C(13)	0.5(4)
C(8)-C(7)-C(12)-C(13)	-178.3(3)
C(9)-C(10)-C(11)-C(12)	0.2(5)
C(7)-C(12)-C(11)-C(10)	-1.6(5)
C(13)-C(12)-C(11)-C(10)	178.6(3)
C(5)-C(4)-C(13)-C(12)	-0.8(5)
O(1)-C(4)-C(13)-C(12)	-176.5(3)
C(5)-C(4)-C(13)-C(14)	-179.0(3)
O(1)-C(4)-C(13)-C(14)	5.3(4)
C(7)-C(12)-C(13)-C(4)	0.0(4)
C(11)-C(12)-C(13)-C(4)	179.9(3)
C(7)-C(12)-C(13)-C(14)	178.1(3)
C(11)-C(12)-C(13)-C(14)	-2.1(5)
C(4)-C(13)-C(14)-C(1)	71.3(4)
C(12)-C(13)-C(14)-C(1)	-106.7(3)
C(3)-C(2)-C(1)-C(15)	-164.9(3)
C(3)-C(2)-C(1)-C(14)	-40.0(4)
C(13)-C(14)-C(1)-C(15)	76.5(3)
C(13)-C(14)-C(1)-C(2)	-47.3(3)

Symmetry transformations used to generate equivalent atoms:

Table S7. Hydrogen bonds for: **2n** [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

The chromatograms for determination of enantioselectivity

Table 2

Me O O 21

Eluent: Hexanes/IPA (99.5/0.5); Flow rate: 1.0 mL/min; Detection: UV213 nm.

